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Abstract
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1 Introduction
In this paper, we are concerned with the 3D compressible isothermal magnetohydrody-
namic (MHD) equations, which are a combination of the compressible Navier–Stokes
equations of fluid dynamics and Maxwells equations of electromagnetism (see [1, 13]):

⎧
⎪⎪⎨

⎪⎪⎩

� t + div(� u) = 0,

(� u)t + div(� u ⊗ u) – µ� u – (µ + � )∇ div u + ∇P(� ) = (curlB) × B,

Bt – curl (u × B) = �� B, div B = 0,

(1.1)

where t ≥ 0 is the time and x ∈R
3 is the spatial coordinate. The unknown functions � , u =

(u1, u2, u3)tr, B = (b1, b2, b3)tr, and P denote the fluid density, velocity, magnetic field, and
pressure, respectively. The viscosity coefficients µ and � satisfy the physical restrictions

µ > 0, 2µ + 3� ≥ 0. (1.2)

Positive constant � is the magnetic diffusion coefficient. The pressure P(� ) is determined
through the equations of states. Here, we consider the isothermal gas dynamics

P(� ) � a� with a > 0. (1.3)
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The main aim of this paper is to study the Cauchy problem of (1.1)–(1.3) with the initial
data

(� , u, B)|t=0 = (� 0, u0, B0)(x), x ∈R
3, (1.4)

and the far field behavior

(� , u, B)(x, t) → ( ˜� , 0, 0) as |x| → ∞, t > 0, (1.5)

where ˜� is a given nonnegative constant. Without loss of generality, we assume that ˜� = 1.
The compressible MHD system (1.1) describes the relationship between the Navier–

Stokes equations of fluid dynamics and Maxwell’s equations of electromagnetism, and it
has been studied by many articles [2, 3, 7, 9] and the references cited therein. For the one-
dimensional isentropic compressible Navier–Stokes equations, Hoff [4], Kazhikhov and
Shelukhin [12], and Serre [21, 22] have studied the isothermal problems respectively. For
the multi-dimensional case, Itaya [11], Nash [19], Serrin [23], and Tani [24] investigated
the local existence and uniqueness of classical solutions with vacuum, respectively. Mat-
sumura and Nishida in [16–18] proved the global smooth solutions when the initial data
are close to a non-vacuum equilibrium. Later, Huang, Li, and Xin [10] investigated the vac-
uum and non-vacuum state for the three-dimensional case, and they obtained the global
existence and uniqueness of classical solutions. Yu in [25] studied the 3D compressible
isothermal Navier–Stokes equations with a vacuum at infinity and proved the global ex-
istence of strong solutions. For the isentropic MHD system, Hu and Wang [8, 9] obtained
the global existence of renormalized solutions with general large initial data. Li, Xu, and
Zhang [15] considered the Cauchy problem of the 3D case and obtained the global well-
posedness of classical solution with small energy.

For the isothermal Navier–Stokes system away from vacuum, Nishida in [20] proved
the global existence of BV solutions for one-dimensional MHD equations. Hoff in [5, 6]
obtained the global weak solutions for three-dimensional case. Matsumura and Nishida
in [17] obtained the global smooth solutions. A natural question to ask is whether or not
smooth solutions exist globally in three-dimensional MHD equations. Therefore, the main
purpose of this paper is to investigate the global existence of strong solutions for the 3D
compressible isothermal MHD system.

Before stating the main results, we explain the notation and conventions used through-
out this paper. We denote

∫

f (x) dx �
∫

R3
f (x) dx,

and the standard homogeneous and inhomogeneous Sobolev spaces as follows:

⎧
⎨

⎩

Lr = Lr(R3), Dk,r = {u ∈ L1
loc|‖∇ku‖Lr < ∞}, ‖u‖Dk,r = ‖∇ku‖Lr ,

W k,r = Lr ∩ Dk,r, Hk = W k,2, Dk = Dk,2, D1 = {u ∈ L6|‖∇u‖L2 < ∞},

for 1 < r < ∞ and k ∈ Z. The total energy is defined as

m0 �
∫ (

1
2

� 0|u0|2 + G(� 0) +
1
2
|B0|2

)

(x) dx,
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where G(� ) denotes the potential energy density

G(� ) � �
∫ �

1

P(s) – P(1)
s2 ds,

and it is clear that G(� ) ∼ (� – 1)2.
We now state the definition of strong solution of (1.1)–(1.5) as follows.

De“nition 1.1 A triple of functions (� , u, B) is said to be a strong solution of (1.1)–(1.5)
provided that (� , u, B) satisfies equations (1.1)–(1.5) almost everywhere and belongs to the
class of functions (1.8) in which the uniqueness can be shown to hold.

The main result of this paper is formulated as follows.

Theorem 1.1 For any given numbers M > 0 (not necessary small), ¯� ≥ 2 and p ∈ [2, 6],
assume that

⎧
⎪⎪⎨

⎪⎪⎩

� 0|u0|2 + (� 0 – 1)2 + |B0|2 ∈ L1, (u0, B0) ∈ D1 ∩D2,

0 ≤ inf � 0 ≤ � 0(x) ≤ sup� 0 ≤ ¯� , (� 0 – 1) ∈ H1 ∩W 1,p,

‖∇u0‖2
L2 + ‖∇B0‖2

L2 ≤ M,

(1.6)

and the compatibility condition holds

–µ� u0 – (� + µ )∇ div u0 + ∇P(� 0) – (∇ × B0) × B0 = � 1/2
0 g (1.7)

for some g ∈ L2. Then there exists a positive constant � depending only on µ , � , � , a, M, and
¯� such that if

m0 ≤ � ,

then for any 0 < T < ∞, there exists a unique global strong solution (� , u, B) of problem
(1.1)–(1.5) on R

3 × [0, T] satisfying

0 ≤ � ≤ 2 ¯� for all x ∈R
3, t ≥ 0,

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(� – 1) ∈ C([0, T]; H1 ∩W 1,p), � t ∈ C([0, T]; Lp),

u ∈ C([0, T]; D1 ∩D2)∩L2(0, T ; D2,p),
√

� ut ∈ L∞(0, T ; L2), ut ∈ L2(0, T ; D1),

B ∈ C([0, T]; H2)∩L2(0, T ; H2), Bt ∈ L2(0, T ; H1).

