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In this paper, we will prove some fundamental properties of the power mean operator
, fort 1 R,

of order p and establish some lower and upper bounds of the compositions of
operators of di erent powers, where g, A are a nonnegative real valued functions
defined on | and Y'(t) = OI)L(s) ds. Next, we will study the structure of the generalized
class U (B) of weights that satisfy the reverse Holder inequality

Mgu  BM pu,

for some p < g, p.g =0,and B> 1 is a constant. For applications, we will prove some
self-improving properties of weights in the class UE(B) and derive the self improving
properties of the weighted Muckenhoupt and Gehring classes.
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1 Introduction

In [20], Muckenhoupt introduced a full characterization of MuckenhouptA?-class of
weights in connection with the boundedness of the Hardy-Littlewood maximal opera-
tor in the spacelL’(R.) with a weightz. Another important class of weights, the Gehring
classG?, for 1 <g < , was introduced by Gehring 11, 12] in connection with local
integrability properties of the gradient of quasiconformal mappings. Due to the impor-
tance of these two classes in mathematical and harmonic analysis, their structure has

been studied by several authors, and various results regarding the relationship between

them and their applications have been established. We refer the reader to the papers
[1,2,4..10,13,14,16..19, 26..30, 32] and the references cited therein.

In the following, for the sake of completeness, we present the background and the basic
de“nitions that will be used in this paper. We “x an intervall R. =[0, ) and consider
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subintervals/ of | of the form [0,¢], for0<z< and denote byj!| the Lebesgue measure
of I. Throughout the paper, we assume that 1x< . A weightu is a nonnegative locally
integrable function de“ned onR.. Most often , which is a positive function of real num-
bers de“ned onR., will appear in the role of the weight inZ%(R.)-estimates, i.e. we shall
consider the norm

1/p
S ACRES g0)uydr <

In the literature, a nonnegative measurable weight functiande“ned on a bounded inter-
vall is called an4?(C)-Muckenhoupt weightfor 1 <p < if there exists a constan€<
such that

p...1

1 1 L
0 Iu(t)dt i IM PY¢t) dt C Q)

forevery subinterval 1. Muckenhoupt [20] proved the following result. If1<p < and
u satis“es theA?-condition (1) on the intervall,, with constantC, then there exist constants
q and G, depending onp and Csuch that 1 <g <p, andu satis“es theAZ-condition

q...1

1 1 1
= u®)dt =  wTNt)dt G, (2)
V(i 1l

for every subintervall 1. In other words, Muckenhouptes result (see also Coifman and

Fe erman [3]) for self-improving property states that: itz  A?(C) then there exists a con-
stante >0 and a positive constan€; such thatu  A?-<(C), and then

AP(Q) AP(QY). ®)

In [20], Muckenhoupt introduced the characterizations ofi”-class of weights in connec-
tion with the boundedness of the Hardy-Littlewood maximal operator

1
Mg(x) == sup P g(s)ds, 4)

y=xy 1) -

in the spaceL’(R.) with a weight «. In particular, Muckenhoupt proved the following
result: If g(x) is nonnegative weight on an intervdland 1 <p < , then the inequality

Mg(x) u(x)dx K g) Pulx)dx,
R+ R+

holds if and only if the inequality () holds, where the constanK independent ofg. An-
other important class of weights, which is related to the Muckenhoupt class, is tt8-
class for 1 <g<  of weights that satisfy the reverse Hoélder inequality. This class has
been introduced by Gehring 11, 12] in connection with local integrability properties of
the gradient of quasiconformal mappings. A weight satis“es theG?-condition (or is said

to belong to the Gehring clas&7(K)) if there existsK >1 such that the inequality

1/q

1 1
m Iu”(x)dx K m Iu(x)dx , foralll 1. (5)
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holds. Gehring result says that if a weight satis“es a reverse Hdolder inequality for some
exponent, then it satis“es a reverse Holder inequality for a slightly larger exponent. In
particular, Gehring proved that there existg = €(n,q,K) > 0 such thaty  L?(I) for p <

g + €, while for eachp, there exists a new constar, = K ,(1,4,K, p) such that

p

1 1
N -
i, u’(x)dx K, i, u(x)dx . (6)

In other words, Gehringes result foself-improving property states that:
u GIK) €e>0 suchthatu G7(K,).

