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1 Introduction

Suppose that p > 1, i + %1 =1, b, >0,0< Y ah <o0o,and 0< Y 2, bl < 00. We
have the following well-known Hardy—Hilbert’s inequality with the best possible constant
factor —Z~ (cf. [1], Theorem 315):

sin(rr /p)
00 00 ab - 00 }7 00 %
m¥n
Syl (Ya) (u) 0
m=1 n=1 m+n Sln(n/p) m=1 n=1

In 2006, by introducing parameters X; € (0,2] (i = 1,2), A1 + A3 = A € (0,4], using Euler—

Maclaurin summation formula, an extension of (1) was provided by Krni¢ et al. [2] as

follows:
0o oo ab 00 11_’ o %
S5 et s S [Saem] .
m=1 n=1 m+n m=1 n=1

where the constant factor B(1q, 1,) is the best possible.

e8] tu—l
B(u,v) = ——dt ,v>0
(u,v) /0 T (u,v>0)
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isthe beta function. For A = 1, A1 = é, Ay = }7, inequality (2) reducesto (1);forp =g =2, =
Ay = ’\ , (2) reduces to Yang’s inequality in [3]. Recently, applying inequality (2), Adiyasuren
etal. [4] gave a new Hardy—Hilbert’s inequality with the kernel mvolvmg two partial
sums.

If f(x),g(y) >0,0< fooofp(x) dx < 00, and 0 < fooogq(y) dy < 0o, then we still have the
following Hardy—Hilbert’s integral inequality (cf. [1], Theorem 316):

[ [0 a2 ([Cra) ([Ceo). o

where the constant factor 7/ sin(%) is still the best possible. Inequalities (1), (2), and (3)
with their extensions and reverses play an important role in the analysis and its applica-
tions (cf. [5-15]).

In 1934, a half-discrete Hilbert-type inequality was given as follows (cf. [1], Theo-
rem 351): If K(¢) (¢ > 0) is a decreasing function, p > 1, = + =1,0<¢(s) = fooo K@)edt <
00, a, >0,0<) % ah < oo, then we have

/mxp_2<i1<(nx)u ) dx<¢"< )Za” (4)
0 n=1

In recent years, some new extensions of (4) with the reverses were provided by [16-23].

In 2016, by means of the technique of real analysis and the weight coefficients, Hong et al.
[24] considered some equivalent statements of the extensions of (1) with the best possible
constant factor related to a few parameters. Other similar works about the extensions of
(1), (2), (3), and (4) with the reverses were given by [25-32].

In this paper, following the way of [2, 24], by means of the weight coefficients, the idea of
introduced parameters, the techniques of real analysis, and the Euler—Maclaurin summa-
tion formula, a new reverse of the extension of (1) with parameters as well as the equivalent
forms are given. The equivalent statements of the best possible constant factor related to
several parameters are obtained, and some particular inequalities are provided.

2 Some lemmas

In what follows, we suppose that 0 < p <1 (¢ < 0), 117 é =1,1€(0, %], X € (0,210 (0, 1)

(i=1,2), am, b, >0, m,neN={1,2,...}, such that

O<Zmp

xxl

A2
]1a1’<oo, and O<Zn[1( ]lbq<oo

n=1

Lemma 1 (cf. [5], (2.2.13)) Ifg(t) is a positive strictly decreasing function in [m, 0o0) (m € N)
with g(oo) = 0, Py(t) and B; (i € N) are the Bernoulli functions and the Bernoulli numbers
of i-order, then we have

o B 1
/ Pay1(£)g(t) di = g% (ﬁ - l)g(m) O<e<l;g=1,2,..). (5)
m
In particular, for q = 1, in view of By = é, we have
1 [o,9]
~Sglm) < / Py(t)g(0)d <. (6)
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Lemma 2 Define the following weight coefficient:

i i nlz—l
w (Mg, m) := m" "2 — (m e N). 7)
~mh+n

We have the following inequalities:

T T
—(1-6,,(A Ao, m) < ky (A —_— N), 8
Asin(nkg/k)( ( 2))<w( 2m) <k (32) 1= Asin(mrAy/A) (meN) ®)
where 6,,(Ay) is indicated by
Ao/ (Ra/h)- 1
Opn(a) = Sm(” 2/ )/ o du:O(T) €(0,1) (meN). )
l1+u m2

Proof For fixed m € N, we set the following function:

ro-1

t
glm,t):= ———s  (£>0).

