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Abstract
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1 Introduction
There has been considerable interest in the study of absolutely continuous random vari-
ables X that take values in a compact interval [a, b] and whose probability density functions
ρ are essentially bounded. See, for example, [1–6], and [7].

One result of particular importance, introduced by Barnett and Dragomir in [5], and
discussed in [1–3, 5, 7], and elsewhere, gives good general bounds involving the mean and
variance of X:

Theorem 1 ([5, Theorem 1(ii)]) If X is an absolutely continuous random variable whose
pdf ρ satisfies m ≤ ρ(x) ≤ M for L1 a.e. x ∈ [a, b] and

∫ b
a ρ(x) dx = 1, then

m(b – a)3

6
≤ [

b – E(X)
][

E(X) – a
]

– σ 2(X) ≤ M(b – a)3

6
(1)

and

∣
∣
∣
∣
[
b – E(X)

][
E(X) – a

]
– σ 2(X) –

(b – a)3

6

∣
∣
∣
∣ ≤

√
5(b – a)3(M – m)

60
. (2)

In this paper we establish, for the first time, optimal lower and upper bounds for

[
b – E(X)

][
E(X) – a

]
– σ 2(X)
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for such random variables X, in particular sharpening the key results (1) and (2). Moreover,
we show that the distributions yielding the optimal bounds are unique, and we give them
explicitly.

Since pdfs that differ on sets having Lebesgue measure zero correspond to identically
distributed random variables, without loss of generality we will identify such pdfs. In what
follows, L1(E) = |E| denotes the Lebesgue measure of the set E.

2 Results
Theorem 2 Suppose X is an absolutely continuous random variable whose pdf ρ satisfies
0 ≤ m ≤ ρ(x) ≤ M < ∞ for L1 a.e. x ∈ [a, b] and

∫ b
a ρ(x) dx = 1.

(1) If m = M, then

[
b – E(X)

][
E(X) – a

]
– σ 2(X) =

(b – a)2

6
.

(2) If m < M, then

[
b – E(X)

][
E(X) – a

]
– σ 2(X)

≥ 1
6

m(b – a)3 +
1

12
(
2(b – a)(M – m) + M(b – a) – 1

) (1 – m(b – a))2

(M – m)2 .

This lower bound is sharp, and we have equality if and only if the function

ρ(x) =

⎧
⎨

⎩

M, if x ∈ [a, a + G
2 ) ∪ (b – G

2 , b],

m, if x ∈ [a + G
2 , b – G

2 ],

with

G =
1 – m(b – a)

M – m
,

is a pdf of X .
(3) If m < M, then

[
b – E(X)

][
E(X) – a

]
– σ 2(X)

≤ 1
4

(b – a)2 –
1

12

(

m(b – a)3 +
(1 – m(b – a))3

(M – m)2

)

.

This upper bound is sharp, and we have equality if and only if the function

ρ(x) =

⎧
⎨

⎩

M, if x ∈ (( 1
2 a + 1

2 b) – G
2 , ( 1

2 a + 1
2 b) + G

2 ),

m, if x ∈ [a, ( 1
2 a + 1

2 b) – G
2 ] ∪ [( 1

2 a + 1
2 b) + G

2 , b],

with G defined as in part (2), is a pdf of X .

3 Proofs
We first record a useful lemma, proven using a clever algebraic manipulation by Barnett
and Dragomir in [5].
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Lemma 3 ([5, (2.5)]) Suppose X is as stated in our theorem. Then,

[
b – E(X)

][
E(X) – a

]
– σ 2(X) =

∫ b

a
(b – x)(x – a)ρ(x) dx.

Proof of (1) In this case, X is a continuous uniform random variable on [a, b], and so its
expected value and variance are E(X) = (a + b)/2 and σ 2(X) = (b – a)2/12. Substituting
these values yields the result immediately.

Proof of (2) Suppose m < M. Let c = b – a, and define

f (x) = x(c – x) for all x ∈ [0, c],

τa(x) = x + a for all real x,

φ(x) =
x – m
M – m

for all x ∈ [m, M].

