
Saker et al.Journal of Inequalities and Applications        (2023) 2023:76 
https://doi.org/10.1186/s13660-023-02963-9

R E S E A R C H Open Access

Structure of a generalized class of weights
satisfy weighted reverse Hölder•s inequality
S.H. Saker1,2, M. Zakarya3,4, Ghada AlNemer5 and H.M. Rezk6*

*Correspondence:
haythamrezk64@yahoo.com;
haythamrezk@azhar.edu.eg
6Department of Mathematics,
Faculty of Science, Al-Azhar
University, Nasr City 11884, Egypt
Full list of author information is
available at the end of the article

Abstract

In this paper, we will prove some fundamental properties of the power mean operator

M pg(t) =
� 1
ϒ (t)

� t

0
λ(s)gp(s)ds

� 1/p
, for t � I � R+,

of order p and establish some lower and upper bounds of the compositions of
operators of different powers, where g, λ are a nonnegative real valued functions
defined on I and ϒ (t) =

� t
0 λ(s)ds. Next, we will study the structure of the generalized

class Uq
p (B) of weights that satisfy the reverse Hölder inequality

M qu � BM pu,

for some p < q, p.q �= 0, and B > 1 is a constant. For applications, we will prove some
self-improving properties of weights in the class Uq

p (B) and derive the self improving
properties of the weighted Muckenhoupt and Gehring classes.
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1 Introduction
In [20], Muckenhoupt introduced a full characterization of MuckenhouptAp-class of

weights in connection with the boundedness of the Hardy-Littlewood maximal opera-

tor in the spaceLp
u(R+) with a weightu. Another important class of weights, the Gehring

classGq, for 1 < q < � , was introduced by Gehring [11, 12] in connection with local

integrability properties of the gradient of quasiconformal mappings. Due to the impor-

tance of these two classes in mathematical and harmonic analysis, their structure has

been studied by several authors, and various results regarding the relationship between

them and their applications have been established. We refer the reader to the papers

[1, 2, 4…10, 13, 14, 16…19, 26…30, 32] and the references cited therein.

In the following, for the sake of completeness, we present the background and the basic

de“nitions that will be used in this paper. We “x an intervalI � R+ = [0,� ) and consider

© The Author(s) 2023. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.



Saker et al.Journal of Inequalities and Applications        (2023) 2023:76 Page 2 of 21

subintervalsI of I of the form [0,t], for 0 < t < � and denote by|I| the Lebesgue measure
of I. Throughout the paper, we assume that 1 <p < � . A weightu is a nonnegative locally
integrable function de“ned onR+. Most oftenu, which is a positive function of real num-
bers de“ned onR+, will appear in the role of the weight inLp

u(R+)-estimates, i.e. we shall
consider the norm

� g� Lp
u(R+) :=

� � �

0

�
�g(t)

�
�pu(t) dt

� 1/p

< � .

In the literature, a nonnegative measurable weight functionu de“ned on a bounded inter-
val I is called anAp(C)-Muckenhoupt weight for 1 <p < � if there exists a constantC< �
such that

�
1
|I|

�

I
u(t) dt

��
1
|I|

�

I
u… 1

p…1(t) dt
� p…1

� C, (1)

for every subintervalI � I . Muckenhoupt [20] proved the following result. If 1 <p < � and
u satis“es theAp-condition (1) on the intervalI , with constantC, then there exist constants
q andC1 depending onp andCsuch that 1 <q < p, andu satis“es theAq-condition

�
1
|I|

�

I
u(t) dt

��
1
|I|

�

I
u… 1

q…1(t) dt
� q…1

� C1, (2)

for every subintervalI � I . In other words, Muckenhoupt•s result (see also Coifman and
Fe�erman [3]) for self-improving property states that: ifu � Ap(C) then there exists a con-
stant ε > 0 and a positive constantC1 such thatu � Ap…ε(C1), and then

Ap(C) � Ap…ε(C1). (3)

In [20], Muckenhoupt introduced the characterizations ofAp-class of weights in connec-
tion with the boundedness of the Hardy-Littlewood maximal operator

Mg(x) := sup
y�=x,y� I

1
y …x

� y

x
g(s) ds, (4)

in the spaceLp
u(R+) with a weight u. In particular, Muckenhoupt proved the following

result: If g(x) is nonnegative weight on an intervalI and 1 <p < � , then the inequality

�

R+

	
Mg(x)


 pu(x) dx � K
�

R+

	 ��g(x)
�
�
 pu(x) dx,

holds if and only if the inequality (1) holds, where the constantK independent ofg. An-
other important class of weights, which is related to the Muckenhoupt class, is theGq-
class for 1 <q < � of weights that satisfy the reverse Hölder inequality. This class has
been introduced by Gehring [11, 12] in connection with local integrability properties of
the gradient of quasiconformal mappings. A weightu satis“es theGq-condition (or is said
to belong to the Gehring classGq(K)) if there existsK >1 such that the inequality

�
1
|I|

�

I
uq(x) dx

� 1/q

� K
�

1
|I|

�

I
u(x) dx

�
, for all I � I . (5)
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holds. Gehring result says that if a weight satis“es a reverse Hölder inequality for some
exponent, then it satis“es a reverse Hölder inequality for a slightly larger exponent. In
particular, Gehring proved that there existsε = ε(n,q,K) > 0 such thatu � Lp(I) for p <
q + ε, while for eachp, there exists a new constantKp = Kp(n,q,K,p) such that

1
|I|

�

I
up(x) dx � Kp

�
1
|I|

�

I
u(x) dx

� p

. (6)

In other words, Gehring•s result forself-improving property states that:

u � Gq(K) 	 
 ε > 0 such thatu � Gq+ε(Kp).