The proof of Gehringes inequality has been obtained using the Calderén-Zygmund De-
composition Theorem and the scale structure df’-spaces. In25], Popoli established the
sharp results for the self-improving and the transition properties of Gehring? and Muck-
enhoupt A? weights by unifying the corresponding sharp results for weights satisfying a
general reverse Hélder inequality in a general space nan®d We say thatu belongs to
the classB(K) if u satis“es the reverse Holder inequality

1 1
p q
u? () dt K ui(t)dt , K>0,
1 1
for some constantgp > ¢ and for every subinterval 1. Popoli showed that the optimal
exponents of integrability as well as the best constants in the integral inequalities could be
obtained by means of the function

op.gx)= —— 7)
X.p .

provided the appropriate setting of variables. Actually, by observing that the functian

is strictly increasing forx in (... ,0) and strictly decreasing in (0, + ), we have that the
equation w(p,q,x) = B, B> 1 admits only one negative solution_ = v _(p,q,B) and one
positive solutionv, = v.(p,q,B). One way of establishing Gehringes Lemma involves ex-
ploiting the correspondence between a weighted Muckenhoupt class and a reverse Holder
class. In fact from §), we get that

.1
1 1 1 71 p..1 1 qp...1)
i qu"P---l(x) o) dx K@) 0 Iu(x)dx ) (8)

By takingg = p/(p ... 1), we have fron8] that (here Li(I) = , u(t) dt)

1

1 1 1 7o p...1
Kq(p---l)Lllilz) % "okr, forallr 1,

which is a weightedA% (K?) condition for ulwith respect the weightz andp =¢/(q ... 1).
This shows that ifu ~ GI(K) then u1  A%(C) with C= KY? wherep = 4/(g ... 1). On the
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other hand, in considering mean convergence problems for various seriesam.[23], it
was natural to consider the weighted Hardy-Littlewood maximal operator

y
M g(x) ;= sup (@) dm(2), ©)

y=xxy I ;dﬂ’l(t) x

where m(f) was a suitable measure, and the quotient is to taken as zero if the numerator
and the denominator are both zero or both in“nity. In RQ], the author proved that ifm is

a Borel measure on an intervdl, which is 0 on sets consisting of single points, 1p<
andg(x) be a nonnegative weight oh, then M g is bounded onZf(R.) if and only if

1 1 1 p...1

D) u(t) dm(t) D u ' 7-Yt) dm(t) C (10)
for every subinterval |, whereCis a positive constantindependent gf. So, it was natu-
ral to study the structure of the Muckenhoput clasa’ (C) with a weight and the Gehring
G! with a weight ». A nonnegative measurable weight function de“ned on a bounded
interval | is called anA? (C)-Muckenhoupt weight for p > 1 if there exists a constan€ <

such that
1 1 1 p...1

for every subintervall |, whereY (/) = ,A(t)dt. In [24], Popoli extended the results
established in 5] and proved that the self-improving property holds and gave explicitand
sharp values of exponents. We say that the nonnegative measurable funatisatis“es the
weighted GehringG?-condition if there exists a constanK 1 such that

1 1lq 1
—  ul(x)A(x)dx K — Awux)dx , (12)

() ()
foralll 1, whereY(I)= ,A(x)dx. Foragiven exponeng > 1, we de“ne theG?-norm of
uas

. 1 " 1 y
HO) = T MOuOd L MW , (13)

where the supremum is taken over all intervals | and represents the best constant
for which the GZ-condition holds true independently on the interval 1. In [31, Theo-

rem 4.1], Sbordone proved that if{2) holds andi(x) dx is a doubling measure, i.e. there
exists a constantl > 0 such thatY (2I) dY(I), then there exists & > g4 such that