The translation operator τa is invertible, with τ–1
a (x) = x – a for all real x. Since 1/(M –

m) > 0, the affine transformation φ : [m, M] → [0, 1] is invertible with φ–1(x) = (M – m)x +
m for all x ∈ [0, 1]. Define

Cρ =
{

ρ : m ≤ ρ(x) ≤ M for L1 a.e. x ∈ [a, b], and
∫ b

a
ρ(x) dx = 1

}

,

Ch =
{

h : m ≤ h(x) ≤ M for L1 a.e. x ∈ [0, c], and
∫ c

0
h(x) dx = 1

}

,

Cg =
{

g : 0 ≤ g(x) ≤ 1 for L1 a.e. x ∈ [0, c], and
∫ c

0
g(x) dx = G

}

.

We say that a function ρ , h, or g is admissible provided it is an element of Cρ , Ch, or Cg ,
respectively. Whenever ρ∗, h∗, and g∗ are admissible, define

Iρ∗ =
∫ b

a
(b – x)(x – a)ρ∗(x) dx,

Ih∗ =
∫ c

0
(c – x)x · h∗(x) dx =

∫ c

0
f (x) · h∗(x) dx,

Ig∗ =
∫ c

0
(c – x)x · g∗(x) dx =

∫ c

0
f (x) · g∗(x) dx.

If ρ ∈ Cρ , h = ρ ◦ τa, and g = φ ◦ h, then m ≤ h(x) ≤ M for L1 a.e. x ∈ [0, c], 0 ≤ g(x) ≤ 1
for L1 a.e. x ∈ [0, c], ρ = h ◦ τ–1

a , h = φ–1 ◦ g , and

1 =
∫ b

a
ρ(x) dx =

∫ c

0
h(x) dx =

∫ c

0

[
(M – m)g(x) + m

]
dx

= (M – m)
∫ c

0
g(x) dx + mc,

from which it follows that h ∈ Ch and g ∈ Cg .
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If g ∈ Cg , h = φ–1 ◦ g , and ρ = h ◦ τ–1
a , then m ≤ h(x) ≤ M for L1 a.e. x ∈ [0, c], m ≤ ρ(x) ≤

M for L1 a.e. x ∈ [a, b], g = φ ◦ h, h = ρ ◦ τa, and

1 – mc
M – m

= G =
∫ c

0
g(x) dx =

∫ c

0

h(x) – m
M – m

dx =
1

M – m

(∫ c

0
h(x) dx – mc

)

,

from which it follows that

1 =
∫ c

0
h(x) dx =

∫ b

a
ρ(x) dx,

and hence, h ∈ Ch and ρ ∈ Cρ .
We say that a function ρ , h, or g is a minimizer provided it is an element of Cρ , Ch,

or Cg , respectively, and provided it results in the lowest possible value for Iρ∗ , Ih∗ , or Ig∗ ,
respectively, among all admissible functions ρ∗, h∗, or g∗.

If ρ is a minimizer and h = ρ ◦ τa, then h is admissible, as shown above, and

Ih =
∫ c

0
(c – x)x · h(x) dx =

∫ c

0
(c – x)x · ρ(x + a) dx =

∫ b

a
(b – u)(u – a) · ρ(u) du = Iρ ,

and so h is a minimizer. If, additionally, g = φ ◦ h, then g is admissible, as shown above,
and we have

Ig =
∫ c

0
(c – x)x · g(x) dx

=
∫ c

0
(c – x)x · h(x) – m

M – m
dx

=
1

M – m

(

Ih –
1
6

mc3
)

.

Thus, g is a minimizer as well, as Ig is a strictly increasing affine function of Ih.
Similarly, if g is a minimizer and h = φ–1 ◦ g , then h is admissible, as shown above, and

we have

Ih =
∫ c

0
(c – x)x · h(x) dx

=
∫ c

0
(c – x)x · ((M – m)g(x) + m

)
dx

= (M – m)Ig +
1
6

mc3.