The proof of Gehring•s inequality has been obtained using the Calderón-Zygmund De-
composition Theorem and the scale structure ofLp-spaces. In [25], Popoli established the
sharp results for the self-improving and the transition properties of GehringGq and Muck-
enhoupt Ap weights by unifying the corresponding sharp results for weights satisfying a
general reverse Hölder inequality in a general space namedBp

q. We say thatu belongs to
the classBp

q(K) if u satis“es the reverse Hölder inequality

� �

I
up(t) dt

� 1
p

� K
� �

I
uq(t) dt

� 1
q
, K > 0,

for some constantsp > q and for every subintervalI � I . Popoli showed that the optimal
exponents of integrability as well as the best constants in the integral inequalities could be
obtained by means of the function

ω(p,q,x) =
�

x
x …p

� …1
p
�

x
x …q

� 1
q
, (7)

provided the appropriate setting of variables. Actually, by observing that the functionω

is strictly increasing forx in (…� ,0) and strictly decreasing in (0,+� ), we have that the
equation ω(p,q,x) = B, B > 1 admits only one negative solutionν…= ν…(p,q,B) and one
positive solutionν+ = ν+(p,q,B). One way of establishing Gehring•s Lemma involves ex-
ploiting the correspondence between a weighted Muckenhoupt class and a reverse Hölder
class. In fact from (5), we get that

�
1
|I|

�

I
uq… 1

p…1(x)
�

1
u(x)

� …1
p…1

dx
� p…1

� K q(p…1)
�

1
|I|

�

I
u(x) dx

� q(p…1)

. (8)

By takingq = p/(p … 1), we have from (8) that (hereU(I) =
�

I u(t) dt)

�
1

U(I)

�

I
u(x)

�
1

u(x)

�
dx

��
1

U(I)

�

I
u(x)

�
1

u(x)

� …1
p…1

dx
� p…1

� K q(p…1) |I|p

Up(I)

�
U(I)
|I|

� p

= K p, for all I � I ,

which is a weightedAp
u(K p) condition for u…1with respect the weightu andp = q/(q … 1).

This shows that ifu � Gq(K) then u…1� Ap
u(C) with C= K1/p wherep = q/(q … 1). On the
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other hand, in considering mean convergence problems for various series in [21…23], it
was natural to consider the weighted Hardy-Littlewood maximal operator

M g(x) := sup
y�=x,x,y� I

1
� y

x dm(t)

� y

x
g(t) dm(t), (9)

wherem(t) was a suitable measure, and the quotient is to taken as zero if the numerator
and the denominator are both zero or both in“nity. In [20], the author proved that ifm is
a Borel measure on an intervalI , which is 0 on sets consisting of single points, 1 <p < �
and g(x) be a nonnegative weight onI , then M g is bounded onLp

u(R+) if and only if

�
1

m(I)

�

I
u(t) dm(t)

��
1

m(I)

�

I
u… 1

p…1(t) dm(t)
� p…1

� C, (10)

for every subintervalI � I , whereCis a positive constant independent ofg. So, it was natu-
ral to study the structure of the Muckenhoput classAp

λ(C) with a weightλ and the Gehring
Gq

λ with a weight λ. A nonnegative measurable weight functionu de“ned on a bounded
interval I is called anAp

λ(C)-Muckenhoupt weight forp > 1 if there exists a constantC< �
such that

�
1

ϒ(I)

�

I
λ(t)u(t) dt

��
1

ϒ(I)

�

I
λ(t)u… 1

p…1(t) dt
� p…1

� C, (11)

for every subintervalI � I , whereϒ(I) =
�

I λ(t) dt. In [24], Popoli extended the results
established in [15] and proved that the self-improving property holds and gave explicit and
sharp values of exponents. We say that the nonnegative measurable functionu satis“es the
weighted GehringGq

λ-condition if there exists a constantK � 1 such that

�
1

ϒ(I)

�

I
uq(x)λ(x) dx

� 1/q

� K
�

1
ϒ(I)

�

I
λ(x)u(x) dx

�
, (12)

for all I � I , whereϒ(I) =
�

I λ(x) dx. For a given exponentq > 1, we de“ne theGq-norm of
u as

Gq
λ(u) := sup

I� I

��
1

ϒ(I)

�

I
λ(t)u(t) dt

� …1� 1
ϒ(I)

�

I
λ(t)uq(t) dt

� 1
q
� q

q…1

, (13)

where the supremum is taken over all intervalsI � I and represents the best constant
for which the Gq

λ-condition holds true independently on the intervalI � I . In [31, Theo-
rem 4.1], Sbordone proved that if (12) holds andλ(x) dx is a doubling measure, i.e. there
exists a constantd > 0 such thatϒ(2I) � dϒ(I), then there exists ap > q such that

�
1

ϒ(I)

�

I
up(x)λ(x) dx

� 1/p

� K1

�
1

ϒ(I)

�

I
λ(x)u(x) dx

�
. (14)

By the weighted power mean operatorM qg of order q �= 0 and nonnegative weightg de-
“ned on I , we call the operator

M qg :=
�

1
ϒ(I)

�

I
λ(s)gq(s) ds

� 1/q

, for I � I . (15)
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In the present paper, we consider the classUq
p (B) of all nonnegative weightsg satisfying

the reverse Hölder inequality

M qg � BM pg, (16)

where the constantB > 1 is independent ofI andp,q such thatq > p. The smallest constant,
independent of the intervalI and satisfying the inequality (16), is called theUq

p -norm of
the weightg and will be denoted byUq

p (g) and given by

Uq
p (g) := sup

I� I

(M pg)…1
p (M qg)

1
q , for I � I . (17)

We say thatg is aUq
p -weight if its Uq

p -norm is “nite, i.e.

g � Uq
p �	 Uq

p (g) < +� .