1 1/p 1
—— W x)A(x)dx Ki —= Ax)ux)dx . (14)

() 4 () 4
By the weighted power mean operatdvl ,¢ of order g = 0 and nonnegative weighg de-
“ned on |, we call the operator

1q

1
M g := G Ix(s)gq(s)ds , forl 1. (15)



Saker et alJournal of Inequalities and Applications  (2023) 2023:76 Page 5 of 21

In the present paper, we consider the clas$!(B) of all nonnegative weightg satisfying
the reverse Hoélder inequality

Mg BM g, (16)

where the constanB > 1 isindependent of andp, g such thatg > p. The smallest constant,
independent of the intervall and satisfying the inequality 16), is called theU,/-norm of
the weightg and will be denoted byJ;/(¢) and given by

Ui(g) =sup(M @) *(M ,0)7, forl 1. 17)
I 1

We say thatg is aU;-weight if its Uf-norm is “nite, i.e.

g Ul Ul(g) <+

When we “x a constantC> 1, the triple of real numbersg,q,C) de“nes theU/ class:
g UlQ Ulg) C

and we will refer toC as theU/-constant of the class. It is immediate to observe that the
classest? and G7 are special cases of the clasl of weights as follows:

AP ::U%, and G :=U7.

The paper is organized as follows: In Se&, we state and prove some basic lemmas con-
cerning the bounds of power mean operatd ,g. In Sect.3, we establish some lower
and upper bounds of the compositions using two special functions and p, de“ned
later and prove some inclusion properties. For example, we prove thag if U/(B) then
M ,¢ U, (By) with exact values ofy and B;. In Sect.4, we present some applications of
the main results and prove the self-improving properties of a monotone weights frdu,
i.e. we will prove thatifg  UJ(B) theng U, (B1) with exact values of) and B,. For illus-
trations, we will derive the self-improving properties of the Muckenhoupt and Gehring
weights as special cases. The results in this paper improve the result2i 81] in the
sense that the results are valid for arbitrary parameteps< ¢, p.g = 0 and can be consid-
ered the natural extension of the results in].

2 Basic lemmas and some fundamental properties

In this section, we state and prove the basic lemmas that will give some properties of the
power mean operator that will be used to prove the main results later. We will assume that
| is a “xed “nite subset of R+, and we recall the power mean operatdvl ,g that we will
consider in this paper is given by

t Up

M ,g() = MO ds, foralle 1, (18)

1
T(2)
for any nonnegative weighg :1  R*andp R\ 0}andY(¢)= OtA(S) ds. For the sake of
conventions, we assume thatO0 =0 and 0/0=0.
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Lemma 1 Assume that g | R* is any nonnegative weight and p R\{ 0}. Then the
following properties hold.:
(1).If g is nonincreasing, then M ,g is nonincreasing and M ,g(t) g(t),forallt |.
(2).1If g is nondecreasing, then M g is nondecreasing and M ,g(t) g(t),forallt 1.

Proof 1). From the de“nition of M ,g and the fact thatg is nonincreasing, we getfop =1
that

t t

M 1g() = % RICECLE % Me0ds =g

For the general case whep= 1, we also have for af | that

t 1/p t 1/p

M= T MOEOd pe MOPOd =g,

From this inequality, we get that

t

YOO g )ds foralle 1. (19)

Now, using (L9) and the fact thatg is nonincreasing, we obtain that

Mg(t) == —= A (s)ds

1 . WP ().(0)g? () .. A (E) ()tk(s)gp(s)ds
T@ o 0

Wp)-L Ly (s)gP(s)ds .. ¢ M(s)gP(s)ds

M) oo ) ds i

T() o

ORIk NIk

thatis (M ,g(¢)) Oforallz I, andthusM ,g(f) is nonincreasing.
2). From the de“nition of M ,g(¢) and the fact thatg(z) is nondecreasing, we have for
p=1that

t

R I LI CEOE ) (20

For the general case whep= 1, we also have for af | that

t 1/p t 1/p

M= T MOEOd po MOPOd =e,

From this inequality, we see that

t

TP MIE)ds, foralle 1. 1)
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Then, using inequality 1) and the fact thatg is nondecreasing and proceeding as in the
“rst case, we obtain that

