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Abstract
In this paper, we explore a class of Hermite–Hadamard integral inequalities for convex
andm-convex functions. The Hölder inequality is used to create this class, which has a
wide range of applications in optimization theory. Some trapezoid-type inequalities
and midpoint error estimates are investigated. Inequalities for several q-special
functions are highlighted. As particular cases, we have included several previous
results.
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1 Introduction
In the theory of inequalities, convex functions are very important. The concept of con-
vexity has been expanded and summarized in various ways. For example, Wu et al. [1]
used the convexity to find estimates of upper bounds, Hu et al. [2] applied the concept of
convexity via local fractional integral, Awan et al. [3] introduced a class of M-convex func-
tions and discussed its properties, Samraiz et al. [4] explored mean type inequalities via
different convexities. In continuation, we found plenty of papers [5–10] that have strong
applications of theory of convexity. The convexity is also important to deal with nonlinear
problems [11]. A generalization of convex functions to a real-valued functions defined on
any real linear space is fairly natural [12]. In pure and applied mathematics, convex func-
tions emerge in numerous problems. The idea of convexity is essential in studying both
linear and nonlinear programming issues. Convexity has endless uses in industry, busi-
ness, medicine, and art, which have a significant impact on our daily lives [13, 14]. Convex
functions can be applied to solving problems in management, economics, and, in fact, our
everyday lives. For further literature review, we refer the reader to [15–17].

Definition 1.1 A function ψ : J → R, where J is an interval on the real line, is said to be
convex if for any two points ς and τ in J and for any 0 ≤ s ≤ 1,

ψ
(
sς + (1 – s)τ

) ≤ sψ(ς ) + (1 – s)ψ(τ ).
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In nonlinear analysis the Hermite–Hadamard inequality is significant. This idea of in-
equalities has been applied in a variety of ways [18–20].

Definition 1.2 Let ψ : J → R be a convex mapping, where J ⊆ R. For any two points ς

and τ in J with ς < τ , we have

ψ

(
ς + τ

2

)
≤ 1

τ – ς

∫ τ

ς

ψ(z) dz ≤ ψ(ς ) + ψ(τ )
2

.

If ψ is concave, then the inequalities are reversed.

Toader [21] (also see [22]) introduced the concept of an m-convex function as follows.

Definition 1.3 Let ψ : [0, a] →R be an m-convex mapping, where m ∈ (0, 1]. For any two
points ς and τ in [0, a] with s ∈ [0, 1], we have

ψ
(
sς + m(1 – s)τ

) ≤ sψ(ς ) + m(1 – s)ψ(τ ).

Definition 1.4 ([23]) The beta function is a special function closely related to the gamma
function and binomial coefficients. It is defined by the integral

B(y, z) =
∫ 1

0
sy–1(1 – s)z–1 ds, �(z) > 0,�(y) > 0.

To establish the main results, we need some lemmas. The first following lemma is given
in [13].

Lemma 1.5 Let J ⊆ R, and let ψ : J → R be a differentiable function on J0. If ς and τ are
any two points in J with ς < τ , then we have

ψ(ς ) + ψ(τ )
2

–
1

τ – ς

∫ τ

ς

ψ(z) dz =
(τ – ς )2

2

∫ 1

0
s(1 – s)ψ ′′(sς + (1 – s)τ

)
ds.

Kirmaci et al. [24] proved the following lemma.

Lemma 1.6 Let ψ : J → R be a differentiable function on J0, and let J ⊆ R. If ς and τ are
any two points in J0 with ς < τ , then we have

1
τ – ς

∫ τ

ς

ψ(z) dz – ψ

(
ς + τ

2

)

= (τ – ς )
[∫ 1

2

0
sψ ′(τ + (ς – τ )s

)
ds +

∫ 1

1
2

(s – 1)ψ ′(τ + (ς – τ )s
)

ds
]

.

The proof of the next lemma can be found in [13].