(1.8)

To obtain the strong solutions globally in time, we need global a priori estimates on
smooth solutions for (� , u, B). The main difficulty is due to the appearance of the strong
coupling between the velocity field and the magnetic field. Another difficulty is the weaker
compatibility condition (1.7). Therefore, to overcome the two difficulties, we first give
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some known inequalities and facts in Sect. 2 and then establish the estimates of the global
strong solutions that are independent of time t to problem (1.1)–(1.5) in Sect. 3. Finally,
with the help of global (uniform) estimates at hand, in Sect. 4 we prove that Theorem 1.1
holds.

2 Preliminaries
In this section, we recall some known facts and elementary inequalities which will be used
later. Firstly, we give the following local existence due to [17].

Proposition 2.1 Assume that the initial data (� 0, u0, B0) satisfies (1.6) and (1.7). Then
there exist a small time T∗ > 0 and a strong solution (� , u, B) to problem (1.1)–(1.5) on
R

3 × (0, T∗].

Lemma 2.1 ([26]) Let y ∈ W 1,1(0, T) satisfy the ODE system

y′ = g(y) + b′(t) on [0, T], y(0) = y0,

where b ∈ W 1,1(0, T), g ∈ C(R), and g(+∞) = –∞. Assume that there are two constants
N0 ≥ 0 and N1 ≥ 0 such that for all 0 ≤ t1 < t2 ≤ T ,

b(t2) – b(t1) ≤ N0 + N1(t2 – t1). (2.1)

Then

y(t) ≤ max
{

y0, � ∗} + N0 < +∞ on [0, T],

where � ∗ ∈R is a constant such that

g(� ) ≤ –N1 for � ≥ � ∗. (2.2)

The following well-known Gagliardo–Nirenberg inequality can be found in [14].

Lemma 2.2 For p ∈ [2, 6], q ∈ (1,∞), and r ∈ (3,∞), assume that f ∈ H1(R3) and g ∈
Lq(R3)∩D1,r(R3). Then there exists a generic constant C > 0, depending only on q and r,
such that

‖f ‖Lp ≤ C‖f ‖
6–p
2p

L2 ‖∇f ‖
3p–6

2p
L2 , (2.3)

‖g‖L∞ ≤ C‖g‖
q(r–3)

3r+q(r–3)
Lq ‖∇g‖

3r
3r+q(r–3)
Lr . (2.4)

Finally, we introduce the effective viscous flux F , the vorticity � , and the material deriva-
tive “·”, which are defined as follows:

F � (2µ + � ) div u –
(
P(� ) – P(1)

)
–

1
2
|B|2, � � ∇ × u, u̇ � ut + u · ∇u̇,

then

� F = div(� u̇) – div div(B ⊗ B) and µ�� = ∇ × (
� u̇ – div(B ⊗ B)

)
.
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Thus, it follows from Lemma 2.2 and the standard Lp-estimates of elliptic equations that
we have the following lemma.

Lemma 2.3 ([15]) Let (� , u, B) be a smooth solution of (1.1)–(1.5). Then there exists a
generic constant C > 0 such that for any p ∈ [2, 6],

‖∇F‖Lp + ‖∇� ‖Lp ≤ C
(‖� u̇‖Lp + ‖∇B · B‖Lp

)
, (2.5)

‖F‖Lp + ‖� ‖Lp ≤ C
(‖∇u‖L2 +

∥
∥P(� ) – P(1)

∥
∥

L2 +
∥
∥|B|2∥∥L2

)(6–p)/2p

× (‖� u̇‖L2 + ‖∇B · B‖L2
)(3p–6)/2p, (2.6)

‖∇u‖Lp ≤ C
(‖F‖Lp +

∥
∥P(� ) – P(1)

∥
∥

Lp +
∥
∥|B|2∥∥Lp + ‖� ‖Lp

)
. (2.7)

3 A priori estimates
In this section, we establish the uniform a priori estimates of solutions to problem
(1.1)–(1.5) to extend the local strong solution guaranteed by Proposition 2.1. Assume that
(� , u, B) is a smooth solution to (1.1)–(1.5) on R

3 × (0, T) for some positive time T > 0 with
smooth initial data (� 0, u0, B0) satisfying (1.6) and (1.7). Set 	 (t) � min{1, t} and define

A1(T) � sup
0≤t≤T

	
(‖∇u‖2

L2 + ‖∇B‖2
L2

)
,

A2(T) � sup
0≤t≤T

(‖∇u‖2
L2 + ‖∇B‖2

L2
)
.

We have the following key a priori estimates on (� , u, B).

Proposition 3.1 For given constant ¯� > 0 and M (not necessarily small), assume that
(� 0, u0, B0) satisfies (1.6) and (1.7). Then there exist positive constants K and � 0, depending
only on µ , � , � , a, ¯� , and M, such that if (� , u, B) is a smooth solution of (1.1)–(1.5) on
R

3 × (0, T] satisfying

⎧
⎨

⎩

0 ≤ � (x, t) ≤ 2 ¯� for all (x, t) ∈R
3 × [0, T],

A1(T) ≤ 2m1/2
0 , A2(T) ≤ 3K ,

(3.1)

then
⎧
⎨

⎩

0 ≤ � (x, t) ≤ 7
4 ¯� for all (x, t) ∈ R

3 × [0, T],

A1(T) ≤ m1/2
0 , A2(T) ≤ 2K ,

(3.2)

provided m0 ≤ � 0.

Proof The proof of Proposition 3.1 will be done by a series of lemmas below. �

Throughout this paper, we denote by C, Ci (i = 1, 2, . . .) the generic positive constants
that may depend on µ , � , � , a, ¯� , and M, but are independent of time T > 0. We also use
C(
 ) to emphasize the dependence on 
 .

