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Abstract

In this article, we prove some novel “xed-point results for a pair of multivalued
dominated mappings obeying a new generalized
Nashine…Wardowski…Feng…Liu-type contraction for orbitally lower semi-continuous
functions in a complete orbitalb-metric space. Furthermore, some new “xed-point
theorems for dominated multivalued mappings are established in the scenario of
ordered complete orbitalb-metric spaces. Some examples are o�ered to demonstrate
the validity of our new results• premise. To demonstrate the applicability of our
“ndings, applications for a system of nonlinear Volterra-type integral equations and
fractional di�erential equations are shown. These results extend the theoretical results
of Nashine et al. (Nonlinear Anal., Model. Control 26(3):522…533,2021).
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1 Introduction and basic preliminaries
Fixed point theory is a fascinating branch of mathematics that plays a critical and fun-
damental role in both applied and pure mathematics, including modern optimization,
control theories, functional analysis, topology and geometry, economics, and modeling.
Fixed point theory is a well-balanced mixture of analysis, topology, and geometry. In many
“elds, it is a critical investigation and detection tool. Fixed point theory is a fundamental
and useful area of functional analysis. Fixed point theory has most fascinating research
topics in nonlinear analysis. Fixed point theory intends to develop not only nonlinear and
functional analysis, but also economics, “nance, computer science, and other subjects,
in deciding problems for di�erential, integral, and random di�erential equations. As a
result, the theory of “xed point arose as an analytic theory. Banach [10] developed the
Banach contraction principle, which is the “rst well-known result in “xed point theory.
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This result has an important role for solving linear and nonlinear di�erential, integral,
and functional equations in a variety of generalized spaces. There are many variations on
the Banach contraction principle that involve contractive-type requirements that must be
met at di�erent distance spaces. Di�erent multiplications of Banach•s result in metric and
b-metric spaces were studied by Bakhtin [9], Czerwik [13…15]. Further useful recent re-
sults onb-metric spaces can be seen in [19, 21…23, 31]. Wardowski [40] proposed a new
generalization of Banach•s theorem known asF-contraction, as well as some new “xed-
point results. After that, Sgroi et al. [37] established the existence of new theorems for
set-valuedF-contraction and showed some functional and integral equation applications.
Nicolae [28] demonstrated “xed-point results for Feng…Liu type contractions that per-
form several functions. Padcharoen et al. [30] presented periodic theorems for a novel
generalizedF-contraction in modular metric-like spaces. Furthermore, Rasham et al. [36]
used the “rst of Wardowski•s threeF-contraction conditions to prove “xed point theorems
in a completeb-like-metric space for a multivalued dominatedF-contraction on a closed
ball. Rasham et al. [35] went on to analyze various linked fuzzy-dominated generalized
contractive maps in modular metric-like spaces, and they demonstrated applications to
examine the existence of unique solution for integral and fractional di�erential equations.
Nashine et al. [25] recently obtained “xed point theorems for set-valued maps satisfying
the Wardowski…Feng…Liu-type condition for orbitally semi lower continuous functions in
an orbital completeb-metric space, as well as illustrative examples to certify new results
and a fractal integral equations application.

We prove some novel “xed-point theorems for a couple of multivalued dominated maps
that ful“ll Nashine…Wardowski…Feng…Liu-type contraction for orbitally lower semi-
continuous functions in a complete orbitalb-metric space proved by Nashine et al. [25].
In addition, a new existence theorem for a few multi-dominated maps meeting a new
generalized Nashine…Wardowski…Feng…Liu-type rational contractive condition for or-
bitally lower semi continuous functions in an ordered complete orbitalb-metric space
is presented. To validate our “ndings, we give examples and new de“nitions. Finally, we
describe applications for nonlinear Volterra-type integral and fractional di�erential equa-
tions to demonstrate the utility of our “ndings.

Definition 1.1 ([26]) A function db : Y × Y → [0,∞) satisfying the following axioms (for
all g,h, i ∈ Y) is called ab-metric (db-metric):

i. If db(g,h) = 0, iff g= h;
ii. db(g,h) = db(h,g);

iii. db(g,h) ≤ b[db(g,i) + db(i,h)].
The pair (Y,db) is called a b-metric space (abbreviated as BMS).

Example 1.2 ([26]) Let Y = R+ ∪ {0}. De“ne db(g,h) = |g…h|2, ∀g,h ∈ Y. Then, (Y,db) is
a BMS with constantb = 2.

Definition 1.3 ([36]) Let Q be a non-empty subset ofY and g ∈ Y. Then,p0 ∈ Q is said
to be a best approximation in Q if

db(g,Q) = db(g,p0), wheredb(g,Q) = inf
p∈Q

db(g,p).

Here P(Y) denotes the set of all closed compact subsets ofY.
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Definition 1.4 ([36]) A function Hdb : P(Y) × P(Y) → R+ de“ned by

Hdb(R,E) = max
{

sup
x∈R

db(x,E),sup
m∈E

db(R,m)
}

undergoes all the axioms of ab-metric and is known as Pompiue…Hausdor�b-metric on

P(Y).

Definition 1.5 ([40]) An F-contraction is a mappingT :M → M satisfying the follow-

ing:

there existsτ > 0 such that (for everyμ,y ∈M)

d
(
T(μ),T (y)

)
> 0 ⇒ τ + F

(
d
(
T(μ),T (y)

)) ≤ F
(
d(μ,y)

)
.