By the use of Euler—Maclaurin summation formula (cf. [2, 3]), we have

00 o) 1 00 )
;g(m,n): /1 g(m,t)dt + Eg(m, 1)+ fl Py(t)g (m, t) dt
= / " gm0 dt - (m),
0

1 o]
h(m) ::/ g(m, t)dt - %g(m, 1) —/ P1(t)g (m,¢) dt.
0

1

We find g(m 1) =

m)‘+l)
1 1 a2
m,t)dt = —_—
/(;g( ) /o m*+tA )»2/ mh + -
1 t)»g 1 A 1 t)u+)»2—1 ; 1 1
=——F | +— —_— > ———.
Ao m* + t 0 Ao 0 (Wl)L + t}‘)z Ao m* + 1

We also obtain

Fmt) = Q-1 a2 (1- )22

A + £ — m?) P22
mr - (AR mh et (m* + t*)?
A +1=x)7272 w22
T o ep (m* + £4)2°

ForO< X, < 4, <A< 2, it follows that

d 2 )
&[W} <0 (l=1,2).



Luo et al. Journal of Inequalities and Applications (2023) 2023:58

By (6), we obtain

22 A+1-—2y

A+1-A P2 dt>— ,
O+ 2)/; 1()m’\+ﬁ g 8(m* +1)

N o) t}»272
—m"A Pi(t)— dt > 0,
/1 ) s

and then we find

A+1-Ay A+1-Ay

8(m* + 1) " T O8mt+ 1)

- /oopl(t)g/(m, t)dt>—
1

Hence, it follows that

1 1 1 A+l=2y 8—(+A)ry+A3
h(m) > — - - =
Am*+1  2m*+1) 8(m* +1) 8ho(m* +1)

8-(5+3)h+23 16151 + 213
8hy(m* +1)  16i(m* +1)

Since (6 — 1543 +213)' = =15 + 443 < 0 (A, € (0, 2]), we have

16 —15(2) +2(2)? 3 0
160 +1)  12800m +1)

h(m) >
Setting t = mu'’*, we find

S 00
@ (hyym) = m" 2> " glm,m) < m* 2 / glm,t)dt
n=1 0

A—Ay _

00 tkz—l 1 [} u()»z/)»)—l T
=m
0

- dt=
0 m* + t* A

On the other hand, we also have
S 00 1 00
> glm,n) = / gimt)dt + gm,1) + / Pi(t)g (m, 1) dt
oy 1 1

= /oog(m,t) dt + H(m),
1
H(m) := %g(m, 1) +/1 Pi1(t)g (m,t)dt.

Since we find %g(m, 1) = X L and

m*+1)

(A+1=r)tP272  amth2?
m* + th (m* + )2’

g/(mx t) = -

in view of (6), we obtain

tszz

—(A+1—A2)/ Pi(t)——dt>0, and
1 m)‘+t’\

du = — .
1+u Asin(m Ay /)

Page 4 of 13
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A / P (t) hom
m t>— .
! t’\)2 8(m* +1)2

Hence, we have

am 4 5/2 0
- > - >
20m* +1) 8(m* +1)2 8(m* +1) 8(m* +1)

H(m) >

1/x

Setting ¢ = mu''*, we obtain

@ (o, m) = A’\Zngn ) > m*” AZ/ g(m,t)dt
1

n=1

00 1
=m 2 / g(m,t)dt — m* ™2 / g(m,t)dt
0 0

T Asin(mig/r) o (P £t
= — - m" "2 t
Asin(mwAo/A) T o m*+th
7T
=—(1-6,,(, 0,
)\sin(nkz/)»)( m 2)) g

)L u()»z/)»
1+u

1
L G- L
0</m u2 du</ Az/)» ldu—L,
0 1+u Aot

namely, 6,,(A;) = O(ﬁ) € (0,1) (m € N). Therefore, inequalities (8) with (9) follow.