We first begin with the following standard energy estimates, which can be easily deduced
from (1.1)–(1.5).
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Lemma 3.1 Let (� , u, B) be a smooth solution of (1.1)–(1.5) on R
3 × [0, T]. Then

sup
t∈[0,T]

∫
(
(� – 1)2 + � |u|2 + |B|2)dx +

∫ T

0

(‖∇u‖2
L2 + ‖∇B‖2

L2
)

dt ≤ Cm0. (3.3)

Proof Multiplying (1.1)1, (1.1)2, and (1.1)3 by G′(� ), u, and B, respectively, integrating the
resulting equations by parts over R3, and adding them together, one has

d
dt

∫ (

G(� ) +
1
2

� |u|2 +
1
2
|B|2

)

dx + µ‖∇u‖2
L2 + (µ + � )‖div u‖2

L2 + � ‖∇B‖2
L2 = 0,

which, integrated over (0, T), immediately leads to (3.3). �

Lemma 3.2 Under the conditions of Proposition 3.1, one has

sup
t∈[0,T]

‖B‖3
L3 +

∫ T

0
‖B‖3

L9 dt ≤ C‖B0‖3
L3 . (3.4)

Proof By virtue of (3.1) and (3.3), we infer from Lemma 2.2 (p = 6 in (2.3))that

∫ T

0

(‖u‖4
L6 + ‖∇u‖4

L2 + ‖∇B‖4
L2

)
dt

≤ C
∫ 	 (T)

0

(‖∇u‖4
L2 + ‖∇B‖4

L2
)

dt + C
∫ T

	 (T)
	
(‖∇u‖4

L2 + ‖∇B‖4
L2

)
dt

≤ C sup
t∈[0,	 (T)]

(‖∇u‖2
L2 + ‖∇B‖2

L2
)
∫ 	 (T)

0

(‖∇u‖2
L2 + ‖∇B‖2

L2
)

dt

+ C sup
t∈[	 (T),T]

	
(‖∇u‖2

L2 + ‖∇B‖2
L2

)
∫ T

	 (T)

(‖∇u‖2
L2 + ‖∇B‖2

L2
)

dt

≤ Cm0. (3.5)

Multiplying (1.1)3 by 3|B|B and integrating by parts over R3, we obtain

d
dt

‖B‖3
L3 + 3�

∫
(|B||∇B|2 + |B|∣∣∇(|B|)∣∣2)dx

≤ �
∫

|B||∇B|2 dx + C‖∇u‖2
L2‖B‖3

L9/2 , (3.6)

where the last term on the right-hand side in (3.6) comes from the following inequality:

∫

|∇u||B|3 dx ≤ C‖∇u‖L2‖B‖3/2
L9/2‖B‖3/2

L9

≤ C‖∇u‖L2‖B‖3/2
L9/2

∥
∥|B|3/2∥∥

L6

≤ C
(‖∇u‖2

L2‖B‖3
L9/2

)1/2∥∥|∇B||B|1/2∥∥
L2 .

To deal with the right-hand side of (3.6), we notice that

‖B‖3
L9 ≤ C

∥
∥|B|3/2∥∥2

L6 ≤ C
∥
∥|∇B||B|1/2∥∥2

L2 ,
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then

‖B‖L9/2 ≤ C‖B‖1/2
L3 ‖B‖1/2

L9 ≤ C‖B‖1/2
L3

∥
∥∇|B|3/2∥∥1/3

L2 ,

which together with (3.6) yields

d
dt

‖B‖3
L3 + ‖B‖3

L9 ≤ C‖∇u‖4
L2‖B‖3

L3 ,

which together with (3.5) and Gronwall’s inequality yields the desired estimate (3.4). �

Lemma 3.3 Under the conditions of Proposition 3.1,

(
µ� ‖∇u‖2

L2 + (µ + � )� ‖div u‖2
L2 + �� ‖∇B‖2

L2
)

t + �
∥
∥� 1/2u̇

∥
∥2

L2 + � ‖Bt‖2
L2 + �

∥
∥∇2B

∥
∥2

L2

≤
(

�
∫

a(� – 1) div u dx + �
∫ (

B · ∇B –
1
2
∇|B|2

)

· u dx
)

t

+ C
(
� +

∣
∣� ′∣∣)(‖∇u‖2

L2 + ‖∇B‖2
L2

)

+ C
(
� +

∣
∣� ′∣∣)(‖∇u‖6

L2 + ‖∇B‖6
L2

)
+ Cm0, (3.7)

where � = � (t) ≥ 0 is a piecewise smooth function.

Proof Multiplying (1.1)2 by � (t)u̇ and integrating by parts over R3, one has

∫

�� |u̇|2 dx = –
∫

� ∇(
P(� ) – P(1)

) · u̇ dx + µ�
∫

� u · u̇ dx + � (µ + � )
∫

∇ div u · u̇

+
∫

�
(

B · ∇B –
1
2
∇|B|2

)

· u̇ dx �
4∑

i=1

Ii. (3.8)

The right-hand side terms of (3.8) can be estimated as follows. First, noting that

(
P(� ) – P(1)

)

t + u · ∇(
P(� ) – P(1)

)
+ P(� ) div u = 0, (3.9)

we obtain from (3.3), (3.9) and Cauchy–Schwarz’s inequality that

I1 =
(∫

�
(
P(� ) – P(1)

)
div u dx

)

t
– � ′

∫
(
P(� ) – P(1)

)
div u dx

–
∫

�
(
P(� ) – P(1)

)

t divu dx +
∫

�
(
P(� ) – P(1)

)
� i

(
uj� jui)dx

≤
(∫

�
(
P(� ) – P(1)

)
div u dx

)

t
+ C� ′‖∇u‖L2

∥
∥P(� ) – P(1)

∥
∥

L2

+
∫

� P(1)(div u)2 dx + �
∫

(
P(� ) – P(1)

)
� iui� juj dx

≤ a
(∫

� (� – 1) div u dx
)

t
+ C

(
� +

∣
∣� ′∣∣)‖∇u‖2

L2 + C|� |′m0.
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By virtue of Cauchy-Schwarz’s inequality, one has

I2 = –µ
∫

�� iuj� i
(
uj

t + uk � kuj)dx

= –
µ
2

(∫

� |∇u|2 dx
)

t
+

µ
2

� ′‖∇u‖2
L2 – µ�

∫ (

� iuj� iuk � kuj –
1
2
|∇u|2 div u

)

dx

≤ –
µ
2

(∫

� |∇u|2 dx
)

t
+ C

∣
∣� ′∣∣‖∇u‖2

L2 + C1� ‖∇u‖3
L3 .

Similarly,

I3 ≤ –
µ + �

2

(∫

� |div u|2 dx
)

t
+ C

∣
∣� ′∣∣‖∇u‖2

L2 + C1� ‖∇u‖3
L3 .