Here the functionF :R+→R satis“es the following conditions:

(F1) F is an strictly-increasing function;
(F2) limj→+∞ ρj = 0 if and only if limj→+∞ F(ρj ) = …∞, for every positive sequence {ρj}∞j=1;
(F3) for each g ∈ (0, 1),limj→∞ ρ

g
j F(ρj ) = 0;

(F4) there exists τ > 0 such that for every positive sequence {ρj},

τ + F(bρj ) ≤ F(ρj…1) for all j ∈N,then τ + F
(
bjρj

) ≤ (
bj…1ρj…1

)
for all j ∈ N.

Definition 1.6 ([25]) Let b ≥ 1 be a non-negative number and∇F∗
b represents the family

of functions F :R+→R satisfying the conditions (F1) … (F4) and

(F5) F(inf B) = inf F(B) for all B⊂ (0,∞) with inf B > 0.
It is clear that∇F∗

b is non-empty containingF(g) = ln g or F(g) = g+ ln g.

A function f :H →R is lower semi-continuous if for every sequence of positive numbers

{ωj} in H with limj→+∞ ωj = ω ∈H, f (ω) ≤ limj→+∞ inf f (ωj ).

Definition 1.7 ([32]) Let U be a non empty set, whereK ⊆ U andα : U × U → [0,+∞).

A mappingW : U → P(U) satisfying

α∗(Wg,Wh) = inf
{
α(t,z) : tεWg,zεWh

} ≥ 1, wheneverα(t,z) ≥ 1, for all t ,z∈ U

is calledα∗-admissible.

A mapping W : U −→ P(U) satisfyingα∗(κ,Wκ) = inf{α(κ, h) : hεWκ} ≥ 1, for all

κ,h ∈ U is said to be anα∗-dominated onE.

Example 1.8 ([32]) De“ne γ :R×R → [0,∞) andG,R:R → P(R) by

γ (o,p) =

{
1 if o> p
1
4 if o≤ p

}
,

and Gs= […4 +s,…3 +s] and Rm = […2 +m,…1 +m], respectively. ThenG and R areγ∗-

dominated, but they are notγ∗-admissible.
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2 Main results
Let (Y,db) be a complete BMS andκ0 ∈ Y. Let S and T be two multi-maps from Y

to P(Y). Let κ1 ∈ S(κo), then db(κo,S(κo)) = db(κ0,κ1). Let κ2 ∈ T(κ1) be such that

db(κ1,T(κ1)) = db(κ1,κ2). Continuing this way, we attain a sequence{TS(κj )} in Y,

where κ2j+1 ∈ S(κ2j) and κ2j+2 ∈ T(κ2j+1) for all j ∈ N ∪ {0}. Also, db(κ2j,S(κ2j)) =

db(κ2j,κ2j+1),db(κ2j+1,T(κ2j+1)) = db(κ2j+1,κ2j+2), then {TS(κj )} is a sequence inY gen-

erated byκ0. If, S= T , then we say{YS(κj )} instead of{TS(κj )}.

Definition 2.1 Let SandT be two multi-maps fromY to P(Y), F ∈ ∇F∗
b andη : (0,∞) →

(0,∞). For allκ,y in Y with max{db(κ,S(κ)),db(y,T(y))} > 0, de“ne a setFy
η ⊆ Y as:

Fy
η =

{
y ∈ S(κ),z∈ T(y) : F(db(y,z))

≤ F(b[max{db(κ,S(κ)),db(y,T(y)), db(κ,S(κ)).db(y,T(y))
1+db(κ,y) }]) + η(db(y,z))

}
.

Let S,T : Y → Y. For anyy0 ∈ Y, O(y0) = {y0,S(y0),T(y1), . . .} denotes the orbit ofy0.

A mappingf : Y→ R is said (S,T )-orbitally lower semi continuous iff (y) < limn→∞ inf f (y0)

for all sequences{ST(yn)} ⊂ O(y0) with limn→∞{ST(yn)} = y ∈ Y.

Definition 2.2 Let S,T : Y → P(Y) be a couple of multi-maps on (Y,db). An orbit for a

pair (S,T) in a point y0 ∈ Y denoted byO(y0) is a sequence de“ned as{yn:yn∈ ST(yn…1)}.

Definition 2.3 Let S,T : Y → P(Y) be a couple of multi-maps on (Y,db). If a Cauchy se-

quence{yn:yn∈ ST(yn…1)} converges inb-metric spaceY, thenY is said to be (S,T )-orbitally

complete.

It is noted that an orbitally complete BMS may not be complete. Now we begin our main

theorem.