Then, h is a minimizer, as Ih is a strictly increasing affine function of Ig . If, additionally,
ρ = h ◦ τ–1

a , then ρ is admissible, as shown above, and we have

Iρ =
∫ b

a
(b – x)(x – a)ρ(x) dx =

∫ c

0
(c – u)u · h(u) du = Ih,

and so ρ is a minimizer.
By Lemma 3, X minimizes

[
b – E(X)

][
E(X) – a

]
– σ 2(X)
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if and only if ρ is admissible and minimizes Iρ . By the argument above, that occurs if and
only if the function g defined by g = φ ◦ h, where h = ρ ◦ τa, minimizes Ig .

We will now use the Bathtub Principle [8, Theorem 1.14] with �, μ, f , G, C , and I there
replaced by [0, c], the Lebesgue measure, f , G, Cg , and Ig , respectively, to find a function g
that minimizes Ig and to prove that it is unique among minimizers of Ig . It will then follow
from our reasoning above that the function ρ defined by ρ = h ◦ τ–1

a , where h = φ–1 ◦ g ,
uniquely minimizes Iρ , and hence solves our problem. Let

s = sup
{

t :
∣
∣{x ∈ [0, c] : f (x) < t

}∣∣ ≤ G
}

= sup

{

t :
∣
∣
∣
∣

{

x ∈ [0, c] :
1
4

c2 –
(

x –
c
2

)2

< t
}∣
∣
∣
∣ ≤ G

}

= sup

{

t :
∣
∣
∣
∣

{

x ∈ [0, c] : x >
c
2

+
√

1
4

c2 – t or x <
c
2

–
√

1
4

c2 – t
}∣
∣
∣
∣ ≤ G

}

= sup
{

t : c –
√

c2 – 4t ≤ G
}

= sup

{

t : t ≤ 1
4
(
c2 – (c – G)2)

}

=
1
4
(
c2 – (c – G)2).

For this s, we have |{x ∈ [0, c] : f (x) = s}| = 0 and

∣
∣{x ∈ [0, c] : f (x) < s

}∣∣

=
∣
∣
∣
∣

{

x ∈ [0, c] :
1
4

c2 –
(

x –
c
2

)2

<
1
4
(
c2 – (c – G)2)

}∣
∣
∣
∣

=
∣
∣
∣
∣

{

x ∈ [0, c] :
(

x –
c
2

)2

>
1
4

(c – G)2
}∣
∣
∣
∣

=
∣
∣
∣
∣

[

0,
G
2

)

∪
(

c –
G
2

, c
]∣
∣
∣
∣

= G.

Since |{x ∈ [0, c] : f (x) < s}| = G, by the Bathtub Principle [8, Theorem 1.14] there is a
unique g ∈ Cg that minimizes the integral Ig , and it is given by g(x) = χ{f <s}(x).

Thus,

g(x) =

⎧
⎨

⎩

1, if f (x) < s,

0, if f (x) ≥ s
=

⎧
⎨

⎩

1, if x ∈ [0, G
2 ) ∪ (c – G

2 , c],

0, if x ∈ [ G
2 , c – G

2 ].

We then calculate

h(x) = (M – m)g(x) + m =

⎧
⎨

⎩

M, if x ∈ [0, G
2 ) ∪ (c – G

2 , c],

m, if x ∈ [ G
2 , c – G

2 ]
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and

ρ(x) = h(x – a) =

⎧
⎨

⎩

M, if x ∈ [a, a + G
2 ) ∪ (a + c – G

2 , a + c],

m, if x ∈ [a + G
2 , a + c – G

2 ]

=

⎧
⎨

⎩

M, if x ∈ [a, a + G
2 ) ∪ (b – G

2 , b],

m, if x ∈ [a + G
2 , b – G

2 ].

This ρ is the desired minimizer. Finally, we will calculate the minimum value of Iρ ,

Iρ = Ih

=
∫ c

0
f (x)h(x) dx =

∫ G/2

0
Mf (x) dx +

∫ c–G/2

G/2
mf (x) dx +

∫ c

c–G/2
Mf (x) dx

=
1

24
MG2(3c – G) +

1
12

m
(
2c3 – G2(3c – G)

)
+

1
24

MG2(3c – G)

=
1

12
G2(3c – G)(M – m) +

1
6

mc3.

