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Abstract
In this paper, we will prove some fundamental properties of the power mean operator

Mpg(t) =
( 1
ϒ (t)

∫ t

0
λ(s)gp(s)ds

)1/p
, for t ∈ I ⊆ R+,

of order p and establish some lower and upper bounds of the compositions of
operators of different powers, where g, λ are a nonnegative real valued functions
defined on I and ϒ (t) =

∫ t
0 λ(s)ds. Next, we will study the structure of the generalized

class Uq
p (B) of weights that satisfy the reverse Hölder inequality

Mqu≤ BMpu,

for some p < q, p.q �= 0, and B > 1 is a constant. For applications, we will prove some
self-improving properties of weights in the class Uq

p (B) and derive the self improving
properties of the weighted Muckenhoupt and Gehring classes.
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1 Introduction
In [20], Muckenhoupt introduced a full characterization of Muckenhoupt Ap-class of
weights in connection with the boundedness of the Hardy-Littlewood maximal opera-
tor in the space Lp

u(R+) with a weight u. Another important class of weights, the Gehring
class Gq, for 1 < q < ∞, was introduced by Gehring [11, 12] in connection with local
integrability properties of the gradient of quasiconformal mappings. Due to the impor-
tance of these two classes in mathematical and harmonic analysis, their structure has
been studied by several authors, and various results regarding the relationship between
them and their applications have been established. We refer the reader to the papers
[1, 2, 4–10, 13, 14, 16–19, 26–30, 32] and the references cited therein.

In the following, for the sake of completeness, we present the background and the basic
definitions that will be used in this paper. We fix an interval I ⊂R+ = [0,∞) and consider
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subintervals I of I of the form [0, t], for 0 < t < ∞ and denote by |I| the Lebesgue measure
of I . Throughout the paper, we assume that 1 < p < ∞. A weight u is a nonnegative locally
integrable function defined on R+. Most often u, which is a positive function of real num-
bers defined on R+, will appear in the role of the weight in Lp

u(R+)-estimates, i.e. we shall
consider the norm

‖g‖Lp
u(R+) :=

(∫ ∞

0

∣∣g(t)
∣∣pu(t) dt

)1/p

< ∞.

In the literature, a nonnegative measurable weight function u defined on a bounded inter-
val I is called an Ap(C)-Muckenhoupt weight for 1 < p < ∞ if there exists a constant C < ∞
such that

(
1
|I|

∫

I
u(t) dt

)(
1
|I|

∫

I
u– 1

p–1 (t) dt
)p–1

≤ C, (1)

for every subinterval I ⊂ I. Muckenhoupt [20] proved the following result. If 1 < p < ∞ and
u satisfies the Ap-condition (1) on the interval I, with constant C , then there exist constants
q and C1 depending on p and C such that 1 < q < p, and u satisfies the Aq-condition

(
1
|I|

∫

I
u(t) dt

)(
1
|I|

∫

I
u– 1

q–1 (t) dt
)q–1

≤ C1, (2)

for every subinterval I ⊂ I. In other words, Muckenhoupt’s result (see also Coifman and
Fefferman [3]) for self-improving property states that: if u ∈ Ap(C) then there exists a con-
stant ε > 0 and a positive constant C1 such that u ∈ Ap–ε(C1), and then

Ap(C) ⊂ Ap–ε(C1). (3)

In [20], Muckenhoupt introduced the characterizations of Ap-class of weights in connec-
tion with the boundedness of the Hardy-Littlewood maximal operator

Mg(x) := sup
y�=x,y∈I

1
y – x

∫ y

x
g(s) ds, (4)

in the space Lp
u(R+) with a weight u. In particular, Muckenhoupt proved the following

result: If g(x) is nonnegative weight on an interval I and 1 < p < ∞, then the inequality

∫

R+

(
Mg(x)

)pu(x) dx ≤ K
∫

R+

(∣∣g(x)
∣∣)pu(x) dx,

holds if and only if the inequality (1) holds, where the constant K independent of g . An-
other important class of weights, which is related to the Muckenhoupt class, is the Gq-
class for 1 < q < ∞ of weights that satisfy the reverse Hölder inequality. This class has
been introduced by Gehring [11, 12] in connection with local integrability properties of
the gradient of quasiconformal mappings. A weight u satisfies the Gq-condition (or is said
to belong to the Gehring class Gq(K)) if there exists K >1 such that the inequality

(
1
|I|

∫

I
uq(x) dx

)1/q

≤K
(

1
|I|

∫

I
u(x) dx

)
, for all I ⊂ I. (5)



Saker et al. Journal of Inequalities and Applications         (2023) 2023:76 Page 3 of 21

holds. Gehring result says that if a weight satisfies a reverse Hölder inequality for some
exponent, then it satisfies a reverse Hölder inequality for a slightly larger exponent. In
particular, Gehring proved that there exists ε = ε(n, q,K) > 0 such that u ∈ Lp(I) for p <
q + ε, while for each p, there exists a new constant Kp = Kp(n, q,K, p) such that

1
|I|

∫

I
up(x) dx ≤Kp

(
1
|I|

∫

I
u(x) dx

)p

. (6)

In other words, Gehring’s result for self-improving property states that:

u ∈ Gq(K) ⇒ ∃ε > 0 such that u ∈ Gq+ε(Kp).