Theorem 2.4 Let (Y,db) be an orbitally complete BMS. Let y0 ∈ Y,α : Y × Y → [0,∞)

and S,T : Y → P(Y) be twoα∗-dominated multi-maps and F∈ ∇F∗
b . Assume the following

properties hold:

i. The mapping z �→ max{db(κ,S(κ)),db(y,T(y))} is orbitally lower semi continuous;
ii. There exist functions τ ,η : (0,∞) → (0,∞) such that for all t ≥ 0;

τ (t) > η(t), lim
s→t+

inf τ (t) > lim
s→t+

infη(t);

iii. For all κ,y∈ {ST(κj )} with α(x,y) ≥ 1 and max{db(κ,S(κ)),db(y,T(y))} > 0, there
exist κ,y∈ Fκ

η satisfying;

τ
(
db(κ,y)

)
+ F

(
b
[

max

{
db

(
κ,S(κ)

)
,db

(
y,T(y)

)
,
db(κ,S(κ)).db(y,T(y))

1 + db(κ,y)

}])

≤ F
(
db(κ,y)

)
. (2.1)

If (2.1) holds, then S and T have a common “xed point q in Y.

Proof SupposeS and T have no “xed point. Then for eachκ,y ∈ Y we havemax{db(κ,

S(κ)),db(y,T(y))} > 0. SinceS(κ),T (y) ∈ P(Y) for everyκ,y ∈ Y and F ∈ ∇F∗
b , it is simple
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to prove that Fx
η is a non-empty set for allκ,y ∈ Y (proof will follow in the “rst line of

[20]). As S,T : Y → P(Y) are twoα∗-dominated multi-maps on{TS(xj)}, by de“nition we
haveα∗(κ2j,S(κ2j)) ≥ 1 andα∗(κ2i+1,T(κ2j+1)) ≥ 1 for all j∈ N. Asα∗(κ2j,S(κ2j)) ≥ 1, this
implies that inf{α(x2j,b) : b ∈ S(κ2j)} ≥ 1 and therefore,α(x2j,x2j+1) ≥ 1. If κ0 ∈ Y is any
initial point then κ2j,κ2j+1 ∈ Fκ0

η and using (2.1), we have

τ
(
db(κ2j,κ2j+1)

)
+ F

(
b
[

max

{
db

(
κ2j,S(κ2j)

)
,db

(
κ2j+1,T(κ2j+1)

)
,

db(κ2j,S(κ2j)).db(κ2j+1,T(κ2j+1))
1 + db(κ2j,κ2j+1)

}])

≤ F
(
db(κ2j,κ2j+1)

)
,

which implies that

τ
(
db(κ2j,κ2j+1)

)
+ F

(
b
[

max

{
db(κ2j,κ2j+1),db(κ2j+1,κ2j+2),

db(κ2j,κ2j+1).db(κ2j+1,κ2j+2)
1 + db(κ2j,κ2j+1)

}])

≤ F
(
db(κ2j,κ2j+1)

)
,

that is

τ
(
db(κ2j,κ2j+1)

)
+ F

(
b
[
max

{
db(κ2j,κ2j+1),db(κ2j+1,κ2j+2),db(κ2j+1,κ2j+2)

}])

≤ F
(
db(κ2j,κ2j+1)

)
.

This implies that,

τ
(
db(κ2j,κ2j+1)

)
+ F

(
b
[
max

{
db(κ2j,κ2j+1),db(κ2j+1,κ2j+2)

}])

≤ F
(
db(κ2j,κ2j+1)

)
. (2.2)

If max{db(κ2j,κ2j+1),db(κ2j+1,κ2j+2)} = db(κ2j,κ2j+1), then from (2.2), we have

τ
(
db(κ2j,κ2j+1)

)
+ F

(
b
[
db(κ2j,κ2j+1)

]) ≤ F
(
db(κ2j,κ2j+1)

)
,

which is wrong due to (F1), which mentions thatF is strictly increasing. Therefore,

max
{
db(κ2j,κ2j+1),db(κ2j+1,κ2j+2)

}
= db(κ2j+1,κ2j+2),

for eachj ∈N∩ {0}. So, we have

τ
(
db(κ2j,κ2j+1)

)
+ F

(
b
[
db(κ2j+1,κ2j+2)

]) ≤ F
(
db(κ2j,κ2j+1)

)
, (2.3)

for all j ∈N∩ {0}. From (2.3) and applying (F4) we get,

τ
(
db(κ2j,κ2j+1)

)
+ F

(
b2j+1[db(κ2j+1,κ2j+2)

]) ≤ F
(
b2jdb(κ2j,κ2j+1)

)
. (2.4)
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Since,κj+1 ∈ Fy
η then by the de“nition of Fy

η we have,

F
(
db(κ2j,κ2j+1)

) ≤ F
(
db(κ2j,Tκ2j)

)
+ ηdb(κ2j,κ2j+1),

which implies that,

F
(
b2jdb(κ2j,κ2j+1)

) ≤ F
(
b2jdb(κ2j,Tκ2j)

)
+ ηdb(κ2j,κ2j+1). (2.5)

From (2.4) and (2.5), we have,

F
(
b2j+1[db(κ2j+1,κ2j+2)

])

≤ F
(
b2jdb(κ2j,κ2j+1)

)
+ ηdb(κ2j,κ2j+1) …τ

(
db(κ2j,κ2j+1)

)
. (2.6)

Similarly, for eachj ∈N∩ {0} we have,

F
(
b2j[db(κ2j,κ2j+1)

])

≤ F
(
b2j…1db(κ2j…1,κ2j)

)
+ ηdb(κ2j…1,κ2j) …τ

(
db(κ2j…1,κ2j)

)
. (2.7)

Using (2.7) in (2.5) we have,

F
(
b2j+1[db(κ2j+1,κ2j+2)