M pg(2)
R WP (DA (P (D) .. M) ¢ Ms)g? (s) ds
“p T o O 0
. . WP L3(s)gP(s)dis ... g M(s)g?(s)dls
Zx(t) D o Ms)g”(s)ds Y2(z)

:0’

whichimpliesthat (M ,g(¢)) Oforallz |, andthusM ,g(t) is nondecreasing. The proof
is complete. O

As in the proof of Lemmal, we can also prove the following results.

Lemma 2 Assume that g : | R* is any nonnegative weight and q R\{ O}. Then the
following properties hold:
(1).If g is nonincreasing, then M ,g is nonincreasing and M ,g(t)  g(t). forallt 1.
(2).If g is nondecreasing, then M g is nondecreasing and M ,g(t)  g(t), forallt 1.

To prove the main results in this section, we will use the properties of the function

1/p

of the variable forn (... ,min(0,p)) (max(0,p), ). It is clear that the function
pp(n) is continuous and increases from 1 to + on (... ,min(0,p)) and from 0 to 1 on
(max(0,p), )and

1/p 1p

pp(Mpp(p .. 1) = 1.2 1.2

n p--n

1/p 1/p
_ nep U _1

n n..p
We set
Sa="" " tory . min@©p)  max(0a),
0q(n)

The function S, ,(n) is continuous and increases from 1 to + on (... ,min(0,p)) and
decreases from + to 1 on (max(0,q), ). Therefore, for anyB > 1, the equation

(1..pIn)tr _

Sp,q(’?) = W =D,

(22)

has two roots: a positive roof;* and a negative roof-
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Theorem 3 Let p<q,p.q=0,andg:|l  R" be any nonnegative weight. If g
B>1,then
" M 4g(9)
Pp N

—=— p, ", forallt |,
M,M @@
where n* and n-are the roots of (22).

Proof From the de“nition of M ,g(t), we have that

1 s plq
Y(IM Zg(s) = Y(s) Y6 o Mee)g (u) du
1 s plq
= A(s) 6 o Mu)g?(u) du
s plq
+1(s) % Mg d

The second term in @4) is given by

1 s plq

T(s) 6 o Mu)g (u) du

Py o Mgl () du YD1 Y (s)A(s)g?(s) .. A(s) o M(u)g () du
q T(s) T2(s)
p
q

o Mu)g?(u) du (p/q)mlk(s)g"(s) a o Mu)g () du P
q

Y(s) Y(s)

By combining @5) and (24), we obtain

TeMZgs) = L? L el du M}\(s)
“© TE o %
7 TO o (u)g?(u) du (5)g%(s)-

Integrating (26) from O to ¢ and dividing by Y (¢), we have that

B t 1 s plq
— As) — Mu)gi(u)du ds
g T@ 0" X o K
p 1 t 1 s Wlq)...1
+-— ——  Mu)g¥(u)du A(s)g?(s) ds.
JT@ o T o M@ (5)2(5)
From the de*nition of M ,g, we see that the “rst term in @7) is given by

t plq

1 1 §

— M) =—  Awgiw)d ds= M ,(M ?

T o M) T MW d ds= MM )0
Now, we have the term

1 s)L ) d (p/q)---l)L p
m o m o (u)g"(u) du (s)g%(s) ds.