The proof of Gehring’s inequality has been obtained using the Calderón-Zygmund De-
composition Theorem and the scale structure of Lp-spaces. In [25], Popoli established the
sharp results for the self-improving and the transition properties of Gehring Gq and Muck-
enhoupt Ap weights by unifying the corresponding sharp results for weights satisfying a
general reverse Hölder inequality in a general space named Bp

q . We say that u belongs to
the class Bp

q(K) if u satisfies the reverse Hölder inequality

[∫

I
up(t) dt

] 1
p

≤ K
[∫

I
uq(t) dt

] 1
q

, K > 0,

for some constants p > q and for every subinterval I ⊆ I. Popoli showed that the optimal
exponents of integrability as well as the best constants in the integral inequalities could be
obtained by means of the function

ω(p, q, x) =
(

x
x – p

)– 1
p
(

x
x – q

) 1
q

, (7)

provided the appropriate setting of variables. Actually, by observing that the function ω

is strictly increasing for x in (–∞, 0) and strictly decreasing in (0, +∞), we have that the
equation ω(p, q, x) = B, B > 1 admits only one negative solution ν– = ν–(p, q, B) and one
positive solution ν+ = ν+(p, q, B). One way of establishing Gehring’s Lemma involves ex-
ploiting the correspondence between a weighted Muckenhoupt class and a reverse Hölder
class. In fact from (5), we get that

(
1
|I|

∫

I
uq– 1

p–1 (x)
(

1
u(x)

) –1
p–1

dx
)p–1

≤Kq(p–1)
(

1
|I|

∫

I
u(x) dx

)q(p–1)

. (8)

By taking q = p/(p – 1), we have from (8) that (here U(I) =
∫

I u(t) dt)

(
1

U(I)

∫

I
u(x)

(
1

u(x)

)
dx

)(
1

U(I)

∫

I
u(x)

(
1

u(x)

) –1
p–1

dx
)p–1

≤Kq(p–1) |I|p
Up(I)

(
U(I)
|I|

)p

= Kp, for all I ⊂ I,

which is a weighted Ap
u(Kp) condition for u–1 with respect the weight u and p = q/(q – 1).

This shows that if u ∈ Gq(K) then u–1 ∈ Ap
u(C) with C = K1/p where p = q/(q – 1). On the
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other hand, in considering mean convergence problems for various series in [21–23], it
was natural to consider the weighted Hardy-Littlewood maximal operator

Mg(x) := sup
y�=x,x,y∈I

1∫ y
x dm(t)

∫ y

x
g(t) dm(t), (9)

where m(t) was a suitable measure, and the quotient is to taken as zero if the numerator
and the denominator are both zero or both infinity. In [20], the author proved that if m is
a Borel measure on an interval I, which is 0 on sets consisting of single points, 1 < p < ∞
and g(x) be a nonnegative weight on I, then Mg is bounded on Lp

u(R+) if and only if

(
1

m(I)

∫

I
u(t) dm(t)

)(
1

m(I)

∫

I
u– 1

p–1 (t) dm(t)
)p–1

≤ C, (10)

for every subinterval I ⊂ I, where C is a positive constant independent of g . So, it was natu-
ral to study the structure of the Muckenhoput class Ap

λ(C) with a weight λ and the Gehring
Gq

λ with a weight λ. A nonnegative measurable weight function u defined on a bounded
interval I is called an Ap

λ(C)-Muckenhoupt weight for p > 1 if there exists a constant C < ∞
such that

(
1

ϒ(I)

∫

I
λ(t)u(t) dt

)(
1

ϒ(I)

∫

I
λ(t)u– 1

p–1 (t) dt
)p–1

≤ C, (11)

for every subinterval I ⊂ I, where ϒ(I) =
∫

I λ(t) dt. In [24], Popoli extended the results
established in [15] and proved that the self-improving property holds and gave explicit and
sharp values of exponents. We say that the nonnegative measurable function u satisfies the
weighted Gehring Gq

λ-condition if there exists a constant K ≥ 1 such that

(
1

ϒ(I)

∫

I
uq(x)λ(x) dx

)1/q

≤K
(

1
ϒ(I)

∫

I
λ(x)u(x) dx

)
, (12)

for all I ⊂ I, where ϒ(I) =
∫

I λ(x) dx. For a given exponent q > 1, we define the Gq-norm of
u as

Gq
λ(u) := sup

I⊂I

[(
1

ϒ(I)

∫

I
λ(t)u(t) dt

)–1( 1
ϒ(I)

∫

I
λ(t)uq(t) dt

) 1
q
] q

q–1
, (13)

where the supremum is taken over all intervals I ⊆ I and represents the best constant
for which the Gq

λ-condition holds true independently on the interval I ⊆ I. In [31, Theo-
rem 4.1], Sbordone proved that if (12) holds and λ(x) dx is a doubling measure, i.e. there
exists a constant d > 0 such that ϒ(2I) ≤ dϒ(I), then there exists a p > q such that

(
1

ϒ(I)

∫

I
up(x)λ(x) dx

)1/p

≤K1

(
1

ϒ(I)

∫

I
λ(x)u(x) dx

)
. (14)

By the weighted power mean operator Mqg of order q �= 0 and nonnegative weight g de-
fined on I, we call the operator

Mqg :=
(

1
ϒ(I)

∫

I
λ(s)gq(s) ds

)1/q

, for I ⊂ I. (15)
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In the present paper, we consider the class Uq
p (B) of all nonnegative weights g satisfying

the reverse Hölder inequality

Mqg ≤ BMpg, (16)

where the constant B > 1 is independent of I and p, q such that q > p. The smallest constant,
independent of the interval I and satisfying the inequality (16), is called the Uq

p -norm of
the weight g and will be denoted by Uq

p (g) and given by

Uq
p (g) := sup

I⊂I

(Mpg)– 1
p (Mqg)

1
q , for I ⊂ I. (17)

We say that g is a Uq
p -weight if its Uq

p -norm is finite, i.e.

g ∈ Uq
p ⇐⇒ Uq

p (g) < +∞.

When we fix a constant C > 1, the triple of real numbers (p, q,C) defines the Uq
p class:

g ∈ Uq
p (C) ⇐⇒ Uq

p (g) ≤ C,

and we will refer to C as the Uq
p -constant of the class. It is immediate to observe that the

classes Ap
λ and Gq

λ are special cases of the class Uq
p of weights as follows:

Ap
λ := U1

1
1–p

, and Gq
λ := Uq

1 .