])

≤ F
(
b2j…1db(κ2j…1,κ2j)

)
+ ηdb(κ2j,κ2j+1) + ηdb(κ2j…1,κ2j)

…τ
(
db(κ2j…1,κ2j)

)
…τ

(
db(κ2j,κ2j+1)

)
. (2.8)

Now put 2j + 1 = g and alsodb(κ2j,κ2j+1) = ∂g for all ∈ N ∩ {0}. As ∂g > 0 and from (2.8)
{∂g} is decreasing. Therefore, there existsε > 0 such thatlimg→∞ ∂g = ε. Asε > 0, letγ (t) =
τ (t) …η(t) ≥ 0, whent → s+. Then, using (2.6), we get

F
(
bg∂g

) ≤ F
(
bg…1∂g

)
…γ (∂g)

≤ F
(
bg…1∂g…1

)
…γ (∂g) …γ (∂g…1)

. . .

≤ F(∂0) …γ (∂g) …γ (∂g…1) …· · · …γ (∂0). (2.9)

Let lg be the greatest number in{0,1,2,3, . . . ,g… 1} such that

γ (∂lg) = min
{
γ (∂0),γ (∂1),γ (∂2), . . . ,γ (∂g)

}
.

For everyg ∈ N, so the sequence{∂g} is non-decreasing. Now, from equation (2.9) we
get,

F
(
bg∂g

) ≤ F(∂0) …gγ (∂lg).

Similarly, from (2.6) we can obtain

F
(
bg+1db

(
κg+1,T(κg+1)

)) ≤ F
(
bgdb(κ0,κ1)

)
…gγ (∂lg). (2.10)
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Now, for the sequence{γ (∂lg)}, we have two cases.

Case I:For eachg ∈ N there existse > g such that γ (∂le) > γ (∂lg). Then, we obtain a

subsequence{γ (∂lgk
)} of {∂lg} with γ (∂lgk

) > γ (∂lgk+1
) for all k. Since∂lgk

→ δ+, we deduce

that,

lim
t→δ+

infγ (∂lgk
) > 0.

Hence,

F
(
bgk∂gk

) ≤ F(∂0) …gkγ (∂lgk
),

For everyk. Consequently,limk→∞ F(bgk∂gk ) = …∞ and by (F2) limk→+∞ bgk∂gk = 0,

which is not true that limk→+∞ ∂gk > 0 for b > 1.

Case II:There existsg0 ∈N so thatγ (∂lg0
) > γ (∂le) for everye> g0. Then

F(∂e) ≤ F(∂0) …eγ (∂le), for all e> g0.

Hence, lime→+∞ F(∂e) = …∞ and by (F2) lime→+∞ ∂e = 0, which contradicts the fact

that lime→+∞ ∂e > 0. Thus, lime→+∞ ∂e = 0. From (F3). there existsk ∈ (0, 1) such that

limg→+∞(bg∂g)kF(bg∂g) = …∞ and, from inequality (2.10), the following holds for allg∈N:

(
bg∂g

)k
F
(
bg∂g

)
…

(
bg∂g

)k
F(∂0) ≤ (

bg∂g
)k(

F(∂0) …gγ (∂lg)
)

…
(
bg∂g

)k
F(∂0)

= …g
(
bg∂g

)k
γ (∂lg) ≤ 0. (2.11)

Passing to the limit asg→ +∞ in (2.11), we obtain

lim
g→+∞ g

(
bg∂g

)k
γ (∂lg) = 0.

Sinceζ = limg→+∞ γ (∂lg) > 0, there existsg0 ∈N such thatγ (∂lg) > ζ

2 for all g �= g0. Thus,

g
(
bg∂g

)k ζ

2
< g

(
bg∂g

)k
γ (∂lg), (2.12)

for eachg> g0. Letting g→ +∞ in (2.12), we have,

0 ≤ lim
g→+∞ g

(
bg∂g

)k ζ

2
< lim

g→+∞ g
(
bg∂g

)k
γ (∂lg) = 0.

That is,

lim
g→+∞ g

(
bg∂g

)k
= 0, (2.13)

from (2.13) there existsg1 ∈N such thatg(bg∂g)k ≤ 1 for all g> g1

(
bg∂g

)k ≤ 1
g

,
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which concludes that,

∂g ≤ 1
bgg1/k

, for all g> g1.

Now, taking limit as g → +∞ then series
∑∞

g=1 bg∂g becomes convergent, and the se-
quence{κg} is a Cauchy inY. SinceY is a complete orbitally BMS, there existsq ∈ O(y0)
so thatκg → qwheng→ +∞. By (2.10) and (F2), we “nd limg→+∞ db(κg,T(κg)) = 0. Since
q → db(κ,T (κ)) is orbitally lower semi-continuous andα(κg,T(κg) > 1, we have,

0 ≤ db
(
q,T(q)

) ≤ lim
g→+∞ inf db

(
κg,T(κg)

) ≤ lim
j→+∞ inf db(κg,κg+1),

≤ lim
g→+∞ b

[
db(κg,κ) + db(κ,κg+1)

]
= 0.