For I4, it follows from (2.3) and (2.4) that

I4 =
(∫

�
(

B · ∇B –
1
2
∇|B|2

)

· u dx
)

t
– � ′

∫ (

B · ∇B –
1
2
∇|B|2

)

· u dx

– �
∫ (

B · ∇B –
1
2
∇|B|2

)

t
· u dx + �

∫ (

B · ∇B –
1
2
∇|B|2

)

· u · ∇u dx

≤
(∫

�
(

B · ∇B –
1
2
∇|B|2

)

· u dx
)

t
+ C� ′‖B‖1/2

L2 ‖∇B‖3/2
L2 ‖∇u‖L2

+ C� ‖∇B‖1/2
L2

∥
∥∇2B

∥
∥1/2

L2 ‖Bt‖L2‖∇u‖L2 + C� ‖∇B‖L2
∥
∥∇2B

∥
∥

L2‖∇u‖2
L2

≤
(∫

�
(

B · ∇B –
1
2
∇|B|2

)

· u dx
)

t
+

�
4

‖Bt‖2
L2 +

��
8

∥
∥∇2B

∥
∥2

L2

+ C
(
� +

∣
∣� ′∣∣)‖∇u‖6

L2 + C
(
� +

∣
∣� ′∣∣)‖∇B‖6

L2 + C
∣
∣� ′∣∣‖∇B‖2

L2 + C
∣
∣� ′∣∣m6

0.

On the other hand, it follows from (2.7) and Cauchy-Schwarz’s inequality that

‖∇u‖3
L3 ≤ (∥

∥� 1/2u̇
∥
∥

L2 + ‖B · ∇B‖L2
)3/2(‖∇u‖L2 +

∥
∥P(� ) – P(1)

∥
∥

L2 +
∥
∥|B|2∥∥L2

)3/2

+
∥
∥P(� ) – P(1)

∥
∥3

L3 +
∥
∥|B|2∥∥3

L3

≤ 1
2C1

∥
∥� 1/2u̇

∥
∥2

L2 +
�

8C1

∥
∥∇2B

∥
∥2

L2 + C
(‖∇u‖6

L2 + ‖∇B‖6
L2

)
+ Cm0. (3.10)

Substituting I1, I1, I3, I4 into (3.8) and using (3.10), we immediately obtain

(
µ� ‖∇u‖2

L2 + (µ + � )� ‖div u‖2
L2

)

t + �
∥
∥� 1/2u̇

∥
∥2

L2

≤
(

�
∫

a(� – 1) div u dx + �
∫ (

B · ∇B –
1
2
∇|B|2

)

· u dx
)

t
+ Cm0

+ C
(
� +

∣
∣� ′∣∣)(‖∇u‖2

L2 + ‖∇B‖2
L2

)
+ C

(
� +

∣
∣� ′∣∣)(‖∇u‖6

L2 + ‖∇B‖6
L2

)
. (3.11)
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We infer from (1.1)3 and (2.3) that

(
�� ‖∇B‖2

L2
)

t + � 2�
∥
∥∇2B

∥
∥2

L2 + � ‖Bt‖2
L2 = �

∫

(Bt – �� B)2 dx – �� ′‖∇B‖2
L2

= �
∫

|B · ∇u – u · ∇B – Bdiv u|2 dx – �� ′‖∇B‖2
L2

≤ C� ‖∇B‖2
L2 + C� ‖u‖2

L2‖∇B‖2
L3

≤ ��
2

∥
∥∇2B

∥
∥2

L2 + C
∣
∣� ′∣∣‖∇B‖2

L2 + C�
(‖∇u‖6

L2 + ‖∇B‖6
L2

)
,

thus

(
�� ‖∇B‖2

L2
)

t + � 2�
∥
∥∇2B

∥
∥2

L2 + � ‖Bt‖2
L2 ≤ C

∣
∣� ′∣∣‖∇B‖2

L2 + C�
(‖∇u‖6

L2 + ‖∇B‖6
L2

)
,

which, together with (3.11), yields (3.7). �

Lemma 3.4 Under the conditions of Proposition 3.1, there exist positive constants K ≥
M + 1 and � 1 < 1, depending only on µ , � , � , a, ¯� , and M, such that

A2
(
	 (T)

)
+

∫ 	 (T)

0

(∥
∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2 +

∥
∥∇2B

∥
∥2

L2
)

dt ≤ 2K , (3.12)

provided m0 ≤ � 1.

Proof Taking � = 1 in (3.7) and integrating it over (0, 	 (T)), we deduce from (1.6), (1.7),
(3.1), (3.3), (2.7), (3.3), and (3.4) that

A2
(
	 (T)

)
+

∫ 	 (T)

0

(∥
∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2 +

∥
∥∇2B

∥
∥2

L2
)

dt

≤ C(M + 1) + a
∫

(� – 1) div u dx|	 (T)
0 +

∫ (

B · ∇B –
1
2
∇|B|2

)

dx|	 (T)
0

+ C
∫ 	 (T)

0

(‖∇u‖6
L2 + ‖∇B‖6

L2
)

dt

≤ 1
2

A2
(
	 (T)

)
+ Cm1/2

0 A3/2
2

(
	 (T)

)
+ C(M + 1)2,

thus

A2
(
	 (T)

)
+

∫ 	 (T)

0

(∥
∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2 +

∥
∥∇2B

∥
∥2

L2
)

dt

≤ C2m1/2
0 K3/2 + C3(M + 1)2 ≤ 2K ,

provided

m0 ≤ � 1 � min
{

1,
K
C2

2

}

with K � C3(M + 1)2.

Thus, we immediately obtain the desired estimate (3.12). The proof of Lemma 3.4 is there-
fore completed. �



Zhang Journal of Inequalities and Applications        (2023) 2023:50 Page 10 of 19

Lemma 3.5 Under the conditions of Proposition 3.1, there exists a positive constant � 2,
depending only on µ , � , � , a, ¯� , and M, such that

A1(T) +
∫ i+1

i–1
	 i

(∥
∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2 +

∥
∥∇2B

∥
∥2

L2
)

dt ≤ m1/2
0 , (3.13)

provided m0 ≤ � 2, where 	 i � 	 (t + 1 – i) and i is an integer satisfying 1 ≤ i ≤ [T] – 1 with
[T] denoting the largest integer less than or equal to T .