The paper is organized as follows: In Sect. 2, we state and prove some basic lemmas con-
cerning the bounds of power mean operator Mpg . In Sect. 3, we establish some lower
and upper bounds of the compositions using two special functions ρp and ρq defined
later and prove some inclusion properties. For example, we prove that if g ∈ Uq

p (B) then
Mqg ∈ Uη

p (B1) with exact values of η and B1. In Sect. 4, we present some applications of
the main results and prove the self-improving properties of a monotone weights from Uq

p ,
i.e. we will prove that if g ∈ Uq

p (B) then g ∈ Uη
p (B1) with exact values of η and B1. For illus-

trations, we will derive the self-improving properties of the Muckenhoupt and Gehring
weights as special cases. The results in this paper improve the results in [24, 31] in the
sense that the results are valid for arbitrary parameters p < q, p.q �= 0 and can be consid-
ered the natural extension of the results in [7].

2 Basic lemmas and some fundamental properties
In this section, we state and prove the basic lemmas that will give some properties of the
power mean operator that will be used to prove the main results later. We will assume that
I is a fixed finite subset of R+, and we recall the power mean operator Mpg that we will
consider in this paper is given by

Mpg(t) =
(

1
ϒ(t)

∫ t

0
λ(s)gp(s) ds

)1/p

, for all t ∈ I, (18)

for any nonnegative weight g : I →R
+ and p ∈R\{0} and ϒ(t) =

∫ t
0 λ(s) ds. For the sake of

conventions, we assume that 0 · ∞ = 0 and 0/0 = 0.
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Lemma 1 Assume that g : I → R
+ is any nonnegative weight and p ∈ R\{0}. Then the

following properties hold:
(1). If g is nonincreasing, then Mpg is nonincreasing and Mpg(t) ≥ g(t), for all t ∈ I.
(2). If g is nondecreasing, then Mpg is nondecreasing and Mpg(t) ≤ g(t), for all t ∈ I.

Proof 1). From the definition of Mpg and the fact that g is nonincreasing, we get for p = 1
that

M1g(t) =
(

1
ϒ(t)

∫ t

0
λ(s)g(s) ds

)
≥

(
1

ϒ(t)

∫ t

0
λ(s)g(t) ds

)
= g(t).

For the general case when p �= 1, we also have for all t ∈ I that

Mpg(t) =
(

1
ϒ(t)

∫ t

0
λ(s)gp(s) ds

)1/p

≥
(

1
ϒ(t)

∫ t

0
λ(s)gp(t) ds

)1/p

= g(t).

From this inequality, we get that

ϒ(t)gp(t) ≤
∫ t

0
λ(s)gp(s) ds, for all t ∈ I. (19)

Now, using (19) and the fact that g is nonincreasing, we obtain that

(
Mpg(t)

)′ =
1
p

(
1

ϒ(t)

∫ t

0
λ(s)gp(s) ds

)(1/p)–1 ϒ(t)λ(t)gp(t) – λ(t)
∫ t

0 λ(s)gp(s) ds
ϒ2(t)

≤ 1
p
λ(t)

(
1

ϒ(t)

∫ t

0
λ(s)gp(s) ds

)(1/p)–1 ∫ t
0 λ(s)gp(s) ds –

∫ t
0 λ(s)gp(s) ds

ϒ2(t)
= 0,

that is (Mpg(t))′ ≤ 0 for all t ∈ I, and thus Mpg(t) is nonincreasing.
2). From the definition of Mpg(t) and the fact that g(t) is nondecreasing, we have for

p = 1 that

M1g(t) =
1

ϒ(t)

∫ t

0
λ(s)g(s) ds ≤ 1

ϒ(t)

∫ t

0
λ(s)g(t) ds = g(t). (20)

For the general case when p �= 1, we also have for all t ∈ I that

Mpg(t) =
(

1
ϒ(t)

∫ t

0
λ(s)gp(s) ds

)1/p

≤
(

1
ϒ(t)

∫ t

0
λ(s)gp(t) ds

)1/p

= g(t).

From this inequality, we see that

ϒ(t)gp(t) ≥
∫ t

0
λ(s)gp(s) ds, for all t ∈ I. (21)
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Then, using inequality (21) and the fact that g is nondecreasing and proceeding as in the
first case, we obtain that

(
Mpg(t)

)′

=
1
p

(
1

ϒ(t)

∫ t

0
λ(s)gp(s) ds

)(1/p)–1 ϒ(t)λ(t)gp(t) – λ(t)
∫ t

0 λ(s)gp(s) ds
ϒ2(t)

≥ 1
p
λ(t)

(
1

ϒ(t)

∫ t

0
λ(s)gp(s) ds

)(1/p)–1 ∫ t
0 λ(s)gp(s) ds –

∫ t
0 λ(s)gp(s) ds

ϒ2(t)

= 0,

which implies that (Mpg(t))′ ≥ 0 for all t ∈ I, and thusMpg(t) is nondecreasing. The proof
is complete. �

As in the proof of Lemma 1, we can also prove the following results.

Lemma 2 Assume that g : I → R
+ is any nonnegative weight and q ∈ R\{0}. Then the

following properties hold:
(1). If g is nonincreasing, then Mqg is nonincreasing and Mqg(t) ≥ g(t), for all t ∈ I.
(2). If g is nondecreasing, then Mqg is nondecreasing and Mqg(t) ≤ g(t), for all t ∈ I.

To prove the main results in this section, we will use the properties of the function

ρp(η) =
(

1 –
p
η

)1/p

,

of the variable for η ∈ (–∞, min(0, p)) ∪ (max(0, p),∞). It is clear that the function
ρp(η) is continuous and increases from 1 to +∞ on (–∞, min(0, p)) and from 0 to 1 on
(max(0, p),∞) and

ρp(η)ρp(p – η) =
(

1 –
p
η

)1/p(
1 –

p
p – η

)1/p

=
(

η – p
η

)1/p(
η

η – p

)1/p

= 1.