When we “x a constantC> 1, the triple of real numbers (p,q,C) de“nes theUq
p class:

g � Uq
p (C) �	 Uq

p (g) � C,

and we will refer toCas theUq
p -constant of the class. It is immediate to observe that the

classesAp
λ andGq

λ are special cases of the classUq
p of weights as follows:

Ap
λ := U1

1
1…p

, and Gq
λ := Uq

1 .

The paper is organized as follows: In Sect.2, we state and prove some basic lemmas con-
cerning the bounds of power mean operatorM pg. In Sect.3, we establish some lower
and upper bounds of the compositions using two special functionsρp and ρq de“ned
later and prove some inclusion properties. For example, we prove that ifg � Uq

p (B) then
M qg � Uη

p (B1) with exact values ofη and B1. In Sect.4, we present some applications of
the main results and prove the self-improving properties of a monotone weights fromUq

p ,
i.e. we will prove that ifg � Uq

p (B) then g � Uη
p (B1) with exact values ofη andB1. For illus-

trations, we will derive the self-improving properties of the Muckenhoupt and Gehring
weights as special cases. The results in this paper improve the results in [24, 31] in the
sense that the results are valid for arbitrary parametersp < q, p.q �= 0 and can be consid-
ered the natural extension of the results in [7].

2 Basic lemmas and some fundamental properties
In this section, we state and prove the basic lemmas that will give some properties of the
power mean operator that will be used to prove the main results later. We will assume that
I is a “xed “nite subset ofR+, and we recall the power mean operatorM pg that we will
consider in this paper is given by

M pg(t) =
�

1
ϒ(t)

� t

0
λ(s)gp(s) ds

� 1/p

, for all t � I , (18)

for any nonnegative weightg : I 
 R+ andp � R\{ 0} andϒ(t) =
� t

0 λ(s) ds. For the sake of
conventions, we assume that 0· � = 0 and 0/0 = 0.
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Lemma 1 Assume that g : I 
 R+ is any nonnegative weight and p � R\{ 0}. Then the
following properties hold:

(1). If g is nonincreasing, then M pg is nonincreasing and M pg(t) � g(t), for all t � I .

(2). If g is nondecreasing, then M pg is nondecreasing and M pg(t) � g(t), for all t � I .

Proof 1). From the de“nition of M pg and the fact thatg is nonincreasing, we get forp = 1

that

M 1g(t) =
�

1
ϒ(t)

� t

0
λ(s)g(s) ds

�
�

�
1

ϒ(t)

� t

0
λ(s)g(t) ds

�
= g(t).

For the general case whenp �= 1, we also have for allt � I that

M pg(t) =
�

1
ϒ(t)

� t

0
λ(s)gp(s) ds

� 1/p

�
�

1
ϒ(t)

� t

0
λ(s)gp(t) ds

� 1/p

= g(t).

From this inequality, we get that

ϒ(t)gp(t) �
� t

0
λ(s)gp(s) ds, for all t � I . (19)

Now, using (19) and the fact thatg is nonincreasing, we obtain that

	
M pg(t)


 �
=

1
p

�
1

ϒ(t)

� t

0
λ(s)gp(s) ds

� (1/p)…1ϒ(t)λ(t)gp(t) …λ(t)
� t

0 λ(s)gp(s) ds
ϒ2(t)

�
1
p
λ(t)

�
1

ϒ(t)

� t

0
λ(s)gp(s) ds

� (1/p)…1� t
0 λ(s)gp(s) ds …

� t
0 λ(s)gp(s) ds

ϒ2(t)
= 0,

that is (M pg(t))� � 0 for all t � I , and thusM pg(t) is nonincreasing.

2). From the de“nition of M pg(t) and the fact thatg(t) is nondecreasing, we have for

p = 1 that

M 1g(t) =
1

ϒ(t)

� t

0
λ(s)g(s) ds �

1
ϒ(t)

� t

0
λ(s)g(t) ds = g(t). (20)

For the general case whenp �= 1, we also have for allt � I that

M pg(t) =
�

1
ϒ(t)

� t

0
λ(s)gp(s) ds

� 1/p

�
�

1
ϒ(t)

� t

0
λ(s)gp(t) ds

� 1/p

= g(t).

From this inequality, we see that

ϒ(t)gp(t) �
� t

0
λ(s)gp(s) ds, for all t � I . (21)
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Then, using inequality (21) and the fact thatg is nondecreasing and proceeding as in the

“rst case, we obtain that

	
M pg(t)


 �

=
1
p

�
1

ϒ(t)

� t

0
λ(s)gp(s) ds

� (1/p)…1ϒ(t)λ(t)gp(t) …λ(t)
� t

0 λ(s)gp(s) ds
ϒ2(t)

�
1
p
λ(t)

�
1

ϒ(t)

� t

0
λ(s)gp(s) ds

� (1/p)…1� t
0 λ(s)gp(s) ds …

� t
0 λ(s)gp(s) ds

ϒ2(t)

= 0,

which implies that (M pg(t))� � 0 for all t � I , and thusM pg(t) is nondecreasing. The proof

is complete. �

As in the proof of Lemma1, we can also prove the following results.

Lemma 2 Assume that g : I 
 R+ is any nonnegative weight and q � R\{ 0}. Then the
following properties hold:

(1). If g is nonincreasing, then M qg is nonincreasing and M qg(t) � g(t), for all t � I .

(2). If g is nondecreasing, then M qg is nondecreasing and M qg(t) � g(t), for all t � I .