Proof Without loss of generality, assume that T ≥ 2. Otherwise, things can be done by
choosing a suitable small step size. For integer i(1 ≤ i ≤ [T] – 1), taking � = 	 i(t) in (3.7)
and integrating the results over (i – 1, i + 1], one deduces from (3.1), (3.3), and (3.5) that

sup
t∈[i–1,i+1]

(
	 i‖∇u‖2

L2 + 	 i‖∇B‖2
L2

)
+

∫ i+1

i–1
	 i

(∥
∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2 +

∥
∥∇2B

∥
∥2

L2
)

dt

≤ Cm0 + 	 i

∫
(
P(� ) – P(1)

)
div u dx + 	 i

∫ (

B · ∇B –
1
2
∇|B|2

)

· u dx

+ C
∫ i+1

i–1
	 i

(‖∇u‖6
L2 + ‖∇B‖6

L2
)

dt + C
∫ i+1

i–1
	 i

(‖∇u‖2
L2 + ‖∇B‖2

L2
)

dt

≤ 	 i

2
‖∇u‖2

L2 + C4m1/2
0 M1/2(	 i‖∇B‖2

L2
)

+ Cm0,

thus

sup
t∈[i–1,i+1]

(
	 i‖∇u‖2

L2 + 	 i‖∇B‖2
L2

)
+

∫ i+1

i–1
	 i

(∥
∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2 +

∥
∥∇2B

∥
∥2

L2
)

dt

≤ C5m0 ≤ Cm1/2
0 ,

provided

m0 ≤ � 2 � min
{

1,
1

2C2
4M

,
1

C2
5

}

. �

Lemma 3.6 Under the conditions of Proposition 3.1, it holds that

(
�
∥
∥� 1/2u̇

∥
∥2

L2 + � ‖Bt‖2
L2

)

t + �
(‖∇u̇‖2

L2 + ‖∇Bt‖2
L2

)

≤ ∣
∣� ′∣∣(∥∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2

)
+ C�

(‖∇u‖4
L2 + ‖∇B‖4

L2
)(‖Bt‖2

L2 +
∥
∥∇2B

∥
∥2

L2
)

+ C� ‖∇u‖2
L2 + C� ‖∇u‖4

L2‖∇B‖3/2
L2

∥
∥∇2B

∥
∥3/2

L2 + C� m0‖∇B‖3
L2

∥
∥∇2B

∥
∥3

L2

+ C�
(‖∇u‖L2 + m1/2

0 + m1/4
0 ‖∇B‖3/2

L2
)(∥

∥� 1/2u̇
∥
∥3

L2 +
∥
∥∇2B

∥
∥3

L2
)

+ C� m0, (3.14)

where � = � (t) ≥ 0 is a piecewise smooth function.
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Proof Operating � u̇j[� t + div(u·)] to (1.1)j
2, summing with respect to j, and integrating the

resulting equation over R3, one has after integration by parts

(
�
2

∫

� |u̇|2 dx
)

t
–

� ′

2

∫

� |u̇|2 dx

= –�
∫

u̇j[� jPt + div(u� jP)
]

dx + �µ
∫

u̇j[� uj
t + div

(
u� uj)]dx

+ � (� + µ )
∫

u̇j[� j� t(div u) + div
(
u� j(div u)

)]
dx

+ �
∫

u̇j[� t
(
B · ∇Bj) + div

(
uB · ∇Bj)]dx

–
�
2

∫

u̇j[� t � j
(|B|2) + div

(
u� j

(|B|2))]dx �
5∑

i=1

Ji, (3.15)

where the first term on the right-hand side of (3.15) can be estimated as follows. Based on
integrating by parts and (3.1), we obtain

J1 = �
∫

(
� ju̇jP(� )t + � ku̇juk � jP(� )

)
dx

= �
∫

(
–a div u� ju̇j – a div

(
(� – 1)u

)
� ju̇j – � j

(
� ku̇juk)(P(� ) – P(1)

))
dx

= �
∫

(
–a div u� ju̇j – � ku̇j� juk(P(� ) – P(1)

))
dx

≤ µ
8

� ‖∇u̇‖2
L2 + C( ¯� )� (‖∇u‖2

L2 .

Similarly,

J2 = µ�
∫

u̇j[� uj
t + div

(
u� uj)]dx ≤ –

3µ
4

� ‖∇u̇‖2
L2 + C� ‖∇u‖4

L4

and

J3 ≤ –
� + µ

2
� ‖div u̇‖2

L2 +
µ
4

� ‖∇u̇‖2
L2 + C� ‖∇u‖4

L4 .

Keeping in mind that div B = 0 and integrating by parts over R3, one has

J4 = �
∫

(
u̇j(Bi

t � iBj + Bi� iB
j
t
)

– � ku̇jukBi� iBj)dx

≤ –�
∫

(
Bj� iu̇jBi

t + Bj
t � iu̇jBi dx + � ku̇jukBi� iBj)dx

≤ µ
8

� ‖∇u̇‖2
L2 + C� ‖B‖2

L3‖∇Bt‖2
L2 + C� ‖∇B‖2

L2

∥
∥∇2B

∥
∥2

L2‖∇u‖2
L2

≤ µ
8

� ‖∇u̇‖2
L2 + C� m1/2

0 ‖∇Bt‖2
L2 + C�

(‖∇B‖4
L2 + ‖∇u‖4

L2
)∥
∥∇2B

∥
∥2

L2 .

Similarly,

J5 ≤ µ
8

� ‖∇u̇‖2
L2 + C� m1/2

0 ‖∇Bt‖2
L2 + C�

(‖∇B‖4
L2 + ‖∇u‖4

L2
)∥
∥∇2B

∥
∥2

L2 .
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It follows from (2.6), (2.7), (3.4) and Cauchy–Schwarz’s inequality that

‖∇u‖4
L4 ≤ (∥

∥� 1/2u̇
∥
∥3

L2 + ‖B · ∇B‖3
L2

)(‖∇u‖L2 +
∥
∥P(� ) – P(1)

∥
∥

L2 +
∥
∥|B|2∥∥L2

)

+
∥
∥P(� ) – P(1)

∥
∥4

L4 +
∥
∥|B|2∥∥4

L4

≤ (‖∇u‖L2 + m1/2
0 + ‖B‖1/2

L2 ‖∇B‖3/2
L2

)(∥
∥� 1/2u̇

∥
∥3

L2 + ‖B‖3
L3

∥
∥∇2B

∥
∥3

L2
)

+ C( ¯� )m0 + ‖B‖2
L2‖B‖6

L∞

≤ (‖∇u‖L2 + m1/2
0 + m1/4

0 ‖∇B‖3/2
L2

)(∥
∥� 1/2u̇

∥
∥3

L2 +
∥
∥∇2B

∥
∥3

L2
)