We set

Sp,q(η) =
ρp(η)
ρq(η)

, for η ∈ (
–∞, min(0, p)

) ∪ (
max(0, q),∞)

.

The function Sp,q(η) is continuous and increases from 1 to +∞ on (–∞, min(0, p)) and
decreases from +∞ to 1 on (max(0, q),∞). Therefore, for any B > 1, the equation

Sp,q(η) =
(1 – p/η)1/p

(1 – q/η)1/q = B, (22)

has two roots: a positive root η+ and a negative root η–.
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Theorem 3 Let p < q, p.q �= 0, and g : I → R
+ be any nonnegative weight. If g ∈ Uq

p (B) for
B > 1, then

ρp
(
η+) ≤ Mqg(t)

Mp(Mqg)(t)
≤ ρp

(
η–)

, for all t ∈ I, (23)

where η+ and η– are the roots of (22).

Proof From the definition of Mpg(t), we have that

[
ϒ(s)Mp

qg(s)
]′ =

[
ϒ(s)

(
1

ϒ(s)

∫ s

0
λ(u)gq(u) du

)p/q]′

= λ(s)
(

1
ϒ(s)

∫ s

0
λ(u)gq(u) du

)p/q

+ ϒ(s)
((

1
ϒ(s)

∫ s

0
λ(u)gq(u) du

)p/q)′
. (24)

The second term in (24) is given by

ϒ(s)
((

1
ϒ(s)

∫ s

0
λ(u)gq(u) du

)p/q)′

=
p
q
ϒ(s)

(∫ s
0 λ(u)gq(u) du

ϒ(s)

)(p/q)–1(ϒ(s)λ(s)gq(s) – λ(s)
∫ s

0 λ(u)gq(u) du
ϒ2(s)

)

=
p
q

(∫ s
0 λ(u)gq(u) du

ϒ(s)

)(p/q)–1

λ(s)gq(s) –
p
q
λ(s)

(∫ s
0 λ(u)gq(u) du

ϒ(s)

)p/q

. (25)

By combining (25) and (24), we obtain

[
ϒ(s)Mp

qg(s)
]′ =

(
q – p

q

)(
1

ϒ(s)

∫ s

0
λ(u)gq(u) du

)p/q

λ(s)

+
p
q

(
1

ϒ(s)

∫ s

0
λ(u)gq(u) du

)(p/q)–1

λ(s)gq(s). (26)

Integrating (26) from 0 to t and dividing by ϒ(t), we have that

Mp
qg(t) =

(
q – p

q

)
1

ϒ(t)

∫ t

0
λ(s)

(
1

ϒ(s)

∫ s

0
λ(u)gq(u) du

)p/q

ds

+
p
q

1
ϒ(t)

∫ t

0

(
1

ϒ(s)

∫ s

0
λ(u)gq(u) du

)(p/q)–1

λ(s)gq(s) ds. (27)

From the definition of Mqg , we see that the first term in (27) is given by

1
ϒ(t)

∫ t

0
λ(s)

(
1

ϒ(s)

∫ s

0
λ(u)gq(u) du

)p/q

ds =
[
Mp(Mqg)(t)

]p. (28)

Now, we have the term

1
ϒ(t)

∫ t

0

(
1

ϒ(s)

∫ s

0
λ(u)gq(u) du

)(p/q)–1

λ(s)gq(s) ds.
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By applying reverse Hölder’s inequality for p/q < 1 and p/(p – q), we obtain that

1
ϒ(t)

∫ t

0

(
1

ϒ(s)

∫ s

0
λ(u)gq(u) du

)(p/q)–1

λ(s)gq(s) ds

≥
(

1
ϒ(t)

∫ t

0
λ(s)

(
1

ϒ(s)

∫ s

0
λ(u)gq(u) du

)p/q

ds
)(p–q)/p

×
(

1
ϒ(t)

∫ t

0
λ(s)gp(s) ds

)q/p

=
[
Mp(Mqg)(t)

]p–q[Mpg(t)
]q. (29)

By substituting (29) and (28) into (27), dividing by p[Mp(Mqg)(t)]p, and then applying
(16), we obtain that

1
p

[Mqg(t)]p

[Mp(Mqg)(t)]p ≥
(

1
p

–
1
q

)
+

1
q

[Mpg(t)]q

[Mp(Mqg)(t)]q

≥
(

1
p

–
1
q

)
+ B–q 1

q
[Mqg(t)]q

[Mp(Mqg)(t)]q . (30)

By setting

η := p
[Mp(Mqg)(t)]p

[Mp(Mqg)(t)]p – [Mqg(t)]p , (31)

we see that inequality (30) can be written in the form

B–q
[

1 –
[Mp(Mqg)(t)]p – [Mqg(t)]p

[Mp(Mqg)(t)]p

]q/p

= B–q
[

[Mqg(t)]p

[Mp(Mqg)(t)]p

]q/p

≤ 1 –
q
p

+
q
p

[Mqg(t)]p

[Mp(Mqg)(t)]p

≤ 1 –
q
p

(
1 –

[Mqg(t)]p

[Mp(Mqg)(t)]p

)

= 1 –
q
p

(
[Mp(Mqg)(t)]p – [Mqg(t)]p

[Mp(Mqg)(t)]p

)
. (32)

This inequality can be written now as

(
1 –

p
η

)1/p

≤ B
(

1 –
q
η

)1/q

,

or equivalently

Sp,q(η) =
(1 – p

η
)1/p

(1 – q
η

)1/q ≤ B, for all p < q.
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This means that η ∈ (–∞,η–] ∪ [η+, +∞). The properties of the weight ρp imply that
ρp(η+) ≤ ρp(η) ≤ ρp(η–), and since

ρp(η) =
(

1 –
p
η

)1/p

=
(

1 –
[Mp(Mqg)(t)]p – [Mqg(t)]p

[Mp(Mqg)(t)]p

)1/p

=
(

1 – 1 +
[Mqg(t)]p

[Mp(Mqg)(t)]p

)1/p

=
[Mqg(t)]

Mp(Mqg)(t)
,

we obtain that

ρp
(
η+) ≤ [Mqg(t)]

Mp(Mqg)(t)
≤ ρp

(
η–)

, (33)

which is the desired inequality (23). The proof is complete. �

Theorem 4 Let p < q, p.q �= 0, and g : I → R
+ be any nonnegative weight. If g ∈ Uq

p (B) for
B > 1, then

ρq
(
η+) ≤ Mpg(t)

Mq(Mpg)(t)
≤ ρq

(
η–)

, for all t ∈ I, (34)

where η+ and η– are the roots of (22).