U{(B) for

(23)

(24)

(25)

(26)

(27)

(28)

Page 8 of 21
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By applying reverse Hoélderes inequality fgi'g < 1 andp/(p .. g), we obtain that

wlg)..1

% Ot % Osk(u)gq(u)du A(s)g?(s) ds
1 ! 1 $ B rlq ()%
T O T MW ds
alp

1 t
m . A(s)g? (s)ds

= MM )®) " M ) . (29)

By substituting 29) and (28) into (27), dividing by p[M ,(M ,g)(1)]?, and then applying
(16), we obtain that

1 Mgg@F 11,1 Mg
pIM,M®F p g qIM,M @)
11 gal M@ 20
r 4 q[M ,(M Q@] (30)
By setting
M ,(M 40)®)) 31)

TEPIM M ) OF .. M g@F

we see that inequality30) can be written in the form

M (M @@ ... M g 77
M ,(M )]
M@ 7 g, q [Mg@F
M p(M qg)(t)]P P p[M p(M qg)(t)]P
M (@)l
“IM LM 01
M ,(M @OF ... M @)
M,M0F (32)

B11..

—n.q

SR SR

This inequality can be written now as

1/p 1/q

or equivalently

JAYY)
(1..2)w

Sp,q(n) = m B, for allp <q.
n
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This means thaty (... ,n*] [n*,+ ). The properties of the weighto, imply that
pp(77+) pp(n) pp(ﬂ"), and since

1p 1/p
Cp Y MM 0P M g0
o= Loy LT, M 00
- 1. 1+ [M 4g(0))” Up _ [M 4g()]
M,MQOF MM 20

we obtain that

+ M 4¢(9)]
Pp N T s P T (33)
v MM a)(e) ™
which is the desired inequality23). The proof is complete. O
Theorem 4 Let p<q,p.q=0,andg:|  R" be any nonnegative weight. Ifg U} (B) for
B>1,then
, M pg(2)
Oq 1 — =" o, ", forallt |, (34)
A VN T L
where n* and n-are the roots of (22).
Proof From the de“nition of M ,g(t), we obtain that
T(s)M Jg(s)
1 s alp
= T(6) — Mu)d?(u)du
O 35 , 0w
1 5 alp 1 s alp
=Ms) —  Aw)g (u)du +Y(6) —  Mu)d(u)du . (35)
TG o 8 TG o %
Proceeding as in the proof of Theorer3, we get that
q 1 t 1 s qlp
M ,g(s) ? 1. — M) =— rw)d(w)du ds
- p Y@ 0" XE) o K
q 1 t 1 s (alp)...1
+-— ——  AMu)g’(u)du A(s)g? (s) ds. 36
STD . T o MWW ()¢ () (36)
From the de“nition of M ,g, we see that the “rst term in 386) is given by
1t 1 av .
—— A — AMw)g’(u)du ds= M ,(M ) . 37
0 O 1, Hwe® oM ,2)(0) (37)
Now, we simplify the term
1 t 1 s (q/P)---l
— ——  Mw)d (u)du A(s)g? (s) ds.
O . Y, e () ()
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By applying Holderes inequality fog/p > 1 andg/(q .. p), we obtain

(gp)...1

1 ¢ 1 s
YO o Y6 o A(u)g” (u) du A(s)g?(s) ds
] N dr @l Ot)»(s)gq(s) ds Pl
() o As) O o Au)g’(u)du  ds A
= MM ,2® " M @) " )

By substituting 37) and @38) into (36), dividing byg[M ,(M ,g)(t)]?, and applying (6), we

obtain
[M ,g(®)) 11 1 [Mue@P
gqM M )17 g p  pIM (M Q@)
11 B [Mug@)F
a7 P MM QOF (39)
This inequality now takes the form
51 MM ,Q@1 ... Mg M7
[M (M ,9)®)]*
_ L) N | Y-()
[M (M ,9)(®)] M (M )
p.p_Mpe@l” _. »p [M ,g(2)]
g qIM M )07 T g T TTIM (M g)(0)]e
_, PIM M Q)@ ... M pg(0)]
Yy MM (40)
By setting
— M (M ,g)(®)]” (a1)

n.= )
™M, MO W g0
we see that the inequality40) takes the form

1/p 1/q
B 1..