Lemma 1.7 Let ψ : J → R be a differentiable mapping on J0, where J ⊆ R and ς < τ . If ψ

is convex, then we have the following inequalities:

ψ

(
ς + τ

2

)
≤ 1

τ – ς

∫ τ

ς

ψ(z) dz ≤ 1
4

[
2ψ

(
ς + τ

2

)
+ ψ

(
3τ – ς

2

)
+ ψ

(
3ς – τ

2

)]
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and
∣
∣∣
∣

1
τ – ς

∫ τ

ς

ψ(z) dz –
ψ( ς+τ

2 )
2

∣
∣∣
∣ ≤

∣
∣∣
∣
1
4

[
ψ

(
3τ – ς

2

)
+ ψ

(
3ς – τ

2

)]∣
∣∣
∣.

This paper is organized as follows. In Sect. 2, we establish Hermite–Hadamard-type
inequalities via m-convex functions fruitfully applying the Hölder inequality. Some appli-
cations to special means of real numbers are discussed in Sect. 3. In the last section, we
conclude about the findings of all previous sections.

2 Main results
This section is devoted to Hermite–Hadamard-type inequalities via m-convex functions
fruitfully applying the Hölder inequality. To derive the results of this section, we use the
definition and properties of the beta function. The first main result of this section is as
follows.

Theorem 2.1 Let ψ : J ⊆R →R be a differentiable function on J0, let ς , τ ∈ J0 with ς < τ ,
and let � > 1. If |ψ ′|� is m-convex on [ς , τ ] and 1

�
+ 1

�
= 1, then

∣∣
∣∣

1
τ – ς

∫ τ

ς

ψ(z) dz – ψ

(
ς + τ

2

)∣∣
∣∣

≤ τ – ς

16

(
4

� + 1

) 1
�

[(∣∣ψ ′(ς )
∣∣� + 3m

∣
∣∣∣ψ

′
(

τ

m

)∣
∣∣∣

�) 1
�

+
(

3
∣
∣ψ ′(ς )

∣
∣� + m

∣∣
∣∣ψ

′
(

τ

m

)∣∣
∣∣

�) 1
�
]

. (2.1)

Proof Using Lemma 1.6 and the Hölder inequality, we deduce

∣
∣∣
∣

1
τ – ς

∫ τ

ς

ψ(z) dz – ψ

(
ς + τ

2

)∣
∣∣
∣

≤ (τ – ς )
[(∫ 1

2

0
s� ds

) 1
�

(∫ 1
2

0

∣
∣ψ ′(sς + (1 – s)τ

)∣∣� ds
) 1

�

+
(∫ 1

1
2

|s – 1|�
) 1

�
(∫ 1

1
2

∣∣ψ ′(sς + (1 – s)τ
)∣∣� ds

) 1
�
]

. (2.2)

From the m-convexity of |ψ ′|� we get

∫ 1
2

0
s
∣
∣ψ ′(sς + (1 – s)τ

)∣∣� ds ≤ 1
8

[∣
∣ψ ′(ς )

∣
∣� + 3m

∣∣
∣∣ψ

′
(

τ

m

)∣∣
∣∣

�]
. (2.3)

Similarly,

∫ 1

1
2

∣
∣ψ ′(sς + (1 – s)τ

)∣∣� ds ≤ 1
8

[
3
∣
∣ψ ′(ς )

∣
∣� + m

∣∣
∣∣ψ

′
(

τ

m

)∣∣
∣∣

�]
. (2.4)

Using relations (2.3) and (2.4) in (2.2), by simple calculations we obtain the desired re-
sult. �
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Remark 2.2 If we set m = 1 in Theorem 2.1, then we get [14, Theorem 2.3].