Proof From the definition of Mpg(t), we obtain that

[
ϒ(s)Mq

pg(s)
]′

=
[
ϒ(s)

(
1

ϒ(s)

∫ s

0
λ(u)gp(u) du

)q/p]′

= λ(s)
(

1
ϒ(s)

∫ s

0
λ(u)gp(u) du

)q/p

+ ϒ(s)
[(

1
ϒ(s)

∫ s

0
λ(u)gp(u) du

)q/p]′
. (35)

Proceeding as in the proof of Theorem 3, we get that

[
Mpg(s)

]q ≤
(

1 –
q
p

)
1

ϒ(t)

∫ t

0
λ(s)

(
1

ϒ(s)

∫ s

0
λ(u)gp(u) du

)q/p

ds

+
q
p

1
ϒ(t)

∫ t

0

(
1

ϒ(s)

∫ s

0
λ(u)gp(u) du

)(q/p)–1

λ(s)gp(s) ds. (36)

From the definition of Mpg , we see that the first term in (36) is given by

1
ϒ(t)

∫ t

0
λ(s)

(
1

ϒ(s)

∫ s

0
λ(u)gp(u) du

)q/p

ds =
[
Mq(Mpg)(t)

]q. (37)

Now, we simplify the term

1
ϒ(t)

∫ t

0

(
1

ϒ(s)

∫ s

0
λ(u)gp(u) du

)(q/p)–1

λ(s)gp(s) ds.
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By applying Hölder’s inequality for q/p > 1 and q/(q – p), we obtain

1
ϒ(t)

∫ t

0

(
1

ϒ(s)

∫ s

0
λ(u)gp(u) du

)(q/p)–1

λ(s)gp(s) ds

≤
(

1
ϒ(t)

∫ t

0
λ(s)

(
1

ϒ(s)

∫ s

0
λ(u)gp(u) du

)q/p

ds
)(q–p)/q(∫ t

0 λ(s)gq(s) ds
ϒ(t)

)p/q

=
[
Mq(Mpg)(t)

]q–p[Mqg(t)
]p. (38)

By substituting (37) and (38) into (36), dividing by q[Mq(Mpg)(t)]q, and applying (16), we
obtain

[Mpg(t)]q

q[Mq(Mpg)(t)]q ≤
(

1
q

–
1
p

)
+

1
p

[Mpg(t)]p

[Mq(Mpg)(t)]p

≤
(

1
q

–
1
p

)
+

Bp

p
[Mpg(t)]p

[Mq(Mpg)(t)]p . (39)

This inequality now takes the form

[
B
(

1 –
[Mq(Mpg)(t)]q – [Mpg(t)]q

[Mq(Mpg)(t)]q

)1/q]p

=
[

B
(

[Mpg(t)]q

[Mq(Mpg)(t)]q

)1/q]p

= Bp [Mpg(t)]p

[Mq(Mpg)(t)]p

≥ 1 –
p
q

+
p
q

[Mpg(t)]q

[Mq(Mpg)(t)]q = 1 –
p
q

(
1 –

[Mpg(t)]q

[Mq(Mpg)(t)]q

)

= 1 –
p
q

[Mq(Mpg)(t)]q – [Mpg(t)]q

[Mq(Mpg)(t)]q . (40)

By setting

η := q
[Mq(Mpg)(t)]q

[Mq(Mpg)(t)]q – [Mpg(t)]q , (41)

we see that the inequality (40) takes the form

(
1 –

p
η

)1/p

≤ B
(

1 –
q
η

)1/q

,

or equivalently,

Sp,q(η) =
(1 – p

η
)1/p

(1 – q
η

)1/q ≤ B.

This means that η ∈ (–∞,η–] ∪ [η+, +∞). The properties of the weight ρq imply that
ρq(η+) ≤ ρq(η) ≤ ρq(η–), and since

ρq(η) =
(

1 –
q
η

)1/q

=
(

1 –
[Mq(Mpg)(t)]q – [Mpg(t)]q

[Mq(Mpg)(t)]q

)1/q
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=
(

1 – 1 +
[Mpg(t)]q

[Mq(Mpg)(t)]q

)1/q

=
[Mpg(t)]

[Mq(Mpg)(t)]
,

we obtain that

ρq
(
η+) ≤ Mpg(t)

Mq(Mpg)(t)
≤ ρq

(
η–)

,

which is the required inequality (34). The proof is complete. �

The assumptions and the conclusions of Theorems 3 and 4 will be used in proving the
following theorems.

Theorem 5 Assume that the conditions in Theorems 3 and 4 hold. Then the compositions

(
ϒ(t)

)1/η–
Mq(Mpg)(t), and

(
ϒ(t)

)1/η–
Mp(Mqg)(t), (42)

are nonincreasing

(
ϒ(t)

)1/η+
Mp(Mqg)(t), and

(
ϒ(t)

)1/η+
Mq(Mpg)(t), (43)

are nondecreasing.