IS
37

or equivalently,

ry\1/
(1.2

Sp,q(n) = m

This means thaty (... ,n°] [n*,+ ). The properties of the weightp, imply that
pq(n+) pq(n) pq(n”), and since

lq 1/q
_a M MM L0 . M e
peln)= 1. LML, M )0

=
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M ,g@®1? Y1 M ,g(t)]

= -+

UMM @1 MM @]
we obtain that
oy 1 M pg(t) Pe 1,
M (M ,8)()
which is the required inequality 84). The proof is complete. 0

The assumptions and the conclusions of Theoren3sand 4 will be used in proving the
following theorems.

Theorem 5 Assume that the conditions in Theorems 3 and 4 hold. Then the compositions
) "M M @), and (@) "M ,M 0)), (42)
are nonincreasing
TO MM O, and 1O VM (M 00, (43)
are nondecreasing.

Proof Using the de“nition of M ,(M ,g)(¢), we see that

T M M ,e)()

= 1" MM O+ TO T M M g0
=ni* 1@ Y ROM M D@+ TO YT M ML) (44)
From the de“nition of M ,(M ,g)(¢), we see that
M ,(M ,¢)(®)
1 t 1 s qlp 1q
= m . A(s) m . AMu)g? (u) du ds
1 1 t 1 qlp (/g)...1

7 YO o A m . Mu)g? (u) du ds

 TOMO(g o Mg W™ .20) M)y o Mg () du) ds
T2(0)

_ M)

= 0 M (M @) “ M ,g(®) ©..M ,(M ,g)(®) .

This and @4) imply that

T "M (M L0 = ni () YR OM (M ,0)(0)
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) @m*)..al

+Y( 2 MM 00 “0E) M ()

g 1) Y WOM M o))

_ ). 1 Mpg(t) 7 1
= Y() ]}\(t)M «(M ,2)(t) ﬂ_i+ m g
That is
O "M M 0® = TE Y ROM (M 00
1,1 My 71
F g M,M0 7 (43)

We note that the same equality remains valid if and g change places, that is

O "M ,M @O = TE P ROM LM ) 0)

M 4g() P

1 1
» M,M0® v (48)

1

ni
It is clear that the signs of the derivatives of the left-hand side ¢f5) and (46) are deter-
mined by the signs of the terms in the square brackets on the right-hand side. In turn, the
signs of the square brackets are determined by inequalitie8)and (34). For example, the
left-hand side in 3) means that the derivative

() M M L0)(0)

1p p

T Y7 UM LM 4o)(0) x % +§ 1.~ =0,

1
N P
is nonnegative. Hence, the functiorﬁ((t))”’7+ M ,(M 42)(¢) isnondecreasing. Analogously,
we can prove the monotonicity of the remaining functions mentioned in the theorem. This
completes the proof. O

3 Mainresults
In this section, “rst, we prove that the power mean operatodl ,g andM ,g of the weight
g U/ satisfy the the reverse Holder inequality with some better exponents.

Theorem 6 Let p <gq, p.q =0, and g be any nonnegative weight, and n* and n- are the
roots of equation (22).
(0)-Ifg UL(B) for B>1and n<n* and n=0,then

pq(n) pp(n°)
M Uy , and M Uy (47)
S, o) € )
(ii).Ifg UZ(B) for B>1and n>n~,andn =0, then
M,g UI Pl Mg U Pul) (48)

T pg(n*) op(n*)
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Proof (i). Sincen is either positive or negative, we will discuss the two cases:
1). Assume that; > 0. By raising 84) to the powern, we obtain fors <t that

() Rl 1t T M (M L))
M) M jg(s) "

) Y6 " ol e T MM (M 0)) - (49)
Using the monotonicity of
1O V"M M 9@, and  TE MM (M ,e)0),
we have that

) Ml 1t T M (M L))
M ,g(s) "A(s)
A6 Y6 "l e T YTM (M )0 . (50)

Let n <n*. By integrating from 0 tot and dividing by Y (¢), and raising it to the power
1/n >0, we get that