To prove the main results in this section, we will use the properties of the function

ρp(η) =
�

1 …
p
η

� 1/p

,

of the variable for η � (…� ,min(0,p)) � (max(0,p),� ). It is clear that the function

ρp(η) is continuous and increases from 1 to +� on (…� ,min(0,p)) and from 0 to 1 on

(max(0,p),� ) and

ρp(η)ρp(p …η) =
�

1 …
p
η

� 1/p�
1 …

p
p …η

� 1/p

=
�

η …p
η

� 1/p�
η

η …p

� 1/p

= 1.

We set

Sp,q(η) =
ρp(η)
ρq(η)

, for η �
	
…� ,min(0,p)



�

	
max(0,q),�



.

The function Sp,q(η) is continuous and increases from 1 to +� on (…� ,min(0,p)) and

decreases from +� to 1 on (max(0,q),� ). Therefore, for anyB > 1, the equation

Sp,q(η) =
(1 …p/η)1/p

(1 …q/η)1/q = B, (22)

has two roots: a positive rootη+ and a negative rootη….
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Theorem 3 Let p < q, p.q �= 0, and g : I 
 R+ be any nonnegative weight. If g � Uq
p (B) for

B > 1,then

ρp
	
η+


�
M qg(t)

M p(M qg)(t)
� ρp

	
η…


, for all t � I , (23)

where η+ and η…are the roots of (22).

Proof From the de“nition of M pg(t), we have that



ϒ(s)M p

qg(s)
� �

=
�
ϒ(s)

�
1

ϒ(s)

� s

0
λ(u)gq(u) du

� p/q� �

= λ(s)
�

1
ϒ(s)

� s

0
λ(u)gq(u) du

� p/q

+ ϒ(s)
��

1
ϒ(s)

� s

0
λ(u)gq(u) du

� p/q� �

. (24)

The second term in (24) is given by

ϒ(s)
��

1
ϒ(s)

� s

0
λ(u)gq(u) du

� p/q� �

=
p
q
ϒ(s)

� � s
0 λ(u)gq(u) du

ϒ(s)

� (p/q)…1� ϒ(s)λ(s)gq(s) …λ(s)
� s

0 λ(u)gq(u) du
ϒ2(s)

�

=
p
q

� � s
0 λ(u)gq(u) du

ϒ(s)

� (p/q)…1

λ(s)gq(s) …
p
q
λ(s)

� � s
0 λ(u)gq(u) du

ϒ(s)

� p/q

. (25)

By combining (25) and (24), we obtain



ϒ(s)M p

qg(s)
� �

=
�

q …p
q

��
1

ϒ(s)

� s

0
λ(u)gq(u) du

� p/q

λ(s)

+
p
q

�
1

ϒ(s)

� s

0
λ(u)gq(u) du

� (p/q)…1

λ(s)gq(s). (26)

Integrating (26) from 0 to t and dividing byϒ(t), we have that

M p
qg(t) =

�
q …p

q

�
1

ϒ(t)

� t

0
λ(s)

�
1

ϒ(s)

� s

0
λ(u)gq(u) du

� p/q

ds

+
p
q

1
ϒ(t)

� t

0

�
1

ϒ(s)

� s

0
λ(u)gq(u) du

� (p/q)…1

λ(s)gq(s) ds. (27)

From the de“nition of M qg, we see that the “rst term in (27) is given by

1
ϒ(t)

� t

0
λ(s)

�
1

ϒ(s)

� s

0
λ(u)gq(u) du

� p/q

ds =


M p(M qg)(t)

� p
. (28)

Now, we have the term

1
ϒ(t)

� t

0

�
1

ϒ(s)

� s

0
λ(u)gq(u) du

� (p/q)…1

λ(s)gq(s) ds.
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By applying reverse Hölder•s inequality forp/q < 1 andp/(p …q), we obtain that

1
ϒ(t)

� t

0

�
1

ϒ(s)

� s

0
λ(u)gq(u) du

� (p/q)…1

λ(s)gq(s) ds

�
�

1
ϒ(t)

� t

0
λ(s)

�
1

ϒ(s)

� s

0
λ(u)gq(u) du

� p/q

ds
� (p…q)/p

×
�

1
ϒ(t)

� t

0
λ(s)gp(s) ds

� q/p

=


M p(M qg)(t)

� p…q

M pg(t)

� q
. (29)

By substituting (29) and (28) into (27), dividing by p[M p(M qg)(t)]p, and then applying

(16), we obtain that

1
p

[M qg(t)]p

[M p(M qg)(t)]p �
�

1
p

…
1
q

�
+

1
q

[M pg(t)]q

[M p(M qg)(t)]q

�
�

1
p

…
1
q

�
+ B…q 1

q
[M qg(t)]q

[M p(M qg)(t)]q . (30)

By setting

η := p
[M p(M qg)(t)]p

[M p(M qg)(t)]p … [M qg(t)]p , (31)

we see that inequality (30) can be written in the form

B…q
�
1 …

[M p(M qg)(t)]p … [M qg(t)]p

[M p(M qg)(t)]p

� q/p

= B…q
�

[M qg(t)]p

[M p(M qg)(t)]p

� q/p

� 1 …
q
p

+
q
p

[M qg(t)]p

[M p(M qg)(t)]p

� 1 …
q
p

�
1 …

[M qg(t)]p

[M p(M qg)(t)]p

�

= 1 …
q
p

�
[M p(M qg)(t)]p … [M qg(t)]p

[M p(M qg)(t)]p

�
. (32)

This inequality can be written now as

�
1 …

p
η

� 1/p

� B
�

1 …
q
η

� 1/q

,

or equivalently

Sp,q(η) =
(1 …p

η
)1/p

(1 …q
η
)1/q � B, for all p < q.
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This means thatη � (…� ,η…] � [η+,+� ). The properties of the weightρp imply that