Theorem 2.3 Let ψ : J ⊆R →R be a differentiable function on J0, let ς , τ ∈ J0 with ς < τ ,
and let � > 1. If the mapping |ψ ′|� is m-convex on [ς , τ ] and 1

�
+ 1

�
= 1, then

∣
∣∣
∣

1
τ – ς

∫ τ

ς

ψ(z) dz – ψ

(
ς + τ

2

)∣
∣∣
∣

≤ τ – ς

4

(
4

� + 1

) 1
�

(∣
∣ψ ′(ς )

∣
∣ + m

∣∣
∣∣ψ

′
(

τ

m

)∣∣
∣∣

)
. (2.5)

Proof By using Theorem 2.1 with substitutions

ς1 =
∣∣ψ ′(ς )

∣∣�, τ1 = 3m
∣∣∣
∣ψ

′
(

τ

m

)∣∣∣
∣

�

,

ς2 = 3
∣∣ψ ′(ς )

∣∣�, τ2 = m
∣
∣∣
∣ψ

′
(

τ

m

)∣
∣∣
∣

�

,

where 0 ≤ 1
�

< 1 for � > 1, and using the inequality

n∑

p=1

(ςp + τp)s ≤
n∑

p=1

ς s
p +

n∑

p=1

τ s
p

for ςi, τi ≥ 0 (i = 1, 2, . . . , n) and 0 ≤ s < 1, we obtain inequality (2.5). �

Remark 2.4 If we set m = 1 in Theorem 2.3, then we get [14, Theorem 2.4].

Theorem 2.5 Let ψ : J ⊆ R→R be a differentiable mapping on J0, let ς , τ ∈ J0 with ς < τ ,
and let mτ 	= ς . If ψ ′′ is an m-convex function, then

ψ(ς ) + mψ(τ )
2

–
1

(mτ – ς )

∫ mτ

ς

ψ(z) dz

=
(mτ – ς )2

2

∫ 1

0
s(1 – s)ψ ′′(sς + m(1 – s)τ

)
ds

≤ (mτ – ς )2

24
[
ψ ′′(ς ) + mψ ′′(τ )

]
. (2.6)

Proof Consider the middle part of (2.6), i.e.,

I :=
(mτ – ς )2

2

∫ 1

0
s(1 – s)ψ ′′(sς + m(1 – s)τ

)
ds.

Integrating by parts, we get

I = –
(mτ – ς )2

2

∫ 1

0

(1 – 2s)ψ ′(sς + m(1 – s)τ )
ς – mτ

ds.

Again integrating by parts, we obtain

I =
ψ(ς ) + mψ(τ )

2
–

∫ 1

0
ψ

(
sς + m(1 – s)τ

)
ds.
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Using the change of variable z = sς + m(1 – s)τ , where s ∈ [0, 1], we get

ψ(ς ) + mψ(τ )
2

–
1

(mτ – ς )

∫ mτ

ς

ψ(z) dz

=
(mτ – ς )2

2

∫ 1

0
s(1 – s)ψ ′′(sς + m(1 – s)τ

)
ds. (2.7)

Again considering the middle part of (2.6) and using the m-convexity of ψ ′′, we get

(mτ – ς )2

2

∫ 1

0
s(1 – s)ψ ′′(sς + m(1 – s)τ

)
ds ≤ (τm – ς )2

24
[
ψ ′′(ς ) + mψ ′′(τ )

]
. (2.8)

Combining (2.7) and (2.8), we achieve (2.6). �

Theorem 2.6 Let ψ : J ⊆ R → R be a differentiable function on J0, and let ς , τ ∈ J0 with
ς < τ . If ψ ′ is an m-convex function, then

1
mτ – ς

∫ mτ

ς

ψ(z) dz – ψ

(
ς + mτ

2

)

= (mτ – ς )
[∫ 1

2

0
sψ ′(sς + m(1 – s)τ

)
ds +

∫ 1

1
2

(s – 1)ψ ′(sς + m(1 – s)τ
)

ds
]

≤ (τm – ς )2

8
[
ψ ′(ς ) + mψ ′(τ )

]
. (2.9)

Proof Consider the middle part of (2.9), i.e.,

I := (mτ – ς )
[∫ 1

2

0
sψ ′(sς + m(1 – s)τ

)
ds +

∫ 1

1
2

(s – 1)ψ ′(sς + m(1 – s)τ
)

ds
]

.

Integrating by parts, we get

I = –ψ

(
ς + mτ

2

)
+

∫ 1
2

0
ψ

(
sς + m(1 – s)τ

)
ds +

∫ 1

1
2

ψ
(
sς + m(1 – s)τ

)
ds.