Hence,q ∈ T(q).
As the series

∑∞
g=1 bg∂g is convergent, and the sequence{yg} is Cauchy inY and Y is a

complete orbitally BMS, there existsq ∈ O(y0) such thatyg → q asg→ +∞. Using (2.10)
and (F2), we getlimg→+∞ db(yg,S(yg)) = 0. Sinceq → db(y,S(y)) is orbitally lower semi-
continuous and alsoα(yg,S(yg)) > 1, we have,

0 ≤ db
(
q,S(q)

) ≤ lim
g→+∞ inf db

(
yg,S(yg)

) ≤ lim
j→+∞ inf db(yg,yg+1),

≤ lim
g→+∞ b

[
db(yg,y) + db(y,yg+1)

]
= 0.

Therefore,q ∈ S(q). Hence,Shas a “xed point. So,T and Sboth have a common “xed
point in Y.

Recall thatu � A means there isb ∈ A such thatu � b. The function S: Y → P(Y) is
multi �-dominated onA if u � Sufor any u ∈ Y.

We prove upcoming theorem for�-dominated multivalued mappings on{TS(cj)} in a
complete orbitally BMS. For eachx,y ∈ Y with max{db(κ,S(κ)),db(y,T(y))} > 0, de“ne a
setFy

η,� ⊆ Y as

Fy
η,� =

⎧⎪⎨
⎪⎩

y ∈ S(κ),z∈ T(y) : F(db(y,z))

≤ F(b[max{db(κ,S(κ)),db(y,T(y)), db(κ,S(κ)).db(y,T(y))
1+db(κ,y) }])

+η(db(y,z)),x � y andy� z

⎫⎪⎬
⎪⎭

.
�

Theorem 2.5 Let (Y,�,db) be a complete orbitally ordered BMS. Let y0 ∈ Y,α : Y × Y →
[0,∞) and S,T : Y → P(Y) be twoα∗-dominated multi-maps and F∈ ξF∗

b . Assume that
following properties hold:

i. The mapping z �→ max{db(κ,S(κ)),db(y,T(y))} is orbitally lower semi continuous;
ii. There exists functions τ ,η : (0,∞) → (0,∞) such that for all t ≥ 0;

τ (t) > η(t) yeilds that lim
s→t+

inf τ (t) > lim
s→t+

infη(t);

iii. For all κ,y∈ {ST(fj)} with either x � y or y� x and max
{db(κ,S(κ)),db(y,T(y))} > 0, also {ST(fj)} → f ∗, there exist κ,y in Fy

η,� satisfying;

τ
(
db(κ,y)

)
+ F

(
b
[

max

{
db

(
κ,S(κ)

)
,db

(
y,T(y)

)
,
db(κ,S(κ)).db(y,T(y))

1 + db(κ,y)

}])
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≤ F
(
db(κ,y)

)
. (2.14)

Also, if (2.14) holds for f∗, f ∗ � fj or fj � f ∗ where j= {0,1,2,3, . . . .}, then both S and T
have a common “xed point f∗ in Y .

Proof Let α : Y × Y → [0,+∞) be a function de“ned byα(f ,q) = 1 for eachf ∈ Y with
f � q, andα(f ,q) = 0 for each incomparable elementsf ,q ∈ Y. As Sand T are two multi
dominated maps onY, sof � S(κ) and f � T(y) for all f ∈ Y. This implies that f � u for
everyu ∈ S(κ) andf � u for eachf ∈ T(y). So,α(f ,u) = 1 for everyu ∈ S(κ) andα(f ,u) = 1
for eachf ∈ T(y). This implies thatinf{α(f ,q) : q ∈ S(κ)} = 1, andinf{α(f ,q) : q ∈ T(y)} = 1.

Hence, α∗(f ,S(κ)) = 1, α∗(f ,T (y)) = 1 for each f ∈ Y. So, S,T : Y → P(Y) are α∗-
dominated multi mappings onY. Moreover, inequality (2.14) can be written as

τ
(
db(κ,y)

)
+ F

(
b
[

max

{
db

(
κ,S(κ)

)
,db

(
y,T(y)

)
,
db(κ,S(κ)).db(y,T(y))

1 + db(κ,y)
,
}])

≤ F
(
db(κ,y)

)
,

for eachf ,q in {TS(fj)}, with either α(f ,q) ≥ 1 or α(q,f ) ≥ 1. Then, by Theorem2.4, the
sequence{TS(fj)} is convergent inY that is {TS(fj)} → f ∗ ∈ Y. Now, fj , f ∗ ∈ Y and either
fj � f ∗, or f ∗ � fj implies that the eitherα(fj , f ∗), or α(f ∗, fj) ≥ 1. Hence, all the conditions
of Theorem 2.6 are satis“ed. So, from Theorem2.5, both SandT have a multi “xed point
f ∗ in Y anddb(f ∗, f ∗) = 0. �

Example 2.6 LetY = [0,∞), and consider a relation� on Y byx � y if and only if x divides
y. Then it is easy to verify that (Y,�) is a partially ordered set. Now we de“ne

db : Y × Y→R by db(p,q) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x = y;

3(1
n + 1

m) if x = n,y = m andn �= m;
1
n if x = n,y = 0,or x = 0,y = n;

for eachp,q ∈ Y. Then the function db becomes an orderedb-metric on Y with b = 3.
Also, we de“ne mappingsS,T : Y → P(Y) by

S(p) = {p,3p,5p} and T(q) = {2q,4q,6q},

andα : Y × Y → Ras

α(p,q) =

⎧⎨
⎩

1 if p > q,
1
2 otherwise.