We have

G(M – m) = 1 – mc

and also

G(3c – G) =
1 – mc
M – m

(

3c –
1 – mc
M – m

)

=
1

(M – m)2 (1 – mc)(3Mc – 2mc – 1).

Substituting these expressions, we obtain

∫ c

0
f (x)h(x) dx

=
1
6

mc3 +
1

12
(1 – mc)

1
(M – m)2 (1 – mc)(3Mc – 2mc – 1)

=
1
6

mc3 +
1

12
(
2c(M – m) + Mc – 1

) (1 – mc)2

(M – m)2

=
1
6

m(b – a)3 +
1

12
(
2(b – a)(M – m) + M(b – a) – 1

) (1 – m(b – a))2

(M – m)2 ,

as asserted in (2).

Proof of (3) Suppose m < M. Let c, G, f , τa, φ, Cp, Ch, Cg , Iρ∗ , Ih∗ , and Ig∗ be as in the proof
of (2). We say that a function ρ , h, or g is a maximizer provided it is an element of Cρ , Ch,
or Cg , respectively, and provided it results in the highest possible value for Iρ∗ , Ih∗ , or Ig∗ ,
respectively, among all admissible functions ρ∗, h∗, or g∗.
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If ρ is a maximizer and h = ρ ◦ τa, then h is admissible and Ih = Iρ , as shown above, and
so h is a maximizer. If, additionally, g = φ ◦ h, then g is admissible and

Ig =
1

M – m

(

Ih –
1
6

mc3
)

,

as shown above, and so g is a maximizer, as Ig is a strictly increasing affine function of Ih.
Similarly, if g is a maximizer and h = φ–1 ◦ g , then h is admissible and

Ih = (M – m)Ig +
1
6

mc3,

as shown above, and so h is a maximizer, as Ih is a strictly increasing affine function of Ig .
If, additionally, ρ = h ◦ τ–1

a , then ρ is admissible and Iρ = Ih, as shown above, and so ρ is a
maximizer.

By Lemma 3, X maximizes

[
b – E(X)

][
E(X) – a

]
– σ 2(X)

if and only if ρ is admissible and maximizes Iρ . By the argument above, that occurs if and
only if the function g defined by g = φ ◦ h, where h = ρ ◦ τa, maximizes Ig .

Define

F(x) =
c2

4
– f (x) =

(

x –
c
2

)2

for all x ∈ [0, c].

Whenever g∗ is admissible, define

I ′
g∗ =

∫ c

0
F(x) · g∗(x) dx.

For each admissible g∗, we have

Ig∗ + I ′
g∗ =

∫ c

0
f (x) · g∗(x) dx +

∫ c

0
F(x) · g∗(x) dx =

∫ c

0

c2

4
· g∗(x) dx =

c2

4
G.

Since this sum is constant, g maximizes Ig , as needed, if and only if g minimizes I ′
g .

We will now use the Bathtub Principle [8, Theorem 1.14] with �, μ, f , G, C , and I there
replaced by [0, c], the Lebesgue measure, F , G, Cg , and I ′

g , respectively, to find a function g
that minimizes I ′

g and to prove that it is unique among minimizers of Ig . It will then follow
from our reasoning above that the function ρ defined by ρ = h ◦ τ–1

a , where h = φ–1 ◦ g ,
uniquely maximizes Iρ , and hence solves our problem. Let

s = sup
{

t :
∣
∣{x ∈ [0, c] : F(x) < t

}∣∣ ≤ G
}

= sup

{

t :
∣
∣
∣
∣

{

x ∈ [0, c] :
(

x –
c
2

)2

< t
}∣
∣
∣
∣ ≤ G

}

= sup

{

t :
∣
∣
∣
∣

(
c
2

–
√

t,
c
2

+
√

t
)∣

∣
∣
∣ ≤ G

}
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= sup{t : 2
√

t ≤ G}

=
G2

4
.