+ C( ¯� )m0 + ‖∇B‖3
L2

∥
∥∇2B

∥
∥3

L2 . (3.16)

Substituting J1, J2, . . . , J5 into (3.15) and using (3.16), we obtain

(
�
∥
∥� 1/2u̇

∥
∥2

L2
)

t + � ‖∇u̇‖2
L2

≤ 1
2

� ‖∇Bt‖2
L2 +

∣
∣� ′∣∣∥∥� 1/2u̇

∥
∥2

L2 + C�
(‖∇u‖4

L2 + ‖∇B‖4
L2

)∥
∥∇2B

∥
∥2

L2

+ C� ‖∇u‖2
L2 + C� m0‖∇B‖3

L2

∥
∥∇2B

∥
∥3

L2 + C� m0

+ C�
(‖∇u‖L2 + m1/2

0 + m1/4
0 ‖∇B‖3/2

L2
)(∥

∥� 1/2u̇
∥
∥3

L2 +
∥
∥∇2B

∥
∥3

L2
)
. (3.17)

On the other hand, it follows from (1.1)3 that

Btt – �� Bt = (B · ∇u – u · ∇B – Bdiv u)t . (3.18)

Multiplying (3.18) by � Bt and integrating over R3 yield

(
�
2
‖Bt‖2

L2

)

t
–

� ′

2
‖Bt‖2

L2 + �� ‖∇Bt‖2
L2

= �
∫

(Bt · ∇u – u · ∇Bt – Bt · div u) · Bt dx

+ �
∫

(
–B · ∇(u · ∇u) + (u · ∇u) · ∇B + Bdiv(u · ∇u)

) · Bt dx

+ �
∫

(B · ∇u̇ – u̇ · ∇B – B · div u̇) · Bt dx �
3∑

i=1

Ni. (3.19)

Now, we estimate Ni (i = 1, 2, 3) as follows. By using (2.1), (2.2) and integrating by parts,
we have

N1 ≤ C� ‖Bt‖L3‖∇u‖L2‖∇Bt‖L2 ≤ �
6

� ‖∇Bt‖2
L2 + C‖Bt‖2

L2‖∇u‖4
L2 .

Due to (2.3), (2.4) and Cauchy–Schwarz’s inequality, we have

N2 = �
∫

(
uk � kujBi� iB

j
t + uk � kui� iBjBj

t – uk � kui� iBjBj
t – uk � kuiBj� iB

j
t
)

dx

≤ C� ‖B‖L∞‖∇u‖L2‖∇u‖L3‖∇Bt‖L2 + C� ‖∇B‖L3‖∇u‖L2‖∇u‖L3‖Bt‖L6

≤ �
6

� ‖∇Bt‖2
L2 + C� ‖∇B‖3/2

L2

∥
∥∇2B

∥
∥3/2

L2 ‖∇u‖4
L2 + C� ‖∇u‖4

L4 ,
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and inequality (3.4) gives

N3 ≤ C� ‖B‖L3‖∇Bt‖L2‖∇u̇‖L2 ≤ C� m1/2
0 ‖∇u̇‖2

L2 +
�
6

� ‖∇Bt‖2
L2 .

Thus, substituting N1, N2, N3 into (3.19), we infer from (3.16) that
(
� ‖Bt‖2

L2
)

t + � ‖∇Bt‖2
L2

≤ 1
2

� ‖∇u̇‖2
L2 +

∣
∣� ′∣∣‖Bt‖2

L2 + C� ‖∇u‖4
L2‖Bt‖2

L2

+ C� ‖∇u‖4
L2‖∇B‖3/2

L2

∥
∥∇2B

∥
∥3/2

L2 + C� m0‖∇B‖3
L2

∥
∥∇2B

∥
∥3

L2

+ C�
(‖∇u‖L2 + m1/2

0 + m1/4
0 ‖∇B‖3/2

L2
)(∥

∥� 1/2u̇
∥
∥3

L2 +
∥
∥∇2B

∥
∥3

L2
)

+ C� m0,

which together with (3.19) gives (3.14). �

Lemma 3.7 Under the conditions of Proposition 3.1, it holds that

sup
t∈[0,T]

	 2(∥∥� 1/2u̇
∥
∥2

L2 + ‖Bt‖2
L2 +

∥
∥∇2B

∥
∥2

L2
) ≤ Cm1/2

0 . (3.20)

Moreover, for any 0 ≤ t1 < t2 ≤ T , it holds that
∫ t2

t1

	 2(‖∇u̇‖2
L2 + ‖∇Bt‖2

L2
)

dt ≤ Cm1/2
0 + Cm0(t2 – t1). (3.21)

Proof For any integer 1 ≤ i ≤ [T] – 1, taking � = 	 2
i with 	 i(t) � 	 (t + 1 – i) in (3.14) and

integrating it over (i – 1, i + 1], we obtain from (3.1), (3.3), and (3.13) that

sup
t∈[i–1,i+1]

	 2
i
(∥
∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2

)
+

∫ i+1

i–1
	 2

i
(‖∇u̇‖2

L2 + ‖∇Bt‖2
L2

)
dt

≤ Cm0 + C
∫ i+1

i–1
	 i	 ′

i
(∥
∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2

)
dt + C

∫ i+1

i–1
	 2

i ‖∇u‖2
L2 dt

+ C
∫ i+1

i–1
	 2

i
(‖∇u‖4

L2 + ‖∇B‖4
L2

)(‖Bt‖2
L2 +

∥
∥∇2B

∥
∥2

L2
)

dt

+ C
∫ i+1

i–1
	 2

i ‖∇u‖4
L2‖∇B‖3/2

L2

∥
∥∇2B

∥
∥3/2

L2 dt + Cm0

∫ i+1

i–1
	 2

i ‖∇B‖3
L2

∥
∥∇2B

∥
∥3

L2 dt

+ C
∫ i+1

i–1
	 2

i
(‖∇u‖L2 + m1/2

0 + m1/4
0 ‖∇B‖3/2

L2
)(∥

∥� 1/2u̇
∥
∥3

L2 +
∥
∥∇2B

∥
∥3

L2
)

dt

≤ sup
t∈[i–1,i+1]