Using the change of variable z = sς + m(1 – s)τ , where s ∈ [0, 1], we get

1
mτ – ς

∫ mτ

ς

ψ(z) dz – ψ

(
ς + mτ

2

)

= (mτ – ς )
[∫ 1

2

0
sψ ′(sς + m(1 – s)τ

)
ds +

∫ 1

1
2

(s – 1)ψ ′(sς + m(1 – s)τ
)

ds
]

. (2.10)

Again considering the middle part of (2.9) and using the m-convexity of ψ ′, we get

(mτ – ς )
[∫ 1

2

0
sψ ′(sς + m(1 – s)τ

)
ds +

∫ 1

1
2

(s – 1)ψ ′(sς + m(1 – s)τ
)

ds
]

≤ (τm – ς )2

8
[
ψ ′(ς ) + mψ ′(τ )

]
. (2.11)

Combining (2.10) and (2.11), we achieve (2.9). �
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Theorem 2.7 Let ψ : J ⊆ R→R be a differentiable mapping on J0, let ς , τ ∈ J0 with ς < τ ,
and ψ ′ ∈ C[ 3ς–τ

2 , 3τ–ς

2 ] be such that ψ ′(z) ∈ R for all z ∈ ( 3ς–τ

2 , 3τ–ς

2 ). If � ≥ 1 and |ψ ′|� is
an m-convex mapping on [ 3ς–τ

2 , 3τ–ς

2 ], then we have the following inequality:

∣∣
∣∣

1
τ – ς

∫ τ

ς

ψ(z) dz – ψ

(
ς + τ

2

)∣∣
∣∣

≤ τ – ς

8

(∣∣
∣∣ψ

′
(

3ς – τ

2

)∣∣
∣∣

�

+ m
∣∣
∣∣ψ

′
(

3τ – ς

2m

)∣∣
∣∣

�) 1
�

.

Proof By Lemma 1.6 we have

1
2(τ – ς )

∫ 3τ–ς
2

3ς–τ
2

ψ(z) dz – ψ

(
ς + τ

2

)

= 2(τ – ς )
(∫ 1

2

0
sψ ′

(
3τ – ς

2
+ 2(ς – τ )s

)
ds

+
∫ 1

1
2

(s – 1)ψ ′
(

3τ – ς

2
+ 2(ς – τ )s

)
ds

)
.

By Lemma 1.7 we obtain

∣
∣∣
∣

1
τ – ς

∫ τ

ς

ψ(z) dz – ψ

(
ς + τ

2

)∣
∣∣
∣

≤ (τ – ς )
(∫ 1

2

0
s
∣
∣∣
∣ψ

′
(

3τ – ς

2
+ 2(τ – ς )s

)∣
∣∣
∣ds

+
∫ 1

1
2

(1 – s)
∣
∣∣∣ψ

′
(

3τ – ς

2
+ 2(τ – ς )s

)∣
∣∣∣ds

)
. (2.12)

We consider the following two cases.
(i) For � = 1, using the m-convexity of |ψ ′| on [ 3ς–τ

2 , 3τ–ς

2 ] with s ∈ [0, 1], we obtain

∫ 1
2

0
s
∣∣
∣∣ψ

′
(

3τ – ς

2
+ 2(ς – τ )s

)∣∣
∣∣ds

=
∫ 1

2

0
s
∣
∣∣∣ψ

′
(

s
(

3ς – τ

2

)
+ m(1 – s)

(
3τ – ς

2m

))∣
∣∣∣ds

≤ |ψ ′( 3ς–τ

2 )| + 2m|ψ ′( 3τ–ς

2m )|
24

. (2.13)

Similarly, we get

∫ 1

1
2

(1 – s)
∣∣
∣∣ψ

′
(

3τ – ς

2
+ 2(τ – ς )s

)∣∣
∣∣ds

=
∫ 1

1
2

(1 – s)
∣∣
∣∣ψ

′
(

s
(

3ς – τ

2

)
+ m(1 – s)