Now, for all p,q ∈ {TS(xj)} either α(p,q) ≥ 1 or α(q,p) ≥ 1. De“ne a functionF :R+→R

by F(p) = ln(p) for all p ∈ R
+ and τ (t) = 1

8 and η(t) = 1
10 for eacht ∈ (0,∞). Then, clearly

F ∈ ξF∗
b andτ (t) > η(t),lims→t+ inf τ (t) > lims→t+ infη(t). Asp,q ∈ Y, then

S(p) =

⎧⎨
⎩

0 if p = 0,
14
3p if p �= 0,

and T(q) =

⎧⎨
⎩

0 if q = 0,
13
3q if q �= 0.
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Therefore,q → max{db(p,S(p)),db(q,T(q))} is orbitally lower semicontinuous. Forq ∈
Y, we haveq = 4p ∈ Fκ

η,�, and for thisq, we have,

τ
(
db(p,q)

)
+ F

(
b
[

max

{
db

(
p,S(p)

)
,db

(
q,T(q)

)
,
db(p,S(p)).db(q,T(q))

1 + db(p,q)

}])

=
1
8

+ ln

[
3max

{
14
12p

,
13
12q

,
7× 13

9pq

}]

=
1
8

+ ln

(
39
12q

)

≤ ln

(
4
3

· 39
12q

)
≤ ln

(
39
12q

)
,

= F
(
db(p,q)

)
.

Hence, all the requirements of our Theorem2.5hold for F(p) = ln(p), wherep > 0.

3 Application to integral equation
Using distinct generalized contractions in di�erent settings of generalized metric spaces,

a signi“cant number of writers showed necessary and su�cient conditions for di�erent

types of linear and nonlinear (Volterra and Fredholm) type integrals in “xed point theory.

Rasham et al., [34] proved existence of new “xed-point results for two families of multival-

ued mappings, and their main result was utilized to examine necessary conditions for the

solution of nonlinear integral equations. For more recent “xed-point results incorporating

integral inclusions can be seen in [5, 26, 33, 37].

Let X = (�[0, 1],R+) be the set of continuous functions on [0,1] endowed with the metric

db : X ×X→R de“ned bydb(f ,g) = sup |f (t) …g(t)|2∀f ,g∈ (�[0, 1],R) andt ∈ [0, 1]. De“ne

α : X × X→R as

α(p,q) =

⎧⎨
⎩

1 if p(t) ≤ q(t),
1
2 otherwise.

Take an integral equation:

l(t) =
∫ t

0
K

(
t ,s,κ(s)

)
ds; (3.1)

whereK : [0, 1]× [0, 1]×X→R andl are continuous for alls,t ∈ [0, 1]. Our aim is to show

the existence of the solution to Eq. (3.1) by applying Theorem2.4.

Theorem 3.1 Let X = (�[0, 1],R) and S,T : X → X be Volterra integral operator de“ned

as follows:

(Sκ)(t) =
∫ t

0
K

(
t ,s,κ(s)

)
ds, and

(Ty)(t) =
∫ t

0
K

(
t ,s,y(s)

)
ds, whereκ,y ∈ �[0, 1].



Rasham et al.Journal of Inequalities and Applications        (2023) 2023:69 Page 11 of 16

Also, K : [0, 1]× [0, 1]×X→R is continuous onR for all κ, t ∈ [0, 1] and the following
holds:

i. There exists a continuous function μ : [0, 1]→R+ such that (
∫ t

0 μ(s)ds)2 ≤ e…τ (t)

2 ; t > 0
and satisfying, for all κ,y ∈X such that κ(t) ≤ y(t),

∣∣K(
t ,s,κ(s)

)
…K

(
t ,s,y(s)

)∣∣ ≤ μ(s)
∣∣κ(s) …y(s)

∣∣.

ii. For all κ,y ∈ X such that κ(t) ≤ y(t), we have

max

{
db

(
κ,S(κ)

)
,db

(
y,T (y)

)
,
db(κ,S(κ)).db(y,T (y))

1 + db(κ,y)

}
≤ ∣∣(Sy)(t) … (Ty)(t)

∣∣2.

Then, (3.1) has a unique solution.

Proof We give an assurance here that both the multi-mapsS and T hold all the nec-
essary requirements of our main Theorem 2.4 for single-valued mappings. Letκ ∈ X =
(�[0, 1],R+) and

∣∣(Sy)(t) … (Ty)(t)
∣∣2 ≤

(∫ t

0

∣∣K(
t ,s,κ(s)

)
…K

(
t ,s,y(s)

)∣∣ds
)2

≤
(∫ t

0
μ(s)

∣∣κ(s) …y(s)
∣∣ds

)2

≤ db(κ,y)
(∫ t

0
μ(s)ds

)2

for all t ,s∈ [0, 1].

Which means that,

∣∣(Sy)(t) … (Ty)(t)
∣∣2 ≤ db(κ,y)e…τ (t)

2
.

Thus, by (ii), we have,

2eτ (t) max

{
db

(
κ,S(κ)

)
,db

(
y,T (y)

)
,
db(κ,S(κ)).db(y,T (y))

1 + db(κ,y)

}
≤ db(κ,y).