(‖∇u‖L2 + m1/2
0 + m1/4

0 ‖∇B‖3/2
L2

)
∫ i+1

i–1
	 2

i
(∥
∥� 1/2u̇

∥
∥3

L2 +
∥
∥∇2B

∥
∥3

L2
)

dt

+ Cm0

(
sup

t∈[i–1,i+1]
‖∇B‖3

L2

)∫ i+1

i–1
	 2

i
∥
∥∇2B

∥
∥3

L2 dt + Cm1/2
0

≤ Cm1/2
0 sup

t∈[i–1,i+1]
	 2

i
(∥
∥� 1/2u̇

∥
∥

L2 +
∥
∥∇2B

∥
∥

L2
)

+ Cm1/2
0 . (3.22)

On the other hand, we obtain from (1.1)3 that
∥
∥∇2B

∥
∥

L2 ≤ C‖Bt‖L2 + C‖∇u‖2
L2‖∇B‖L2 , (3.23)

which together with (3.22) yields (3.20).
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Next, to prove (3.21), taking � = 	 in (3.7) and integrating the results over [t1, t2] ⊆ [0, T],
we deduce from (3.1) and (3.3) that

∫ t2

t1

	
(∥
∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2 +

∥
∥∇2B

∥
∥2

L2
)

dt

≤ C sup
t∈[t1,t2]

	
(‖∇u‖2

L2 + ‖∇B‖2
L2

)2
∫ t2

t1

	
(‖∇u‖2

L2 + ‖∇B‖2
L2

)
dt

+ C
(
m0 + A1(T)

)
+ ‖B‖L3 A1(T) + Cm0 + Cm0(t2 – t1)

≤ Cm1/2
0 + Cm0(t2 – t1). (3.24)

Taking � = 	 2 in (3.14) and integrating it over [t1, t2] ⊆ [0, T], we deduce from (3.1), (3.3),
(3.20), and (3.24) that

∫ t2

t1

	 2(‖∇u̇‖2
L2 + ‖∇Bt‖2

L2
)

dt

≤ C sup
t∈[t1,t2]

	
(∥
∥� 1/2u̇

∥
∥2

L2 +
∥
∥∇2B

∥
∥2

L2
)2

∫ t2

t1

	
(∥
∥� 1/2u̇

∥
∥2

L2 +
∥
∥∇2B

∥
∥2

L2
)

dt

+ Cm1/2
0 + Cm0(t2 – t1) ≤ Cm1/2

0 + Cm0(t2 – t1).

The proof of Lemma 3.7 is therefore completed. �

Lemma 3.8 Under the conditions of Proposition 3.1, it holds that

sup
t∈[0,	 (T)]

	
(∥
∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2 +

∥
∥∇2B

∥
∥2

L2
)

+
∫ 	 (T)

0
	
(‖∇u̇‖2

L2 + ‖∇Bt‖2
L2

)
dt ≤ C. (3.25)

Proof Taking � = 	 in (3.14) and integrating it over [0, 	 (T)], we deduce from (3.1), (3.3),
and (3.20) that

sup
t∈[0,	 (T)]

	
(∥
∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2

)
+

∫ 	 (T)

0
	
(‖∇u̇‖2

L2 + ‖∇Bt‖2
L2

)
dt

≤ Cm0 + C
∫ 	 (T)

0
	 ′(∥∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2

)
dt + C

∫ 	 (T)

0
	 ‖∇u‖2

L2 dt

+ C
∫ 	 (T)

0
	
(‖∇u‖4

L2 + ‖∇B‖4
L2

)(‖Bt‖2
L2 +

∥
∥∇2B

∥
∥2

L2
)

dt

+ C
∫ 	 (T)

0
	 ‖∇u‖4

L2‖∇B‖3/2
L2

∥
∥∇2B

∥
∥3/2

L2 dt +
∫ 	 (T)

0
	 ‖∇B‖3

L2

∥
∥∇2B

∥
∥3

L2 dt

+ C
∫ 	 (T)

0
	
(‖∇u‖L2 + m1/2

0 + m1/4
0 ‖∇B‖3/2

L2
)(∥

∥� 1/2u̇
∥
∥3

L2 +
∥
∥∇2B

∥
∥3

L2
)

dt

≤ sup
t∈[0,	 (T)]

(‖∇u‖L2 + m1/2
0 + m1/4

0 ‖∇B‖3/2
L2

∫ 	 (T)

0
	
(∥
∥� 1/2u̇

∥
∥3

L2 +
∥
∥∇2B

∥
∥3

L2
)

dt
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+ Cm0

(
sup

t∈[0,	 (T)]
‖∇B‖3

L2

)∫ 	 (T)

0
	
∥
∥∇2B

∥
∥3

L2 dt + C

≤ 1
2

sup
t∈[0,	 (T)]

	
(∥
∥� 1/2u̇

∥
∥

L2 +
∥
∥∇2B

∥
∥

L2
)

+ C,

which together with (3.23) yields (3.24). �

Lemma 3.9 Let (� , u, B) be a smooth solution of (1.1)–(1.5) on R
3 × (0, T] satisfying (3.1).

Then there exists a positive constant � > 0, depending only on µ , � , � , a, ¯� , and M, such
that

0 ≤ � (x, t) ≤ 7
4

¯� , ∀ (x, t) ∈R
3 × [0, T), (3.26)

provided m0 ≤ � .

Let Dt � � t + u · ∇ denote the material derivation operator. Then we can rewrite (3.1)1

as follows:

Dt � = g(� ) + b′(t),

where

g(� ) � –
a�

2µ + �
(� – 1), b(t) � –

1
2µ + �

∫ t

0

(

� F +
1
2

� |B|2
)

ds.