(
3τ – ς

2m

))∣∣
∣∣ds

≤ 2|ψ ′( 3ς–τ

2 )| + m|ψ ′( 3τ–ς

2m )|
24

. (2.14)
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Substituting inequalities (2.13) and (2.14) into (2.12), we get

∣∣
∣∣

1
τ – ς

∫ τ

ς

ψ(z) dz – ψ

(
ς + τ

2

)∣∣
∣∣

≤ τ – ς

8

(∣∣
∣∣ψ

′
(

3ς – τ

2

)∣∣
∣∣ + m

∣∣
∣∣ψ

′
(

3τ – ς

2m

)∣∣
∣∣

)
.

(ii) Now suppose that � > 1. Using the Hölder inequality for � > 1 and � = �

�–1 , we get

∫ 1
2

0
s
∣
∣∣
∣ψ

′
(

3τ – ς

2
+ 2(ς – τ )s

)∣
∣∣
∣ds

=
∫ 1

2

0
s
∣
∣∣
∣ψ

′
(

s
(

3ς – τ

2

)
+ (1 – s)

(
3τ – ς

2

))∣
∣∣
∣ds

=
∫ 1

2

0
s1– 1

�

(
s

1
�

∣∣
∣∣ψ

′
(

s
(

3ς – τ

2

)
+ (1 – s)

(
3τ – ς

2

))∣∣
∣∣

)
ds

≤
(∫ 1

2

0
s ds

)1– 1
�
(∫ 1

2

0
s
∣
∣∣
∣ψ

′
(

s
(

3ς – τ

2

)
+ (1 – s)

(
3τ – ς

2

))∣
∣∣
∣

�

ds
) 1

�

≤
(

1
8

)1– 1
�
(∫ 1

2

0
s
∣∣
∣∣ψ

′
(

s
(

3ς – τ

2

)
+ m(1 – s)

(
3τ – ς

2m

))∣∣
∣∣

�

ds
) 1

�

≤
(

1
8

)1– 1
�
( |ψ ′( 3ς–τ

2 )|� + 2m|ψ ′( 3τ–ς

2m )|�
24

) 1
�

. (2.15)

In the same way, we get

∫ 1

1
2

(1 – s)
∣
∣∣∣ψ

′
(

3τ – ς

2
+ 2(τ – ς )s

)∣
∣∣∣ds

≤
(

1
8

)1– 1
�
(2|ψ ′( 3ς–τ

2 )|� + m|ψ ′( 3τ–ς

2m )|�
24

) 1
�

. (2.16)

So inequalities (2.12), (2.15), and (2.16) prove the theorem. �

Remark 2.8 If we set m = 1 in Theorem 2.7, then we get [13, Theorem 1].

Theorem 2.9 Let ψ : J ⊆R →R be a differentiable function on J0, let ς , τ ∈ J0 with ς < τ ,
and let ψ ′ ∈ C[ 3ς–τ

2 , 3τ–ς

2 ] be such that ψ ′(z) ∈ R for all z ∈ ( 3ς–τ

2 , 3τ–ς

2 ). If � > 1 and |ψ ′|�
is an m-convex mapping on [ 3ς–τ

2 , 3τ–ς

2 ], then we have the following inequality:

∣
∣∣
∣

1
τ – ς

∫ τ

ς

ψ(z) dz – ψ

(
ς + τ

2

)∣
∣∣
∣

≤ (τ – ς )
(

1
(� + 1)2�+1

) 1
�

( |ψ ′( 3ς–τ

2 )|� + m|ψ ′( 3τ–ς

2m )|�
2

) 1
�

(2.17)

with 1
�

+ 1
�

= 1.