ρp(η+) � ρp(η) � ρp(η…), and since

ρp(η) =
�

1 …
p
η

� 1/p

=
�

1 …
[M p(M qg)(t)]p … [M qg(t)]p

[M p(M qg)(t)]p

� 1/p

=
�

1 … 1 +
[M qg(t)]p

[M p(M qg)(t)]p

� 1/p

=
[M qg(t)]

M p(M qg)(t)
,

we obtain that

ρp
	
η+


�
[M qg(t)]

M p(M qg)(t)
� ρp

	
η…


, (33)

which is the desired inequality (23). The proof is complete. �

Theorem 4 Let p < q, p.q �= 0, and g : I 
 R+ be any nonnegative weight. If g � Uq
p (B) for

B > 1,then

ρq
	
η+


�
M pg(t)

M q(M pg)(t)
� ρq

	
η…


, for all t � I , (34)

where η+ and η…are the roots of (22).

Proof From the de“nition of M pg(t), we obtain that



ϒ(s)M q

pg(s)
� �

=
�
ϒ(s)

�
1

ϒ(s)

� s

0
λ(u)gp(u) du

� q/p� �

= λ(s)
�

1
ϒ(s)

� s

0
λ(u)gp(u) du

� q/p

+ ϒ(s)
��

1
ϒ(s)

� s

0
λ(u)gp(u) du

� q/p� �

. (35)

Proceeding as in the proof of Theorem3, we get that



M pg(s)

� q
�

�
1 …

q
p

�
1

ϒ(t)

� t

0
λ(s)

�
1

ϒ(s)

� s

0
λ(u)gp(u) du

� q/p

ds

+
q
p

1
ϒ(t)

� t

0

�
1

ϒ(s)

� s

0
λ(u)gp(u) du

� (q/p)…1

λ(s)gp(s) ds. (36)

From the de“nition of M pg, we see that the “rst term in (36) is given by

1
ϒ(t)

� t

0
λ(s)

�
1

ϒ(s)

� s

0
λ(u)gp(u) du

� q/p

ds =


M q(M pg)(t)

� q
. (37)

Now, we simplify the term

1
ϒ(t)

� t

0

�
1

ϒ(s)

� s

0
λ(u)gp(u) du

� (q/p)…1

λ(s)gp(s) ds.
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By applying Hölder•s inequality forq/p > 1 andq/(q …p), we obtain

1
ϒ(t)

� t

0

�
1

ϒ(s)

� s

0
λ(u)gp(u) du

� (q/p)…1

λ(s)gp(s) ds

�
�

1
ϒ(t)

� t

0
λ(s)

�
1

ϒ(s)

� s

0
λ(u)gp(u) du

� q/p

ds
� (q…p)/q� � t

0 λ(s)gq(s) ds
ϒ(t)

� p/q

=


M q(M pg)(t)

� q…p

M qg(t)

� p
. (38)

By substituting (37) and (38) into (36), dividing byq[M q(M pg)(t)]q, and applying (16), we

obtain

[M pg(t)]q

q[M q(M pg)(t)]q �
�

1
q

…
1
p

�
+

1
p

[M pg(t)]p

[M q(M pg)(t)]p

�
�

1
q

…
1
p

�
+

Bp

p
[M pg(t)]p

[M q(M pg)(t)]p . (39)

This inequality now takes the form

�
B

�
1 …

[M q(M pg)(t)]q … [M pg(t)]q

[M q(M pg)(t)]q

� 1/q� p

=
�

B
�

[M pg(t)]q

[M q(M pg)(t)]q

� 1/q� p

= Bp [M pg(t)]p

[M q(M pg)(t)]p

� 1 …
p
q

+
p
q

[M pg(t)]q

[M q(M pg)(t)]q = 1 …
p
q

�
1 …

[M pg(t)]q

[M q(M pg)(t)]q

�

= 1 …
p
q

[M q(M pg)(t)]q … [M pg(t)]q

[M q(M pg)(t)]q . (40)

By setting

η := q
[M q(M pg)(t)]q

[M q(M pg)(t)]q … [M pg(t)]q , (41)

we see that the inequality (40) takes the form

�
1 …

p
η

� 1/p

� B
�

1 …
q
η

� 1/q

,

or equivalently,

Sp,q(η) =
(1 …p

η
)1/p

(1 …q
η
)1/q � B.

This means thatη � (…� ,η…] � [η+,+� ). The properties of the weightρq imply that

ρq(η+) � ρq(η) � ρq(η…), and since

ρq(η) =
�

1 …
q
η

� 1/q

=
�

1 …
[M q(M pg)(t)]q … [M pg(t)]q

[M q(M pg)(t)]q

� 1/q
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=
�

1 … 1 +
[M pg(t)]q

[M q(M pg)(t)]q

� 1/q

=
[M pg(t)]

[M q(M pg)(t)]
,

we obtain that

ρq
	
η+


�
M pg(t)

M q(M pg)(t)
� ρq

	
η…


,

which is the required inequality (34). The proof is complete. �

The assumptions and the conclusions of Theorems3 and 4 will be used in proving the

following theorems.

Theorem 5 Assume that the conditions in Theorems 3 and 4 hold. Then the compositions

	
ϒ(t)


 1/η…
M q(M pg)(t), and

	
ϒ(t)


 1/η…
M p(M qg)(t), (42)

are nonincreasing

	
ϒ(t)


 1/η+
M p(M qg)(t), and

	
ϒ(t)


 1/η+
M q(M pg)(t), (43)

are nondecreasing.