The lemma is proved. d

du. Since we find

where em()»g) _ qm(rr)q/k) fo

Lemma 3 We have the following reverse extended Hardy—Hilbert's inequality with param-
eters:

1

IZZZW,)\.,. >kp()»2)kq()\)
1 m=1

1 1
> Ahy P a
% Z(l _ Gm(kz))mp[lf( p2 +71)]1a[:n} {anﬂ 1,2 bq . (10)
m=1 n=1
Proof In the same way, for #n € N, we have the following inequalities for another weight
coefficient:
o A1
- m
w(A,n) =n""M1 Z —— (n eN),
m=1 (11)
T
—(1-06,(A A, k(A) = ————,
ksin(nkl/k)( n( 1)) <olhnm) <k () Asin(mAq/A)
1
in(mAi/A) [k uli/PL 1
0,(01) = Mf . du=0(—=-)e(©1) (neN). (12)
T 0 l1+u n*

Page 5 of 13
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By the reverse Holder inequality (cf. [33]), we obtain

o0 o0
1 n2-1ip mM-1/q
59> on |
m* + | mO-Dig nha-1ip

n=1 m=1
[ele] Ao— %
q
sz A+ - l(pl sz’\+n* (ha- 1)(q—1)b"
=1 n= n=1 m=1
= 1-(222 “)]1 re (1-(22 42211 g
= 1> @y, mym” Za) n’ 78
m=1 n=1

Then, by (8) and (11), in view of 0 < p < 1 (g < 0), we have (10).

The lemma is proved.

Remark 1 By (10), for Ay + Ay =1 € (0,2],0 < A; < 2 (i = 1,2), we find

o0

0< Zm"(l_“)_la{’;’ < 00, 0< an(l_“)_lbz <00

n=1

Q=

> ”mf’;p/q(xl)[Z(l On32)) 0" T[Z”q“'”””ﬂ] (13
n=1

Lemma 4 The constant factor k; (A1) = m in (13) is the best possible.
Proof For any 0 < & < pA;, we set
Ay = mh_;_l, by := w2 (m,n € N).

If there exists a constant M > k; (A1) such that (13) is valid when we replace k; (A1) by

M, then in particular, by substitution of a,, = a,, and b, = l~9,, in (13), we have

1 1
00 1 p[ s
> M|:Z (1 - o<—mAz ))mp(l—“)-lafn] [Z nq(l"’\2>‘lbz:| : (14)
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By (14) and the decreasingness property of series, for 0 < p < 1, g < 0, we obtain
1 1
o0 o q
1 >M|:Z(1 _ ( ))mp —h)-1,,phi—e pi| |:Z nq(lkz)lnqkzsq]
m=1 n=1
00 00 %
3 (1-0( ) ) | ()
n=1
1

(-
(E z<>><z>

§‘H
=

§‘H

=M
=1 m=1
1 o 1
» q
>M( x  dx — O(1)> <1+/ y‘s_ldy>
1

= ZL—/I 1 —80(1)) (e + 1)q

By (11) and (12), setting A1 = A1 — £e(0,3)N0O,1)(0< Ay=Ao+ E=1 — 1 <A), we find

© 8 © &€
jo Z[ +£) xl—y—l}n_s_l

n=1 m=
o0 o0

= Za)()\l,n)n_g_l < k(M) (1 + Zn‘5‘1>
n=1 n=2

~ © 1 ~
< k,\()q)<1 + / x et dx) = gk,\()q)(s +1).
1
Then we have
£ ~ 1 1
k)\<)\.1 - —)(8 +1)>el >M(1-£0(1))? (e +1)4.
p

For ¢ — 0%, we find k; (A1) > M. Hence, M = k; (11) is the best possible constant factor

of (13). The lemma is proved. d
Remark 2 Setting A= % + %1, Ky 1= % + %, we find

s A=Xdy AL A—A1 Ay A A
AL+ Ay = +—+ +—=—+=—=A
q q p pr 9

If we add the condition that A — A; — A5 € (—=pA1,p(A — A1)),then we can find

-~ A=A
0<)\1: 2

M ~ ~
+ — <A, O<Ay=A—A1 <A
q

if we add the condition that A — A, — Ay € [p(A — A1 — %,p(% — X1)],then we have Aok <2

Page 7 of 13
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Then, with regard to the above assumptions, we can rewrite (13) as follows:

1
q

1
oo 5 E o0 5
> /Q(Xl) |:Z(1 _ 9m(5»2))mp(1“)1afni| |:Z nq(lxz)lbzi| ) (15)
n=1
1 1
Lemma 5 If the constant factor ki (A2)k;' (A1) in (10) is the best possible, then for

5 5
A=A =y € (=pri,p(h = A1) N |:P(}\ —A - Z,P(Z - M)] (> {0}),
we have A + Ay = A.

Proof For 0 < X1 < A,we have & (A;) = ;€ R, = (0,00).

b
Asin(riq/A
1 1 -
If the constant factor & (A2)k; (1) in (10) is the best possible, then for A; = % + %1,

Ao = % + %, in view of the assumption and (15), we have the following inequality:

kf (Kz)k{? (h1) = ko ().