Samraiz et al. Journal of Inequalities and Applications         (2023) 2023:70 Page 8 of 16

Proof By the Hölder inequality we have

∫ 1
2

0
s
∣
∣∣
∣ψ

′
(

s
(

3ς – τ

2

)
+ (1 – s)

(
3τ – ς

2

))∣
∣∣
∣ds

≤
(∫ 1

2

0
s� ds

) 1
�

(∫ 1
2

0

∣∣
∣∣ψ

′
(

s
(

3ς – τ

2

)
+ (1 – s)

(
3τ – ς

2

))∣∣
∣∣

�

ds
) 1

�

=
(∫ 1

2

0
s� ds

) 1
�

(∫ 1
2

0

∣
∣∣
∣ψ

′
(

s
(

3ς – τ

2

)
+ m(1 – s)

(
3ς – τ

2m

))∣
∣∣
∣

�

ds
) 1

�

≤
(

1
(� + 1)2�+1

) 1
�

×
(∣

∣∣
∣ψ

′
(

3ς – τ

2

)∣
∣∣
∣

� ∫ 1
2

0
s ds + m

∣
∣∣
∣ψ

′
(

3τ – ς

2m

)∣
∣∣
∣

� ∫ 1
2

0
(1 – s) ds

) 1
�

≤
(

1
2�+1(� + 1)

) 1
�

( |ψ ′( 3ς–τ

2 )|� + 3m|ψ ′( 3τ–ς

2m )|�
8

) 1
�

. (2.18)

Similarly, we get

∫ 1

1
2

(1 – s)
∣∣
∣∣ψ

′
(

s
(

3τ – ς

2

)
+ (1 – s)

(
3τ – ς

2

))∣∣
∣∣ds

≤
(

1
(� + 1)2�+1

) 1
�

(3|ψ ′( 3ς–τ

2 )|� + m|ψ ′( 3τ–ς

2m )|�
8

) 1
�

. (2.19)

Thus by combining inequalities (2.18) and (2.19) we get the required result. �

Remark 2.10 If we set m = 1 in Theorem 2.9, then we get [13, Theorem 2].

Corollary 2.11 Under the assumption? of Theorems 2.7 and 2.9, we obtain the following
inequality for � > 1:

∣∣
∣∣

1
τ – ς

∫ τ

ς

ψ(z) dz – ψ

(
ς + τ

2

)∣∣
∣∣

≤ min{K1, K2}(τ – ς )
(∣

∣∣∣ψ
′
(

3ς – τ

2

)∣
∣∣∣

�

+ m
∣
∣∣∣ψ

′
(

3τ – ς

2m

)∣
∣∣∣

�) 1
�

, (2.20)

where K1 = 1
8 , K2 = ( 1

(�+1)2�+1+ 1
��

) 1
� , and 1

�
+ 1

�
= 1.

Theorem 2.12 Let ψ : J ⊆R →R be a convex function such that ψ ′′ exists on J0, let ς , τ ∈
J0 with ς < τ , and let ψ ′′ : [ 3ς–τ

2 , 3τ–ς

2 ] →R be a continuous function. If � ≥ 1 and |ψ ′′|� is
an m-convex function on [ 3ς–τ

2 , 3τ–ς

2 ], then we have the following inequality:

∣
∣∣
∣

1
(τ – ς )

∫ τ

ς

ψ(z) dz –
ψ( 3ς–τ

2 ) + ψ( 3τ–ς

2 ) + 2ψ( ς+τ

2 )
4

∣
∣∣
∣

≤ (τ – ς )2

3

( |ψ ′′( 3ς–τ

2 )|� + m|ψ ′′( 3τ–ς

2m )|�
2

) 1
�

. (2.21)
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Proof By Lemma 1.5 we have

1
2(τ – ς )

∫ 3τ–ς
2

3ς–τ
2

ψ(z) dz

=
ψ( 3τ–ς

2 ) + ψ( 3ς–τ

2 )
2

– 2(τ – ς )2
∫ 1

0
s(1 – s)ψ ′′

(
s
(

3ς – τ

2

)
+ (1 – s)

(
3τ – ς

2

))
ds. (2.22)

Thus by applying Lemma 1.7 to (2.22), we obtain

∣∣
∣∣

1
τ – ς

∫ τ

ς

ψ(z) dz –
ψ( 3ς–τ

2 ) + ψ( 3τ–ς

2 ) + 2ψ( ς+τ

2 )
4

∣∣
∣∣

≤ 2(τ – ς )2
∫ 1

0
s(1 – s)