Proof Using the de“nition of M q(M pg)(t), we see that

		
ϒ(t)


 1/η±
M q(M pg)(t)


 �

=
		

ϒ(t)

 1/η± 
 �M q(M pg)(t) +

	
ϒ(t)


 1/η± 	
M q(M pg)(t)


 �

=
1
η±

	
ϒ(t)


 (1/η± )…1
λ(t)M q(M pg)(t) +

	
ϒ(t)


 1/η± 	
M q(M pg)(t)


 �
. (44)

From the de“nition of M q(M pg)(t), we see that

	
M q(M pg)(t)


 �

=
��

1
ϒ(t)

� t

0
λ(s)

�
1

ϒ(s)

� s

0
λ(u)gp(u) du

� q/p

ds
� 1/q� �

=
1
q

�
1

ϒ(t)

� t

0
λ(s)

�
1

ϒ(s)

� s

0
λ(u)gp(u) du

� q/p

ds
� (1/q)…1

×
ϒ(t)λ(t)( 1

ϒ(t)
� t

0 λ(u)gp(u) du)q/p …λ(t)
� t

0 λ(s)( 1
ϒ(s)

� s
0 λ(u)gp(u) du)q/p ds

ϒ2(t)

=
λ(t)

qϒ(t)

	

M q(M pg)(t)

 1…q	

M pg(t)

 q

…M q(M pg)(t)
�
.

This and (44) imply that

		
ϒ(t)


 1/η±
M q(M pg)(t)


 �
=

1
η±

	
ϒ(t)


 (1/η± )…1
λ(t)M q(M pg)(t)
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+
	
ϒ(t)


 (1/η± )…11
q

	
M q(M pg)(t)


 1…q
λ(t)

	
M pg(t)


 q

…
1
q

	
ϒ(t)


 (1/η± )…1
λ(t)M q(M pg)(t)

=
	
ϒ(t)


 (1/η± )…1
λ(t)M q(M pg)(t)

�
1
η±

+
�

M pg(t)
M q(M pg)(t)

� q

…
1
q

�
.

That is

		
ϒ(t)


 1/η±
M q(M pg)(t)


 �
=

	
ϒ(t)


 (1/η± )…1
λ(t)M q(M pg)(t)

×
�

1
η±

+
1
q

�
M pg(t)

M q(M pg)(t)

� q

…
1
q

�
. (45)

We note that the same equality remains valid ifp andq change places, that is

		
ϒ(t)


 1/η±
M p(M qg)(t)


 �
=

	
ϒ(t)


 (1/η± )…1
λ(t)M p(M qg)(t)

×
�

1
η±

+
1
p

�
M qg(t)

M p(M qg)(t)

� p

…
1
p

�
. (46)

It is clear that the signs of the derivatives of the left-hand side of (45) and (46) are deter-

mined by the signs of the terms in the square brackets on the right-hand side. In turn, the

signs of the square brackets are determined by inequalities (23) and (34). For example, the

left-hand side in (23) means that the derivative

		
ϒ(t)


 1/η+
M p(M qg)(t)


 �

�
	
ϒ(t)


 (1/η+)…1
λ(t)M p(M qg)(t) ×

�
1
η+

+
1
p

��
1 …

p
η+

� 1/p� p

…
1
p

�
= 0,

is nonnegative. Hence, the function (ϒ(t))1/η+
M p(M qg)(t) is nondecreasing. Analogously,

we can prove the monotonicity of the remaining functions mentioned in the theorem. This

completes the proof. �

3 Main results
In this section, “rst, we prove that the power mean operatorsM pg andM qg of the weight

g � Uq
p satisfy the the reverse Hölder inequality with some better exponents.

Theorem 6 Let p < q, p.q �= 0, and g be any nonnegative weight, and η+ and η…are the
roots of equation (22).

(i). If g � Uq
p (B) for B > 1 and η < η+ and η �= 0, then

M pg � Uη
q

�
ρq(η…)
ρη(η+)

�
, and M qg � Uη

p

�
ρp(η…)
ρη(η+)

�
. (47)

(ii). If g � Uq
p (B) for B > 1 and η > η…, and η �= 0, then

M pg � Uq
η

�
ρη(η…)
ρq(η+)

�
, and M qg � Up

η

�
ρη(η…)
ρp(η+)

�
. (48)
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Proof (i). Sinceη is either positive or negative, we will discuss the two cases:

1). Assume thatη > 0. By raising (34) to the powerη, we obtain fors < t that

	
ϒ(s)


 …η/η…
λ(s)ρη

q
	
η+

	

ϒ(s)

 1/η…

M q(M pg)(s)
� η

� λ(s)
	
M pg(s)


 η

� λ(s)
	
ϒ(s)


 …η/η+
ρη

q
	
η…

	

ϒ(s)

 1/η+

M q(M pg)(s)
� η

. (49)

Using the monotonicity of

	
ϒ(t)


 1/η…
M q(M pg)(t), and

	
ϒ(t)


 1/η+
M q(M pg)(t),

we have that

	
ϒ(s)


 …η/η…
λ(s)ρη

q
	
η+

	

ϒ(t)

 1/η…

M q(M pg)(t)
� η

�
	
M pg(s)


 η
λ(s)

� λ(s)
	
ϒ(s)


 …η/η+
ρη

q
	
η…

	

ϒ(t)

 1/η+

M q(M pg)(t)
� η

. (50)

Let η < η+. By integrating from 0 tot and dividing byϒ(t), and raising it to the power

1/η > 0, we get that

�
ρ

η
q (η+)[(ϒ(t))1/η…

M q(M pg)(t)]η

ϒ(t)

� t

0
λ(s)

	
ϒ(s)


 …η/η…
ds

� 1/η

�
�

1
ϒ(t)

� t

0
λ(s)