Takeb = 2 andln on both sides,

ln eτ (t) + ln bmax

{
db

(
κ,S(κ)

)
,db

(
y,T (y)

)
,
db(κ,S(κ)).db(y,T (y))

1 + db(κ,y)

}
≤ ln

(
db(κ,y)

)
.

De“ne a function F : R+→R by F(p) = ln(p) for all p ∈ R
+ and τ (t) = 1

8 and η(t) = 1
10

for eacht ∈ (0,∞). Then, clearlyF ∈ ∇F∗
b andτ (t) > η(t),lims→t+ inf τ (t) > lims→t+ infη(t).

So, all the conditions of our main Theorem2.4 for single-valued mappings are satis“ed.
Hence, the integral equation (3.1) has a unique common solution. �

4 Application to fractional differential equation
Many relevant aspects of fractional di�erentials were introduced and shown by Lacroix
(1819). Later, a wide number of academics proved a variety of important “xed-point the-
orems in many types of metric spaces using various generalized contractions as well as
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applications to fractional di�erential equations (see [25, 27, 32]). A variety of new models

connected to the Caputo…Fabrizio derivative (CFD) have recently been constructed and

demonstrated, see [17, 39]. In this section, we will show that one of these types of models

exists inb-metric spaces.

Let I = [0,1] and�(I ,R) be the space of continuous functions de“ned onI . De“ne the

metric db : �(I ,R) × �(I ,R) → [0.∞) by db(u,v) = ‖u …v‖2∞ = maxl∈[0,L] |u(l) …v(l)|2, for all

u,v ∈ �(I ,R). Then (�(I ,R),db) is a complete orbital b-metric space. De“neα : X × X→R

as

α(p,q) =

⎧⎨
⎩

1 if p(t) ≤ q(t),
1
2 otherwise.

Let K1,K2 : I×R →R be two mappings such thatK1(l,g(e)),K2(l,h(e)) ≥ 0 for all l ∈ I

and g,h ∈ �(I ,R). We will investigate the following system of fractional di�erential equa-

tion:

�Dvg(l) = K1
(
l ,g(l)

)
; g∈ �(I ,R), (4.1)

�Dvh(l) = K2
(
l ,h(l)

)
; h ∈ �(I ,R) (4.2)

with boundary conditionsg(0) = 0,Ig(1) = g′(0),h(0) = 0,Ih(1) = h′(0).

Here,�Dv represents the CFD of orderv given as

�Dvg(l) =
1

γ (p …v)

∫ l

0

(
(l …e)p…v…1g(e)

)
de,

wherep … 1 <v < p andp = [n] + 1, andI vg is de“ned by:

I vg(l) =
1

γ (v)

∫ l

0

(
(l …e)v…1g(e)

)
de, with v > 0.

Then the Eqs. (4.1) and (4.2) can be modi“ed to

g(l) =
1

γ (v)

∫ l

0
(l …e)v…1K1

(
e,g(e)

)
de+

2l
γ (v)

∫ L

0

∫ e

0
(e…z)v…1K1

(
z,g(z)

)
dz de,

h(l) =
1

γ (v)

∫ l

0
(l …e)v…1K2

(
e,h(e)

)
de+

2l
γ (v)

∫ L

0

∫ e

0
(e…z)v…1K2

(
z,h(z)

)
dz de.

Suppose that,

(a) there exists τ > 0 such that,

∣∣K1
(
l ,g(e)

)
…K2

(
l ,h(e)

)∣∣ ≤ e…τ γ (v + 1)
4

∣∣g(e) …h(e)
∣∣,

for all e∈ I .
(b) There exists f0 ∈ �(I ,R) so that for any l ∈ I ,

g0(l) ≤ 1
γ (v)

∫ l

0
(l …e)v…1K1

(
e,u0(e)

)
de
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+
2l

γ (v)

∫ L

0

∫ e

0
(e…z)v…1K1

(
z,u0(z)

)
dz de,

h0(l) ≤ 1
γ (v)

∫ l

0
(l …e)v…1K2

(
e,j0(e)

)
de

+
2l

γ (v)

∫ L

0

∫ e

0
(e…z)v…1K2

(
z,j0(z)

)
dz de

(c) Let X = {u ∈ �(I ,R) : u(l) ≥ 0 for all l ∈ I } and define the operator R1,R2 : X → Xby:

(R1q)(l) =
1

γ (v)

∫ l

0
(l …e)v…1K1

(
e,q(e)

)
de

+
2l

γ (v)

∫ L

0

∫ e

0
(e…z)v…1K1

(
z,q(z)

)
dz de and

(R2h)(l) =
1

γ (v)

∫ l

0
(l …e)v…1K2

(
e,h(e)

)
de

+
2l

γ (v)

∫ L

0

∫ e

0
(e…z)v…1K2

(
z,h(z)

)
dz de

satisfying

max

{
db

(
κ,R1(κ)

)
,db

(
y,R2(y)

)
,
db(κ,R1(κ)).db(y,R2(y))

1 + db(κ,y)

}

≤ ∣∣(R1y)(t) … (R2y)(t)
∣∣2.