PqIYE)Y"™M (M )] * T
: T(2) — , MO TE) T ds

1 t 0 1y
W . A(s) M ,g(s) "ds

Ny . 0 ¢ . 1/n
pg (L) M (M ,2)(®)] A(s) Y(s) Al ge (51)
Y(t) 0

Since

(T(t))..n/r7++1

t +
Y(s <l AMs)ds = ————,
o 1O A=

we have

PLTE)TM (M )] * gt
1 0] A ; A(s) Y(s) ds

I XYM (M L)@ (X @)
0 (nln)+1
1/n

(1.5

Pl M (M e)(e)

_ Pq(n")
pn(n*)

M (M ,)(®). (52)
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Similarly, sincen <0, then .»/5n> 0 and hence n/n+1>1, we have that

¢ gy _ 1 ¢ i+l (’Y‘(t))..q/n"+l
. T (s) /\(s)ds-inmnm+1 . A Y(s) ey e
In this case, we have
pg ()™M (M )@ L
; IR ORIC)
PITICT )M (M (O (T(©)-+/ "
() glp-+1
= LM oM 00 (53)

By substituting 62) and (63) into (51), we obtain

pq(n°)
n(n*)

pq(n+)
on(n-)

which implies that

M q(M pg)(t) M rz(M pg)(t) M q(M pg)(t)a

U L)

Meg Uy py(m*)

that is the second relation in 47) in the casen > 0.
2). Assume thaty < 0. By raising 84) to the powern, we obtain fors < ¢ that

M) X6 ol nt ) M (M L))
Ms) M g(s)

As) Y6 ol T YTM (M L)) . (54)
Using the monotonicity of
@) M M ,9@), and  T@) VM (M ,g)0),
we have that

M) Y6 ol nt 1@ M (M L))
Ms) M g(s)

A6 Y6 " ol e T YTM (M )0 . (55)

By integrating from 0 toz and dividing by Y (¢), and raising it to the power 14 <0, we get

that
(@) m M@ , , caly
T(Z) r8 ] . A(s) Y(s) ! ds
t 1y

1 n
m o }\.(S) M pg(s) ds
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[(P®)Y"M M @] g it
T T X " ds. (56)

Proceeding as in the proof of the “rst case, we then obtain that

pq()
py(n*)

0q(")
,017(77")

MM ,0)®) M (M L)) M (M ,€)(®).

This gives us gain that

, Pa(n)
T pyn*)

M g

which is the “rst relation in (47) in the casen < 0. Similarly, we can prove the “rst relation
in (47) using the relation 3). Analogously, we prove the two relations in4g) using the
same technique and inequalitie2@) and (34). The proof is complete. O

In Theorem 6, we proved that the power mean operatorsl ,g and M ,g of the weight
g U/ satisfy the reverse Holder inequality with some better exponents. However, the
fact that the meanM ,g or M ,¢ belongs to some clas does not imply that the weight
g itself belongs toU;. Thus, Theorem6 does not guarantee the self-improvement of the
summability exponents of the weight U/ But, if we additionally assume the condition
of the monotonicity of the weightg, then we can obtain the following results for self-
improving of exponents.

Theorem 7 Let p <q, p.q=0,and g be any nonnegative weight belongs to Uy (B) for B> 1,
and n* and nare the roots of the equation (22).
(1).If g is nonincreasing, and n <n*, then

. pp(n) . Pn) 57
orr )Py o)) &0
(2).1If g is nondecreasing, and n >, then
Pp(n)py(n) Pa(n)py(n)
us ———= v —— - 58
) N 9
Proof (1). Sinceg is nonincreasing, and since
1 t lp
M = ——  As)d?(s)ds , forallz I,
»8(t) O . (s)g”(s)
we have thatM ,g(t) g(¢), and so
M,(M )&) M ,g(2). (59)
By applying the second relation in47), we obtain that
0y(n-
MM 20 MM 0. (60)

pn(n*)
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By applying the left-hand side of the inequality23), and sinceM ,g(¢) is nonincreasing
(see Lemmal), we from have 59) and (60) that