Obviously, it holds that g(∞) = –∞. So, to apply Lemma 2.1, we still need to deal with b(t).
To do this, we first use (2.4)–(2.6), (3.3), (3.4), (3.12), (3.13), and (3.25) to deduce that for
any 0 ≤ t1 ≤ t2 ≤ 	 (T) ≤ 1,

∣
∣b(t2) – b(t1)

∣
∣

≤ C( ¯� )
∫ 	 (T)

0

(‖F‖L∞ + ‖B‖2
L∞

)
dt

≤ C
∫ 	 (T)

0

(‖F‖1/4
L2 ‖∇F‖3/4

L6 + ‖B‖L6‖∇B‖L6
)

dt

≤ C
∫ 	 (T)

0

(‖∇u‖L2 + m1/2
0 + ‖B‖2/3

L2 ‖B‖1/2
L3

)1/4(‖∇u̇‖L2 + ‖B · ∇B‖L2
)3/4 dt

+ C
∫ 	 (T)

0
‖∇B‖L2

∥
∥∇2B

∥
∥

L2 dt

≤ Cm1/16
0

(∫ 	 (T)

0
	 –4/5 dt

)5/8(∫ 	 (T)

0
	 ‖∇u̇‖2

L2 dt
)3/8

+ Cm1/12
0

(∫ 	 (T)

0
	 –3/5 dt

)5/8(∫ 	 (T)

0
	 ‖∇u̇‖2

L2 dt
)3/8

+ Cm7/64
0 + Cm1/2

0

(∫ 	 (T)

0

∥
∥∇2B

∥
∥2

L2 dt
)1/2

≤ C6m1/16
0 .
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Therefore, for t ∈ [0, 	 (T)], we can choose N0 and N1 in (2.1) as

N1 = 0, N0 = C6m1/16
0 ,

and � ∗ = 1 in (2.2), then we obtain from Lemma 2.1 that

sup
t∈[0,	 (T)]

‖� ‖L∞ ≤ max
{ ¯� , � ∗} + N0 ≤ ¯� + C6m1/16

0 ≤ 3 ¯�
2

, (3.27)

provided that

m0 ≤ � 3 �
{

� 1, � 2,
( ¯�

2C6

)16}

.

For t ∈ [	 (T), T], we obtain from (2.4)–(2.6), (3.3), (3.4), (3.12), (3.13), and (3.25) that,
for all 	 (T) ≤ t1 < t2 ≤ T ,

∣
∣b(t2) – b(t1)

∣
∣

≤ C( ¯� )
∫ t2

t1

(‖F‖L∞ + ‖B‖2
L∞

)
dt

≤ a
4µ + 2�

(t2 – t1) + C
∫ t2

t1

(‖F‖2/3
L2 ‖∇F‖2

L6 + ‖B‖L6‖∇B‖L6
)

dt

≤ a
4µ + 2�

(t2 – t1) + C
∫ t2

t1

(‖∇u‖L2 + m1/3
0

)2/3(‖∇u̇‖2
L2 + ‖B · ∇B‖2

L2
)

dt

≤
(

a
4µ + 2�

+ C7m7/6
0

)

(t2 – t1) + C8m2/3
0

≤ a
2µ + �

(t2 – t1) + C8m2/3
0 ,

provided that

m0 ≤ � 4 �
{

� 3,
(

a
C7(4µ + 2� )

)6/7}

.

Therefore, for t ∈ [	 (T), T], we can choose N0 and N1 in (2.1) as

N1 =
a

2µ + �
(t2 – t1), N0 = C8m2/3

0 ,

and � ∗ = 2 in (2.2), then we obtain from Lemma 2.1 that

sup
t∈[	 (T),T]

‖� ‖L∞ ≤ max
{

3
2

¯� , � ∗
}

+ N0 ≤ 3
2

¯� + C8m2/3
0 ≤ 7 ¯�

4
, (3.28)

provided that

m0 ≤ � �
{

� 4,
( ¯�

4C8

)3/2}

. (3.29)

The combination of (3.27) with (3.28) yields (3.26).
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4 Proof of Theorem 1.1
In this section, we always assume that the initial energy m0 satisfies (3.29) and the positive
constant C may depend on T and g besides µ , � , � , a, ¯� , and M.

Lemma 4.1 Under the conditions of Theorem 1.1, the following estimates hold:

sup
t∈[0,	 (T)]

(∥
∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2 +

∥
∥∇2B

∥
∥2

L2
)

+
∫ 	 (T)

0

(‖∇u̇‖2
L2 + ‖∇Bt‖2

L2
) ≤ C. (4.1)

Proof Taking � = 1 in (3.14) and integrating the resulting equation over (0, 	 (T)], we de-
duce from (3.23) that

sup
t∈[0,	 (T)]

(∥
∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2 +

∥
∥∇2B

∥
∥2

L2
)

+
∫ 	 (T)

0

(‖∇u̇‖2
L2 + ‖∇Bt‖2

L2
)

≤ ∥
∥� 1/2

0 g
∥
∥2

L2 + Cm0 + C
∫ 	 (T)

0

(‖∇u‖4
L2 + ‖∇B‖4

L2
)(∥

∥� 1/2u̇
∥
∥2

L2 + ‖Bt‖2
L2

)
dt + C

≤ C,

which leads to (4.1). �

Lemma 4.2 Under the conditions of Theorem 1.1, the following estimates hold:

sup
t∈[0,T]

(∥
∥� 1/2u̇

∥
∥2

L2 + ‖Bt‖2
L2 +

∥
∥∇2B

∥
∥2

L2
)

+
∫ T

0

(‖∇u̇‖2
L2 + ‖∇Bt‖2

L2
) ≤ C, (4.2)

and for any p ∈ [2, 6],

sup
0≤t≤T

(‖∇� ‖L2∩Lp + ‖∇u‖H1
)

+
∫ T

0
‖∇u‖L∞ dt ≤ C(T). (4.3)

Proof Inequality (4.2) can be obtained directly from Lemma 3.7 and Lemma 4.1. Similar
to the proof of [10], we can obtain (4.3). �

Proof of Theorem 1.1 To prove Theorem 1.1, by virtue of Proposition 2.1, we know that
there exists a positive time T∗ > 0 such that problem (1.1)–(1.5) possesses a strong solution
(� , u, B) in R

3 × (0, T∗]. Next, with all the a priori estimates established in Sect. 3, we will
extend the local strong solution to all time.

First, in view of the definitions of A1(T) and A2(T), it is easily deduced from (3.1) that

A1(0) ≤ m1/2
0 , A2(0) ≤ 2K , 0 ≤ � ≤ 7

4
¯� ,

due to m0 ≤ � . Thus, there exists a time T1 ∈ (0, T∗] such that (3.1) holds for T = T1.
Set

T∗ � sup
{

T |(� , u, B) is a strong solution on [0, T]
}

and

T∗
1 � sup

{
T |(� , u, B) is a strong solution on [0, T] satisfying (3.1)

}
.
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Thus, T∗
1 ≥ T1 > 0. By virtue of Proposition 3.1, we know

T∗ = T∗
1 ,

provided m0 ≤ � .
Next, similar to the proof of [10, Sect. 4], we can claim that T∗ = ∞. Thus, the proof of

Theorem 1.1 is complete. �
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