Proof Using the definition of Mq(Mpg)(t), we see that

((
ϒ(t)

)1/η±
Mq(Mpg)(t)

)′

=
((

ϒ(t)
)1/η±)′Mq(Mpg)(t) +

(
ϒ(t)

)1/η±(
Mq(Mpg)(t)

)′

=
1
η±

(
ϒ(t)

)(1/η±)–1
λ(t)Mq(Mpg)(t) +

(
ϒ(t)

)1/η±(
Mq(Mpg)(t)

)′. (44)

From the definition of Mq(Mpg)(t), we see that

(
Mq(Mpg)(t)

)′

=
((

1
ϒ(t)

∫ t

0
λ(s)

(
1

ϒ(s)

∫ s

0
λ(u)gp(u) du

)q/p

ds
)1/q)′

=
1
q

(
1

ϒ(t)

∫ t

0
λ(s)

(
1

ϒ(s)

∫ s

0
λ(u)gp(u) du

)q/p

ds
)(1/q)–1

× ϒ(t)λ(t)( 1
ϒ(t)

∫ t
0 λ(u)gp(u) du)q/p – λ(t)

∫ t
0 λ(s)( 1

ϒ(s)
∫ s

0 λ(u)gp(u) du)q/p ds
ϒ2(t)

=
λ(t)

qϒ(t)
[(
Mq(Mpg)(t)

)1–q(Mpg(t)
)q – Mq(Mpg)(t)

]
.

This and (44) imply that

((
ϒ(t)

)1/η±
Mq(Mpg)(t)

)′ =
1
η±

(
ϒ(t)

)(1/η±)–1
λ(t)Mq(Mpg)(t)
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+
(
ϒ(t)

)(1/η±)–1 1
q
(
Mq(Mpg)(t)

)1–q
λ(t)

(
Mpg(t)

)q

–
1
q
(
ϒ(t)

)(1/η±)–1
λ(t)Mq(Mpg)(t)

=
(
ϒ(t)

)(1/η±)–1
λ(t)Mq(Mpg)(t)

[
1
η± +

( Mpg(t)
Mq(Mpg)(t)

)q

–
1
q

]
.

That is

((
ϒ(t)

)1/η±
Mq(Mpg)(t)

)′ =
(
ϒ(t)

)(1/η±)–1
λ(t)Mq(Mpg)(t)

×
[

1
η± +

1
q

( Mpg(t)
Mq(Mpg)(t)

)q

–
1
q

]
. (45)

We note that the same equality remains valid if p and q change places, that is

((
ϒ(t)

)1/η±
Mp(Mqg)(t)

)′ =
(
ϒ(t)

)(1/η±)–1
λ(t)Mp(Mqg)(t)

×
[

1
η± +

1
p

( Mqg(t)
Mp(Mqg)(t)

)p

–
1
p

]
. (46)

It is clear that the signs of the derivatives of the left-hand side of (45) and (46) are deter-
mined by the signs of the terms in the square brackets on the right-hand side. In turn, the
signs of the square brackets are determined by inequalities (23) and (34). For example, the
left-hand side in (23) means that the derivative

((
ϒ(t)

)1/η+
Mp(Mqg)(t)

)′

≥ (
ϒ(t)

)(1/η+)–1
λ(t)Mp(Mqg)(t) ×

[
1
η+ +

1
p

((
1 –

p
η+

)1/p)p

–
1
p

]
= 0,

is nonnegative. Hence, the function (ϒ(t))1/η+Mp(Mqg)(t) is nondecreasing. Analogously,
we can prove the monotonicity of the remaining functions mentioned in the theorem. This
completes the proof. �

3 Main results
In this section, first, we prove that the power mean operators Mpg and Mqg of the weight
g ∈ Uq

p satisfy the the reverse Hölder inequality with some better exponents.

Theorem 6 Let p < q, p.q �= 0, and g be any nonnegative weight, and η+ and η– are the
roots of equation (22).

(i). If g ∈ Uq
p (B) for B > 1 and η < η+ and η �= 0, then

Mpg ∈ Uη
q

(
ρq(η–)
ρη(η+)

)
, and Mqg ∈ Uη

p

(
ρp(η–)
ρη(η+)

)
. (47)

(ii). If g ∈ Uq
p (B) for B > 1 and η > η–, and η �= 0, then

Mpg ∈ Uq
η

(
ρη(η–)
ρq(η+)

)
, and Mqg ∈ Up

η

(
ρη(η–)
ρp(η+)

)
. (48)
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Proof (i). Since η is either positive or negative, we will discuss the two cases:
1). Assume that η > 0. By raising (34) to the power η, we obtain for s < t that

(
ϒ(s)

)–η/η–
λ(s)ρη

q
(
η+)[(

ϒ(s)
)1/η–

Mq(Mpg)(s)
]η

≤ λ(s)
(
Mpg(s)

)η

≤ λ(s)
(
ϒ(s)

)–η/η+
ρη

q
(
η–)[(

ϒ(s)
)1/η+

Mq(Mpg)(s)
]η. (49)

Using the monotonicity of

(
ϒ(t)

)1/η–
Mq(Mpg)(t), and

(
ϒ(t)

)1/η+
Mq(Mpg)(t),

we have that

(
ϒ(s)

)–η/η–
λ(s)ρη

q
(
η+)[(

ϒ(t)
)1/η–

Mq(Mpg)(t)
]η

≤ (
Mpg(s)

)η
λ(s)

≤ λ(s)
(
ϒ(s)

)–η/η+
ρη

q
(
η–)[(

ϒ(t)
)1/η+

Mq(Mpg)(t)
]η. (50)

Let η < η+. By integrating from 0 to t and dividing by ϒ(t), and raising it to the power
1/η > 0, we get that

(
ρ

η
q (η+)[(ϒ(t))1/η–Mq(Mpg)(t)]η

ϒ(t)

∫ t

0
λ(s)

(
ϒ(s)

)–η/η–
ds

)1/η

≤
(

1
ϒ(t)

∫ t

0
λ(s)

(
Mpg(s)

)η ds
)1/η

≤
(

ρ
η
q (η–)[(ϒ(t))1/η+Mq(Mpg)(t)]η

ϒ(t)