Mg M (M )0 ZEZ;;MP(M &0
)
o0 pp () M £(0).
That is
R

T () pp(n*)

whichis the “rstrelationin (57). Similarly, sinceg is nonincreasing, we havil ,g(¢)  g(%),
and so

M,(M,2)&) M ,g(?). (61)
By applying the “rst relation in (47), we obtain that

pq(n)
(%)

M,g(t) M, M pg(t) M, M pg(t) . (62)

By applying the left hand side of the inequality3@), and using 61), (62) and the fact that
M ,g(t) is nonincreasing (see Lemm&), we have that

pq(n)

M, g(®) M, M ,g(t) pn(77+)M a M pg(?)
pq(n°)
oy (1) 0g(n*) M »£(0)
That is
¢ U pq(n")

Py pg®)

which is the second relation in$7).
(2). Sinceg is nondecreasing, then by Lemma, the fact thatM ,g(¢) is nondecreasing
andM ,g(t) g(t), we have that

M,(M,9)&) M ,g(?). (63)
By applying the “rst relation in (48), we obtain that

pq(n®)
on(n-)

M (M ,8)() M (M ,8)(®). (64)

By applying the right-hand side of the inequality34), we have that

pqg(n®)
(1)

Pg(MIM Lg(t)
pam)py(n)

M (M »g)(©) M (M ,g)(?) (65)
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By combining ©3) and (65), we have that

0g(n)pen(n)

M 1) pq(n*)

M ng(t)a

that is

ue Pal)pn(n)
! pq(n*)

which is the second relation in$8). Again, sinces is nondecreasing, Lemmaimplies that
M ,g(t) is nondecreasing antl 4g(t) g(t), and so

M,(M )&) M ,g(2). (66)
By applying the second relation in48), we obtain that

op(n™)
Py (n)

M (M 4)() M (M 49)(®).

By applying the right-inequality in 3), we have that

pp(n*)
pn(n)

M 4g(?). (67)

M, @E) M (M )@ M ,(M 42)()

Pp(’fr)
op(n-)en(n-)

By combining 66) and (67), we have that

()P (1)

M 4g(2) (1) M g (®)-
That is
g Pr(m)py(n-)
Tt
which is the “rst relation in (58). The proof is complete. d

In the following, we will apply the above results in deriving the self-improving properties
of the two Muckenhoupt and Gehring classes

AP :=Ui17p, and GI:=U7.

Theorem 8 Let p > 1 and g be any nonnegative and nondecreasing weight belonging to
AP(B) forB>1.Theng Al(B,)forn (n;p] where - is the root of the equation

uan)p._l..l: 1, (68)
p...
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and

= P2l (n)

2 p1(n*)

Proof SinceA? = Uil_p, then equation @2) becomesC, ,(n) = B, which is written by

x .. *t

x1 pop+l P

By applying the transformy  1/(1 ..x), we see that;is determined from the equation
P pyyraz1, (69)
p...

which is the desired equation§8) and the constantB, is obtained from 68) and given by

= pa(m)py(n)
p1(n*)

The proof is complete. d

Theorem 9 Let q > 1 and g be any nonnegative and nondecreasing weight belonging to
GI(B) forB>1.Theng G)(By)forn [q,n")wheren® is the root of the equation

et X Top (70)

and

_ pi(n)eoq(n”)
R

Proof SinceG! :=U{, then equation £2) becomesC, ,(n) = B, which is written by

which is the desired equation?0), and the constaniB, is obtained from §7) and given by

_ ~a(17)pn(n)
p1(n*)

The proof is complete. d

4 Conclusion

In this paper, we have considered a class of generalized Hélder inequalities and proved the
self-improving properties of the weights in this class. The main results are proved by em-
ploying some properties of a mean operator and additional properties of the composition
of di erent operators with di erent powers. By employing the self-improving properties
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of the general class, we have derived the self-improving properties of the Muckenhoupt
weights and the Gehring weights, which are compatible with the results obtained by some
authors in the literature.
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