	
M pg(s)


 η ds
� 1/η

�
�

ρ
η
q (η…)[(ϒ(t))1/η+

M q(M pg)(t)]η

ϒ(t)

� t

0
λ(s)

	
ϒ(s)


 …η/η+
ds

� 1/η

. (51)

Since

� t

0

	
ϒ(s)


 …η/η+
λ(s) ds =

(ϒ(t))…η/η++1

(…η/η+) + 1
,

we have

�
ρ

η
q (η…)[(ϒ(t))1/η+

M q(M pg)(t)]η

ϒ(t)

� t

0
λ(s)

	
ϒ(s)


 …η/η+
ds

� 1/η

=
�

ρ
η
q (η…)[(ϒ(t))1/η+

M q(M pg)(t)]η

ϒ(t)
(ϒ(t))…η/η++1

(…η/η+) + 1

� 1/η

=
�

ρη
q
	
η…



M q(M pg)(t)
� η 1

(1 …η

η+ )

� 1/η

=
ρq(η…)
ρη(η+)

M q(M pg)(t). (52)
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Similarly, sinceη…< 0, then …η/η…> 0 and hence …η/η…+ 1 > 1, we have that

� t

0

	
ϒ(s)


 …η/η…
λ(s) ds =

1
…η/η…+ 1

� t

0
	

	
ϒ(s)


 …η/η…+1
=

(ϒ(t))…η/η…+1

…η/η…+ 1
.

In this case, we have

�
ρ

η
q (η+)[(ϒ(t))1/η…

M q(M pg)(t)]η

ϒ(t)

� t

0
λ(s)

	
ϒ(s)


 …η/η…
� 1/η

�
�

ρ
η
q (η+)[(ϒ(t))1/η…

M q(M pg)(t)]η

ϒ(t)
(ϒ(t))…η/η…+1

…η/η…+ 1

� 1/η

=
ρq(η+)
ρη(η…)

M q(M pg)(t). (53)

By substituting (52) and (53) into (51), we obtain

ρq(η+)
ρη(η…)

M q(M pg)(t) � M η(M pg)(t) �
ρq(η…)
ρη(η+)

M q(M pg)(t),

which implies that

M pg � Uη
q

�
ρq(η…)
ρη(η+)

�
,

that is the second relation in (47) in the caseη > 0.
2). Assume thatη < 0. By raising (34) to the powerη, we obtain fors < t that

λ(s)
	
ϒ(s)


 …η/η…
ρη

q
	
η+

	

ϒ(s)

 1/η…

M q(M pg)(s)
� η

� λ(s)
	
M pg(s)


 η

� λ(s)
	
ϒ(s)


 …η/η+
ρη

q
	
η…

	

ϒ(s)

 1/η+

M q(M pg)(s)
� η

. (54)

Using the monotonicity of

	
ϒ(t)


 1/η…
M q(M pg)(t), and

	
ϒ(t)


 1/η+
M q(M pg)(t),

we have that

λ(s)
	
ϒ(s)


 …η/η…
ρη

q
	
η+

	

ϒ(t)

 1/η…

M q(M pg)(t)
� η

� λ(s)
	
M pg(s)


 η

� λ(s)
	
ϒ(s)


 …η/η+
ρη

q
	
η…

	

ϒ(t)

 1/η+

M q(M pg)(t)
� η

. (55)

By integrating from 0 tot and dividing byϒ(t), and raising it to the power 1/η < 0, we get
that

[(ϒ(t))1/η…
M q(M pg)(t)]η

ϒ(t)
ρη

q
	
η+
 � t

0
λ(s)

	
ϒ(s)


 …η/η…
ds

�
�

1
ϒ(t)

� t

0
λ(s)

	
M pg(s)


 η ds
� 1/η
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�
[(ϒ(t))1/η+

M q(M pg)(t)]η

ϒ(t)
ρη

q
	
η…
 � t

0
λ(s)

	
ϒ(s)


 …η/η+
ds. (56)

Proceeding as in the proof of the “rst case, we then obtain that

ρq(η+)
ρη(η…)

M q(M pg)(t) � M η(M pg)(t) �
ρq(η…)
ρη(η+)

M q(M pg)(t).

This gives us gain that

M pg � Uη
q

�
ρq(η…)
ρη(η+)

�
,

which is the “rst relation in (47) in the caseη < 0. Similarly, we can prove the “rst relation

in (47) using the relation (23). Analogously, we prove the two relations in (48) using the

same technique and inequalities (23) and (34). The proof is complete. �

In Theorem 6, we proved that the power mean operatorsM pg and M qg of the weight

g � Uq
p satisfy the reverse Hölder inequality with some better exponents. However, the

fact that the meanM pg or M qg belongs to some classUq
p does not imply that the weight

g itself belongs toUq
p . Thus, Theorem6 does not guarantee the self-improvement of the

summability exponents of the weightg � Uq
p . But, if we additionally assume the condition

of the monotonicity of the weight g, then we can obtain the following results for self-

improving of exponents.

Theorem 7 Let p < q, p.q �= 0, and g be any nonnegative weight belongs to Uq
p (B) for B > 1,

and η+ and η…are the roots of the equation (22).