∫ t

0
λ(s)

(
ϒ(s)

)–η/η+
ds

)1/η

. (51)

Since

∫ t

0

(
ϒ(s)

)–η/η+
λ(s) ds =

(ϒ(t))–η/η++1

(–η/η+) + 1
,

we have

(
ρ

η
q (η–)[(ϒ(t))1/η+Mq(Mpg)(t)]η

ϒ(t)

∫ t

0
λ(s)

(
ϒ(s)

)–η/η+
ds

)1/η

=
(

ρ
η
q (η–)[(ϒ(t))1/η+Mq(Mpg)(t)]η

ϒ(t)
(ϒ(t))–η/η++1

(–η/η+) + 1

)1/η

=
(

ρη
q
(
η–)[

Mq(Mpg)(t)
]η 1

(1 – η

η+ )

)1/η

=
ρq(η–)
ρη(η+)

Mq(Mpg)(t). (52)
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Similarly, since η– < 0, then –η/η– > 0 and hence –η/η– + 1 > 1, we have that

∫ t

0

(
ϒ(s)

)–η/η–
λ(s) ds =

1
–η/η– + 1

∫ t

0
	

(
ϒ(s)

)–η/η–+1 =
(ϒ(t))–η/η–+1

–η/η– + 1
.

In this case, we have

(
ρ

η
q (η+)[(ϒ(t))1/η–Mq(Mpg)(t)]η

ϒ(t)

∫ t

0
λ(s)

(
ϒ(s)

)–η/η–
)1/η

≥
(

ρ
η
q (η+)[(ϒ(t))1/η–Mq(Mpg)(t)]η

ϒ(t)
(ϒ(t))–η/η–+1

–η/η– + 1

)1/η

=
ρq(η+)
ρη(η–)

Mq(Mpg)(t). (53)

By substituting (52) and (53) into (51), we obtain

ρq(η+)
ρη(η–)

Mq(Mpg)(t) ≤Mη(Mpg)(t) ≤ ρq(η–)
ρη(η+)

Mq(Mpg)(t),

which implies that

Mpg ∈ Uη
q

(
ρq(η–)
ρη(η+)

)
,

that is the second relation in (47) in the case η > 0.
2). Assume that η < 0. By raising (34) to the power η, we obtain for s < t that

λ(s)
(
ϒ(s)

)–η/η–
ρη

q
(
η+)[(

ϒ(s)
)1/η–

Mq(Mpg)(s)
]η

≥ λ(s)
(
Mpg(s)

)η

≥ λ(s)
(
ϒ(s)

)–η/η+
ρη

q
(
η–)[(

ϒ(s)
)1/η+

Mq(Mpg)(s)
]η. (54)

Using the monotonicity of

(
ϒ(t)

)1/η–
Mq(Mpg)(t), and

(
ϒ(t)

)1/η+
Mq(Mpg)(t),

we have that

λ(s)
(
ϒ(s)

)–η/η–
ρη

q
(
η+)[(

ϒ(t)
)1/η–

Mq(Mpg)(t)
]η

≥ λ(s)
(
Mpg(s)

)η

≥ λ(s)
(
ϒ(s)

)–η/η+
ρη

q
(
η–)[(

ϒ(t)
)1/η+

Mq(Mpg)(t)
]η. (55)

By integrating from 0 to t and dividing by ϒ(t), and raising it to the power 1/η < 0, we get
that

[(ϒ(t))1/η–Mq(Mpg)(t)]η

ϒ(t)
ρη

q
(
η+)∫ t

0
λ(s)

(
ϒ(s)

)–η/η–
ds

≤
(

1
ϒ(t)

∫ t

0
λ(s)

(
Mpg(s)

)η ds
)1/η
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≤ [(ϒ(t))1/η+Mq(Mpg)(t)]η

ϒ(t)
ρη

q
(
η–)∫ t

0
λ(s)

(
ϒ(s)

)–η/η+
ds. (56)

Proceeding as in the proof of the first case, we then obtain that

ρq(η+)
ρη(η–)

Mq(Mpg)(t) ≤Mη(Mpg)(t) ≤ ρq(η–)
ρη(η+)

Mq(Mpg)(t).

This gives us gain that

Mpg ∈ Uη
q

(
ρq(η–)
ρη(η+)

)
,

which is the first relation in (47) in the case η < 0. Similarly, we can prove the first relation
in (47) using the relation (23). Analogously, we prove the two relations in (48) using the
same technique and inequalities (23) and (34). The proof is complete. �

In Theorem 6, we proved that the power mean operators Mpg and Mqg of the weight
g ∈ Uq

p satisfy the reverse Hölder inequality with some better exponents. However, the
fact that the mean Mpg or Mqg belongs to some class Uq

p does not imply that the weight
g itself belongs to Uq

p . Thus, Theorem 6 does not guarantee the self-improvement of the
summability exponents of the weight g ∈ Uq

p . But, if we additionally assume the condition
of the monotonicity of the weight g , then we can obtain the following results for self-
improving of exponents.

Theorem 7 Let p < q, p.q �= 0, and g be any nonnegative weight belongs to Uq
p (B) for B > 1,

and η+ and η– are the roots of the equation (22).
(1). If g is nonincreasing, and η < η+, then

g ∈ Uη
q

(
ρp(η–)

ρη(η+)ρp(η+)

)
, g ∈ Uη

p

(
ρq(η–)

ρq(η+)ρη(η+)

)
. (57)

(2). If g is nondecreasing, and η > η–, then

g ∈ Uq
η

(
ρp(η–)ρη(η–)

ρp(η+)

)
, g ∈ Up

η

(
ρq(η–)ρη(η–)

ρq(η+)

)
. (58)

Proof (1). Since g is nonincreasing, and since

Mpg(t) =
(

1
ϒ(t)

∫ t

0
λ(s)gp(s) ds

)1/p

, for all t ∈ I,

we have that Mqg(t) ≥ g(t), and so

Mη(Mqg)(t) ≥Mηg(t). (59)

By applying the second relation in (47), we obtain that

Mη(Mqg)(t) ≤ ρp(η–)
ρη(η+)

Mp(Mqg)(t). (60)
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By applying the left-hand side of the inequality (23), and since Mqg(t) is nonincreasing
(see Lemma 1), we from have (59) and (60) that

Mηg(t) ≤ Mη(Mqg)(t) ≤ ρp(η–)
ρη(η+)

Mp(Mqg)(t)

≤ ρp(η–)
ρη(η+)ρp(η+)

Mqg(t).