By the reverse Holder inequality with weight (cf. [33]), we find

- A=A A
k/\()q):k)\( 2 +—1)
p q

1 1
> /oo Luk‘“‘ldu ! /00 ;u“_ldu !
“\Jo 1+ o 1+u*

o 1 ; o 7 :
= / vl dy / — Mgy
o 1+v* o 1+u*

= k){% ()\z)k)% ()\,1) (16)

1 1 .
Hence, we find &} (A2)k;" (A1) = k. (A1), namely, (16) keeps the form of equality.
We observe that (16) keeps the form of equality if and only if there exist constants A and
B such that they are not all zero and (cf. [33])

AL =Byl ge inR,.
Assuming that A # 0, we have y**27*1 = % a.e. in R, and then A — 1, — A; = 0, namely,
)\,1 + )»2 =A.

The lemma is proved. d

Page 8 of 13
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3 Main results
Theorem 1 Inequality (10) is equivalent to the following inequalities:

> (AL 22y > 1 i }7
J = an o me+nxﬂ’”

n=1 =
1
1 0 A-hg M »
7 )k (1) HZ ““7*7”'%} : (17)
A— _1 _ q 1
o mq( q) 1 & 1 q
= b,
! [Z< O\ & e
1
q
> K G)kd () {Zn e 1bq} . (18)
n=1

If the constant factor in (10) is the best possible, then so is the constant factor in (17) and
(18).

Proof Suppose that (17) is valid. By the reverse Holder inequality (cf. [33]), we have

R PO VRS T | 1k g
]:E nr q "p E - — [;qp q an]
m* +n

n=1

zJ[an“ G- 1bq] . (19)

n=1

Then by (17) we obtain (10).
On the other hand, assuming that (10) is valid, we set

-1
Goniay g o1 g
b,:=n"""7 P thrnkam , neN.

m=1

If ] = oo, then (17) is naturally valid; if / = 0, then it is impossible to make (17) valid,
namely, J > 0. Suppose that 0 < J < co. By (10), we have

[e¢]
A=Ay
A=

)
+=5)-174

P bn
n=1

1
_]p =1> k)\ ()\2)/)?()\,1)

1

° (A2 p
x{21 )T ”“m}
m=1

1

> A=hp Ag 4
:an[l—(q*'p)]—lbz ,

n=1

1
{Zn’“l (L) lbq}p

1 © A=hy A
>kp<xz>kq(m{2 (1= (3 /*5”'1“’3"} ,
m=1
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namely, (17) follows, which is equivalent to (10).
Suppose that (18) is valid. By the reverse Holder inequality, we have

r— Az A
© 1 1 Ahg M mq1+( 7oty X 1
12, M,
1= 1 0,,(X2) 1’ a7\ Tq b
Z m(32)) ] (1_9m(k2))1/pzmx+nx "
m=1 n=1
1
00 p
{§ (1= 6,(02)) -2 - lam} Jh. (20)
m=1

Then by (18) we obtain (10). On the other hand, assuming that (10) is valid, we set

Ay,
(=

R b " N
(1=06,,(ry))41 Zm*+nA " o MmER

n=1

RE

If J; = oo, then (18) is naturally valid; if /; = 0, then it is impossible to make (18) valid,
namely, /1 > 0. Suppose that 0 < J; < co. By (10), we have

M

oo
> (1= 0m(22) - DI g
m=1

1 1
=Jjl=I> kf (A2)k)! (A1)

—
Q-

{i(l em()\z))mp[l )] 1 m}p!inq[l_“q)‘l*’)})]_lbz ,

m=1

N [ZO 0,02)) ”“aﬁ«]q
m=1

1

1 1 q
>k (h2)k! (1) {an“ “bq] :

namely, (18) follows, which is equivalent to (10).

Hence, inequalities (10), (17), and (18) are equivalent.

If the constant factor in (10) is the best possible, then so is the constant factor in (17)
and (18). Otherwise, by (19) (or (20)), we would reach a contradiction that the constant
factor in (10) is not the best possible.