(1). If g is nonincreasing, and η < η+, then

g � Uη
q

�
ρp(η…)

ρη(η+)ρp(η+)

�
, g � Uη

p

�
ρq(η…)

ρq(η+)ρη(η+)

�
. (57)

(2). If g is nondecreasing, and η > η…, then

g � Uq
η

�
ρp(η…)ρη(η…)

ρp(η+)

�
, g � Up

η

�
ρq(η…)ρη(η…)

ρq(η+)

�
. (58)

Proof (1). Sinceg is nonincreasing, and since

M pg(t) =
�

1
ϒ(t)

� t

0
λ(s)gp(s) ds

� 1/p

, for all t � I ,

we have thatM qg(t) � g(t), and so

M η(M qg)(t) � M ηg(t). (59)

By applying the second relation in (47), we obtain that

M η(M qg)(t) �
ρp(η…)
ρη(η+)

M p(M qg)(t). (60)
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By applying the left-hand side of the inequality (23), and sinceM qg(t) is nonincreasing
(see Lemma1), we from have (59) and (60) that

M ηg(t) � M η(M qg)(t) �
ρp(η…)
ρη(η+)

M p(M qg)(t)

�
ρp(η…)

ρη(η+)ρp(η+)
M qg(t).

That is

g � Uη
q

�
ρp(η…)

ρη(η+)ρp(η+)

�
,

which is the “rst relation in (57). Similarly, sinceg is nonincreasing, we haveM pg(t) � g(t),
and so

M η(M pg)(t) � M ηg(t). (61)

By applying the “rst relation in (47), we obtain that

M ηg(t) � M η

	
M pg(t)



�

ρq(η…)
ρη(η+)

M q
	
M pg(t)



. (62)

By applying the left hand side of the inequality (34), and using (61), (62) and the fact that
M pg(t) is nonincreasing (see Lemma1), we have that

M η

	
g(t)



� M η

	
M pg(t)



�

ρq(η…)
ρη(η+)

M q
	
M pg(t)




�
ρq(η…)

ρη(η+)ρq(η+)
M pg(t).

That is

g � Uη
p

�
ρq(η…)

ρη(η+)ρq(η+)

�
,

which is the second relation in (57).
(2). Sinceg is nondecreasing, then by Lemma1, the fact thatM pg(t) is nondecreasing

andM pg(t) � g(t), we have that

M η(M pg)(t) � M ηg(t). (63)

By applying the “rst relation in (48), we obtain that

M η(M pg)(t) �
ρq(η+)
ρη(η…)

M q(M pg)(t). (64)

By applying the right-hand side of the inequality (34), we have that

M η(M pg)(t) �
ρq(η+)
ρη(η…)

M q(M pg)(t) �
ρq(η+)M pg(t)
ρq(η…)ρη(η…)

. (65)
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By combining (63) and (65), we have that

M pg(t) �
ρq(η…)ρη(η…)

ρq(η+)
M ηg(t),

that is

g � Up
η

�
ρq(η…)ρη(η…)

ρq(η+)

�
,

which is the second relation in (58). Again, sinceg is nondecreasing, Lemma2 implies that

M qg(t) is nondecreasing andM qg(t) � g(t), and so

M η(M qg)(t) � M ηg(t). (66)

By applying the second relation in (48), we obtain that

M η(M qg)(t) �
ρp(η+)
ρη(η…)

M p(M qg)(t).

By applying the right-inequality in (23), we have that

M η(g)(t) � M η(M qg)(t) �
ρp(η+)
ρη(η…)

M p(M qg)(t)

�
ρp(η+)

ρp(η…)ρη(η…)
M qg(t). (67)

By combining (66) and (67), we have that

M qg(t) �
ρp(η…)ρη(η…)

ρp(η+)
M ηg(t).

That is

g � Uq
η

�
ρp(η…)ρη(η…)

ρp(η+)

�
,

which is the “rst relation in (58). The proof is complete. �

In the following, we will apply the above results in deriving the self-improving properties

of the two Muckenhoupt and Gehring classes

Ap
λ := U1

1
1…p

, and Gq
λ := Uq

1 .

Theorem 8 Let p > 1 and g be any nonnegative and nondecreasing weight belonging to
Ap

λ(B) for B > 1.Then g � Aη

λ(B��
2) for η � (η…,p] where η…is the root of the equation

p …η

p … 1
(Bη)

1
p…1 = 1, (68)
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and

B��
2 =

ρ1(η…)ρη(η…)
ρ1(η+)

.

Proof SinceAp
λ := U1

1
1…p

, then equation (22) becomesCp,q(η) = B, which is written by

�
x

x … 1

��
(p … 1)x

(p … 1)x + 1

� p…1

= B.

By applying the transformη 
 1/(1 …x), we see thatη…is determined from the equation

p …η

p … 1
(Bη)

1
p…1 = 1, (69)

which is the desired equation (68) and the constantB��
2 is obtained from (58) and given by

B��
2 =

ρ1(η…)ρη(η…)
ρ1(η+)

.

The proof is complete. �

Theorem 9 Let q > 1 and g be any nonnegative and nondecreasing weight belonging to
Gq

λ(B) for B > 1.Then g � Gη

λ(B��
1) for η � [q,η+) where η+ is the root of the equation

�
x … 1

x

��
x

x …q

� 1
q

= B, (70)

and

B��
1 =

ρ1(η…)ρη(η…)
ρ1(η+)

.

Proof SinceGq
λ := Uq

1 , then equation (22) becomesCp,q(η) = B, which is written by

�
x

x … 1

� …1� x
x …q

� 1
q

= B,

which is the desired equation (70), and the constantB��
1 is obtained from (57) and given by

B��
1 =

ρ1(η…)ρη(η…)
ρ1(η+)

.

The proof is complete. �

4 Conclusion
In this paper, we have considered a class of generalized Hölder inequalities and proved the

self-improving properties of the weights in this class. The main results are proved by em-

ploying some properties of a mean operator and additional properties of the composition

of di�erent operators with di�erent powers. By employing the self-improving properties
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of the general class, we have derived the self-improving properties of the Muckenhoupt

weights and the Gehring weights, which are compatible with the results obtained by some

authors in the literature.
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