That is

g ∈ Uη
q

(
ρp(η–)

ρη(η+)ρp(η+)

)
,

which is the first relation in (57). Similarly, since g is nonincreasing, we haveMpg(t) ≥ g(t),
and so

Mη(Mpg)(t) ≥Mηg(t). (61)

By applying the first relation in (47), we obtain that

Mηg(t) ≤Mη

(
Mpg(t)

) ≤ ρq(η–)
ρη(η+)

Mq
(
Mpg(t)

)
. (62)

By applying the left hand side of the inequality (34), and using (61), (62) and the fact that
Mpg(t) is nonincreasing (see Lemma 1), we have that

Mη

(
g(t)

) ≤ Mη

(
Mpg(t)

) ≤ ρq(η–)
ρη(η+)

Mq
(
Mpg(t)

)

≤ ρq(η–)
ρη(η+)ρq(η+)

Mpg(t).

That is

g ∈ Uη
p

(
ρq(η–)

ρη(η+)ρq(η+)

)
,

which is the second relation in (57).
(2). Since g is nondecreasing, then by Lemma 1, the fact that Mpg(t) is nondecreasing

and Mpg(t) ≤ g(t), we have that

Mη(Mpg)(t) ≤Mηg(t). (63)

By applying the first relation in (48), we obtain that

Mη(Mpg)(t) ≥ ρq(η+)
ρη(η–)

Mq(Mpg)(t). (64)

By applying the right-hand side of the inequality (34), we have that

Mη(Mpg)(t) ≥ ρq(η+)
ρη(η–)

Mq(Mpg)(t) ≥ ρq(η+)Mpg(t)
ρq(η–)ρη(η–)

. (65)
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By combining (63) and (65), we have that

Mpg(t) ≤ ρq(η–)ρη(η–)
ρq(η+)

Mηg(t),

that is

g ∈ Up
η

(
ρq(η–)ρη(η–)

ρq(η+)

)
,

which is the second relation in (58). Again, since g is nondecreasing, Lemma 2 implies that
Mqg(t) is nondecreasing and Mqg(t) ≤ g(t), and so

Mη(Mqg)(t) ≤Mηg(t). (66)

By applying the second relation in (48), we obtain that

Mη(Mqg)(t) ≥ ρp(η+)
ρη(η–)

Mp(Mqg)(t).

By applying the right-inequality in (23), we have that

Mη(g)(t) ≥ Mη(Mqg)(t) ≥ ρp(η+)
ρη(η–)

Mp(Mqg)(t)

≥ ρp(η+)
ρp(η–)ρη(η–)

Mqg(t). (67)

By combining (66) and (67), we have that

Mqg(t) ≤ ρp(η–)ρη(η–)
ρp(η+)

Mηg(t).

That is

g ∈ Uq
η

(
ρp(η–)ρη(η–)

ρp(η+)

)
,

which is the first relation in (58). The proof is complete. �

In the following, we will apply the above results in deriving the self-improving properties
of the two Muckenhoupt and Gehring classes

Ap
λ := U1

1
1–p

, and Gq
λ := Uq

1 .

Theorem 8 Let p > 1 and g be any nonnegative and nondecreasing weight belonging to
Ap

λ(B) for B > 1. Then g ∈ Aη

λ(B′′
2) for η ∈ (η–, p] where η– is the root of the equation

p – η

p – 1
(Bη)

1
p–1 = 1, (68)
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and

B′′
2 =

ρ1(η–)ρη(η–)
ρ1(η+)

.

Proof Since Ap
λ := U1

1
1–p

, then equation (22) becomes Cp,q(η) = B, which is written by

(
x

x – 1

)(
(p – 1)x

(p – 1)x + 1

)p–1

= B.

By applying the transform η → 1/(1 – x), we see that η– is determined from the equation

p – η

p – 1
(Bη)

1
p–1 = 1, (69)

which is the desired equation (68) and the constant B′′
2 is obtained from (58) and given by

B′′
2 =

ρ1(η–)ρη(η–)
ρ1(η+)

.

The proof is complete. �

Theorem 9 Let q > 1 and g be any nonnegative and nondecreasing weight belonging to
Gq

λ(B) for B > 1. Then g ∈ Gη

λ(B′′
1) for η ∈ [q,η+) where η+ is the root of the equation

(
x – 1

x

)(
x

x – q

) 1
q

= B, (70)

and

B′′
1 =

ρ1(η–)ρη(η–)
ρ1(η+)

.

Proof Since Gq
λ := Uq

1 , then equation (22) becomes Cp,q(η) = B, which is written by

(
x

x – 1

)–1( x
x – q

) 1
q

= B,

which is the desired equation (70), and the constant B′′
1 is obtained from (57) and given by

B′′
1 =

ρ1(η–)ρη(η–)
ρ1(η+)

.

The proof is complete. �

4 Conclusion
In this paper, we have considered a class of generalized Hölder inequalities and proved the
self-improving properties of the weights in this class. The main results are proved by em-
ploying some properties of a mean operator and additional properties of the composition
of different operators with different powers. By employing the self-improving properties
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of the general class, we have derived the self-improving properties of the Muckenhoupt
weights and the Gehring weights, which are compatible with the results obtained by some
authors in the literature.
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