For this s, we have |{x ∈ [0, c] : F(x) = s}| = 0 and

∣
∣{x ∈ [0, c] : F(x) < s

}∣∣

=
∣
∣
∣
∣

{

x ∈ [0, c] :
(

x –
c
2

)2

<
G2

4

}∣
∣
∣
∣

=
∣
∣
∣
∣

(
c
2

–
G
2

,
c
2

+
G
2

)∣
∣
∣
∣

= G.

Since |{x ∈ [0, c] : F(x) < s}| = G, by the Bathtub Principle [8, Theorem 1.14] there is a
unique g ∈ Cg that minimizes the integral I ′

g , and it is given by g(x) = χ{F<s}(x).
Thus,

g(x) =

⎧
⎨

⎩

1, if F(x) < s,

0, if F(x) ≥ s
=

⎧
⎨

⎩

1, if x ∈ ( c
2 – G

2 , c
2 + G

2 ),

0, if x ∈ [0, c
2 – G

2 ] ∪ [ c
2 + G

2 , c].

We then calculate

h(x) = (M – m)g(x) + m =

⎧
⎨

⎩

M, if x ∈ ( c
2 – G

2 , c
2 + G

2 ),

m, if x ∈ [0, c
2 – G

2 ] ∪ [ c
2 + G

2 , c]

and

ρ(x) = h(x – a) =

⎧
⎨

⎩

M, if x ∈ (( 1
2 a + 1

2 b) – G
2 , ( 1

2 a + 1
2 b) + G

2 ),

m, if x ∈ [a, ( 1
2 a + 1

2 b) – G
2 ] ∪ [( 1

2 a + 1
2 b) + G

2 , b].

This ρ is the desired maximizer. Finally, we will calculate the maximum value of Iρ ,

Iρ = Ih

=
∫ c

2 – G
2

0
mf (x) dx +

∫ c
2 + G

2

c
2 – G

2

Mf (x) dx +
∫ c

c
2 + G

2

mf (x) dx

=
1

24
m(c – G)2(2c + G) +

1
12

GM
(
3c2 – G2) +

1
24

m(c – G)2(2c + G)

=
1

12
m(c – G)2(2c + G) +

1
12

GM
(
3c2 – G2).

We now substitute GM = Gm + 1 – mc into the previous expression.

Iρ =
1

12
m(c – G)2(2c + G) +

1
12

(Gm + 1 – mc)
(
3c2 – G2)

=
1
4

c2 –
1

12
mc3 –

1
12

G2 +
1

12
G2mc



Caraballo Journal of Inequalities and Applications         (2023) 2023:72 Page 9 of 10

=
1
4

c2 –
1

12
mc3 –

1
12

G2(1 – mc)

=
1
4

c2 –
1

12

(

mc3 +
(1 – mc)3

(M – m)2

)

=
1
4

(b – a)2 –
1

12

(

m(b – a)3 +
(1 – m(b – a))3

(M – m)2

)

,

as asserted in (3). �

Finally, we will comment on the choice of f and F in the proof. The proof makes
essential use of the relationship between Iρ and Ig . Ih is an intermediate quantity, re-
lated to Iρ by the translation τa and related to Ig by the affine transformation φ. f is
simply what results after starting with (b – x)(x – a) in Iρ and translating by a to ob-
tain Ih:

Iρ =
∫ b

a
(b – x)(x – a)ρ(x) dx =

∫ c

0
(c – x)x · h(x) dx =

∫ c

0
f (x) · h(x) dx = Ih.

In the proof of part (3) of the theorem, we need to maximize an integral, but the ver-
sion of the Bathtub Principle that we use is stated for minimizations. It is for this
reason that we apply the Bathtub Principle with the complementary function F(x) =
–f (x) + c2/4. Here, the c2/4 constant term ensures that F(x) is nonnegative on [0, c]. The
specific choices of f and F do not affect the bounds in the theorem, which are abso-
lute.
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