The theorem is proved. d

Theorem 2 The following statements (i), (ii), (iii), and (iv) are equivalent:
1 1
(i) Both ki (A2)k)! (A1) and kk(% + %1) are independent of p, q;
1 1
(ii) k;; (Az)kf (M) = ko (*52 + 2);
(iii) kf (Az)/(f (A1) in (10) is the best possible constant factor;
V) If A=Ay — Aa € (A1, p(h = A1) N [p(h = A1 = 2,p(3 = A1)], then Ay + hy = A

Page 10 0of 13
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If the statement (iv) follows, namely, . + Ay = A, then we have (13) and the following
equivalent inequalities with the best possible constant factor k; (11):

00 00 p 1% 00 ;_17

n=1 m=1 m=1

> ma-1 i 1 q % ) s %
[; (1= 6(12))a! (; m* + n b") i| g kk()”l)|:2 nt(=22) lei| . (22)

n=1

Proof (i) = (ii). By (i), since A1 + Ay = A, we have
1 1 1 1
ki (A)k! (A1) = lim  lim &k (A2)k) (A1) = k. (A2),
p—~>17g—>-00

A=Ay A A=Al A A=A A
kx( L _1> :/Q( ! +—2) = lim lim k)\( ! 2) ki (A2),
q q q 19

p p p—~>17g—>-00

1 1
namely, k/ ()»z)kfl(kl) =llq(% + ’\7‘).
(ii) = (iv). IF & (Ra)k (A1) = ki (2512 + 2L), then (16) keeps the form of equality. In view
of the proof of Lemma 5, it follows that A1 + A5 = A.

(iv) = (i). If A1 + Ay = A, then

1o A-hy A
kf(xz)kf<x1>=/q( 22 q) o (),

which is independent of p, g. Hence, it follows that (i) < (ii) < (iv).

(iii) = (iv). By the assumption and Lemma 5,1we ha\lle A+ A=Al

(iv) = (iii). By Lemma 4, for A; + Ay = A, kf ()Lz)kf (A1)(= ky(11)) is the best possible
constant factor of (10). Therefore, we have (iii) < (iv).

Hence, the statements (i), (ii), (iii), and (iv) are equivalent.

The theorem is proved. g

Remark3 (i) For Ay = Ay = % € (0, Z 0<Ar< %) in (13), (21), and (22), we have the follow-
ing equivalent inequalities with the best possible constant factor 7:

FERt ARl a] [o] o
m=1

) o at =
o et T[S
m=1
i e i ) q %>_ an(l,_ lbq (25)
1-0u(3)1 1\ & T |

In particular, for A = 3 > we have the following equivalent inequalities:

1 1
= 5 ay 17 (S bl \?
Z(l _em(a)> m1+p/4:| (Z n1+q/4> ’ (26)
=1

m=1 n

>)|t|

X & amb, 2
> 2 5

Page 11 0f 13
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1 1
00 00 Pp 00 P P
5 1 2w 5 A
2 52+ 52t > 75 Z(l - 9(1 i | (27)
n=1 m=1 m=1
o0 WlS‘qul o0 1 q % o (S e %
b > = “ ) (28)
; 1 _gm(%))q—l ; mb2 4 527" 5 ; nl+al4

(i) ForA=1,41 =1, =1 (r>1,1 + 1 =1)in (13), (21), and (22), we have the following

equivalent inequalities with the best possible constant factor m
© i o0 1 o0 1
ﬂmbn T R 1 py r - 7
>— 1-0,.| =) \ms1a? wip | 29
ZZWI+I’I sin(r /r) Z( "‘(,)) m Z H (29)
n=1 m=1 =1 —
%) 00 p Ilg o %7
p_q 1 T . 1 -
S ¢ > s | 2\ L= O S ) T 30
Zn Zm+n " sin(rr /r) Z( ’”(s))m m (30)
=t m=1 m=1
00 q 0o Py N f
mr! 1 ! b4 q a
) ’ > e\ ) (31)
; (1- Qm(%))q—l nX:I: min sin(7r /r) nX:I: n

1/r

~ : 1 _
where 6,,(1) = S8 o % gy = O(—4) € (0,1) (m € N).

b4 1+u

Inequality (29) is a reverse of (1).

4 Conclusions

In this paper, by virtue of the symmetry principle, applying the techniques of real anal-
ysis and Euler—Maclaurin summation formula, we construct proper weight coefficients
and use them to establish a reverse extended Hardy-Hilbert’s inequality with multi-
parameters in Lemma 3. Then, we obtain the equivalent forms and some equivalent state-
ments of the best possible constant factor related to several parameters in Theorem 1 and
Theorem 2. Finally, we illustrate how the obtained results can generate some new reverse
Hardy—Hilbert-type inequalities in Remark 3. The lemmas and theorems provide an ex-

tensive account of this type of reverse inequalities.
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