Theorem 4.1 The Eqs. (4.1) and (4.2) admit a common solution in�(I ,R) if the conditions

(a)…(c) are satis“ed.

Proof Consider,

∣∣(R1g)(l) … (R2u)(l)
∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
γ (v)

∫ l

0
(l …e)v…1K1

(
e,g(e)

)
de

…
1

γ (v)

∫ l

0
(l …e)v…1K2

(
e,u(e)

)
de

+
2l

γ (v)

∫ L

0

∫ z

0
(z…w)v…1K1

(
w,g(w)

)
dwdz

…
2l

γ (v)

∫ L

0

∫ z

0
(z…w)v…1K2

(
w,u(w)

)
dwdz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which implies that,

∣∣(R1g)(l) … (R2u)(l)
∣∣

≤
∣∣∣∣
∫ l

0

(
1

γ (v)
(l …e)v…1K1

(
e,g(e)

)
…

1
γ (v)

(l …e)v…1K2
(
e,u(e)

))
de

∣∣∣∣

+

∣∣∣∣
∫ L

0

∫ z

0

(
2

γ (v)
(z…w)v…1K1

(
w,g(w)

)
…

2
γ (v)

(z…w)v…1K2
(
w,u(w)

))
dwdz

∣∣∣∣
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≤ 1
γ (v)

e…τ (t)γ (v + 1)
4

∫ l

0
(l …e)v…1(∣∣g(e) …u(e)

∣∣)de

+
2

γ (v)
e…τ (t)γ (v + 1)

4

∫ L

0

∫ z

0
(z…w)v…1(∣∣g(w) …u(w)

∣∣)dwdz

≤ 1
γ (v)

e…τ (t)γ (v + 1)
4

.
∣∣g(e) …u(e)

∣∣.
∫ l

0
(l …e)v…1de

+
2

γ (v)
e…τ (t)γ (v).γ (v + 1)

4(v).γ (v + 1)
.
∣∣g(e) …u(e)

∣∣.
∫ L

0

∫ z

0
(z…w)v…1dwdz

≤
(

e…τ (t)γ (v).γ (v + 1)
4γ (v).γ (v + 1)

)
.
∣∣g(e) …u(e)

∣∣ + 2e…τ (t)B(v + 1,1)
γ (v).γ (v + 1)
4γ (v)γ .(v + 1)

.
∣∣g(e) …u(e)

∣∣

≤ e…τ (t)

4

∣∣g(e) …u(e)
∣∣ +

e…τ (t)

2

∣∣g(e) …u(e)
∣∣ <

e…τ (t)

4

∣∣g(e) …u(e)
∣∣ <

e…τ (t)

2

∣∣g(e) …u(e)
∣∣.

This implies that,

∣∣(R1g)(l) … (R2u)(l)
∣∣ ≤ e…τ (t)

2

∣∣g(e) …u(e)
∣∣. (4.3)

On taking square both sides of inequality (4.3), we deduce that,

∣∣(R1g)(l) … (R2u)(l)
∣∣2 ≤ e…2τ (t)

4

∣∣g(e) …u(e)
∣∣2 ≤ e…τ (t)

4

∣∣g(e) …u(e)
∣∣2, (4.4)

whereB is the beta function. By using assumption (c), the “nal inequality (4.4) is written

as

4max

{
db

(
κ,R1(κ)

)
,db

(
y,R2(y)

)
,
db(κ,R1(κ)).db(y,R2(y))

1 + db(κ,y)

}

≤ e…τ (t)db(κ,y);κ,y ∈ �(I ,R),t > 0. (4.5)

De“ne F(q(l)) = ln(q(l)) for all q ∈ �(I ,R+), andτ (t) = 1
8 andη(t) = 1

10 for eacht ∈ (0,∞).

Then, clearlyF ∈ ∇F∗
b and τ (t) > η(t),lims→t+ inf τ (t) > lims→t+ infη(t) then the inequality

(4.5) can be written as

τ
(
db(g,u)

)
+ ln

(
4max

{
db

(
κ,R1(κ)

)
,db

(
y,R2(y)

)
,
db(κ,R1(κ)).db(y,R2(y))

1 + db(κ,y)

})

≤ ln
(
db(g,u)

)
.

All the conditions of Theorem2.4for a single-valued mapping are veri“ed and the map-

pingsR1 andR2 admit a “xed point. Hence, Eqs. (4.1) and (4.2) have a unique common

solution. �

5 Conclusion
In this paper, we prove some new “xed point theorems for coupled dominated multivalued

mappings on a complete orbitalb-metric space that generate a novel extended Nashine…

Wardawski…Feng…Liu-type-contraction via orbitally lower semi continuous functions.

Furthermore, the presence of some new “xed point outcomes for a pair of dominated
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multivalued mappings are established in the setting of ordered complete orbitalb-metric

spaces. A few instances are provided to support our new “ndings. To highlight the orig-

inality of our “ndings, applications for a system of nonlinear integral equations and

fractional di�erential equations are o�ered. In addition, we improve and generalize the

“ndings of Nashine et al. [25] and Rasham et al. [32, 33, 36], as well as many others

[1…3, 6…8, 18, 26, 28, 40]. We can broaden our horizons to include fuzzy mappings, L-

fuzzy mappings, intuitionistic fuzzy mappings, and bipolar fuzzy mappings.
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