∣
∣∣
∣ψ

′′
(

s
(

3ς – τ

2

)
+ (1 – s)

(
3τ – ς

2

))∣
∣∣
∣ds. (2.23)

In the case � = 1 the function |ψ ′′| is m-convex on [ 3ς–τ

2 , 3τ–ς

2 ], and we get

∫ 1

0
s(1 – s)

∣∣
∣∣ψ

′′
(

s
(

3ς – τ

2

)
+ (1 – s)

(
3τ – ς

2

))∣∣
∣∣ds

≤
∣
∣∣
∣ψ

′′
(

3ς – τ

2

)∣
∣∣
∣

∫ 1

0
s2(1 – s) ds + m

∣
∣∣
∣ψ

′′
(

3τ – ς

2m

)∣
∣∣
∣

∫ 1

0
s(1 – s)2 ds

=
1

12

(∣∣∣
∣ψ

′′
(

3ς – τ

2

)∣∣∣
∣ + m

∣∣∣
∣ψ

′′
(

3τ – ς

2m

)∣∣∣
∣

)
. (2.24)

By using this value in (2.23) we deduce that inequality (2.23) holds for � = 1.
Now assume that � > 1. Using the Hölder inequality for 1

�
+ 1

�
= 1, we get

∫ 1

0

(
s – s2)

∣∣∣
∣ψ

′′
(

s
(

3ς – τ

2

)
+ (1 – s)

(
3τ – ς

2

))∣∣∣
∣ds

=
∫ 1

0

((
s – s2)1– 1

�
(
s – s2) 1

�
)
∣
∣∣∣ψ

′′
(

s
(

3ς – τ

2

)
+ (1 – s)

(
3τ – ς

2

))∣
∣∣∣ds

≤
(∫ 1

0

(
s – s2)

)1– 1
�
((

s – s2)
∣∣
∣∣ψ

′′
(

s
(

3ς – τ

2

)
+ m(1 – s)

(
3τ – ς

2m

))∣∣
∣∣

�

ds
) 1

�

≤
(

1
6

)1– 1
�
(∣

∣∣∣ψ
′′
(

3ς – τ

2

)∣
∣∣∣

� ∫ 1

0

(
s2 – s3)ds

+ m
∣∣
∣∣ψ

′′
(

3τ – ς

2m

)∣∣
∣∣

� ∫ 1

0

(
s3 – 2s2 + s

)
ds

) 1
�

≤
(

1
6

)1– 1
�
( |ψ ′′( 3ς–τ

2 )|� + m|ψ ′′( 3τ–ς

2m )|�
12

) 1
�

.

This completes the proof. �
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Remark 2.13
(i) If we set m = 1 in Theorem 2.12, then we get [13, Theorem 3].

(ii) If |ψ ′′(z)| ≤ K on [ 3ς–τ

2 , 3τ–ς

2 ] in Theorem 2.12, then we get

∣
∣∣∣

1
(τ – ς )

∫ τ

ς

ψ(z) dz –
1
4

[
ψ

(
3ς – τ

2

)
+ ψ

(
3τ – ς

2

)
+ 2ψ

(
ς + τ

2

)]∣
∣∣∣

≤ K(τ – ς )2

3

(
m + 1

2

) 1
�

.

Theorem 2.14 Let ψ : J0 ⊆ R → R be a twice differentiable mapping on J0, let ς , τ ∈ J0

with ς < τ , and let ψ ′′ ∈ C[ 3ς–τ

2
3τ–ς

2 ] be such that ψ ′′(z) ∈R for all z ∈ ( 3ς–τ

2 , 3τ–ς

2 ). If � > 1
and |ψ ′′|� is an m-convex function on [ 3ς–τ

2 , 3τ–ς

2 ], then we have the following inequality:

∣∣∣
∣

1
τ – ς

∫ τ

ς

ψ(z) dz –
1
4

[
ψ

(
3ς – τ

2

)
+ ψ

(
3τ – ς

2

)
+ 2ψ

(
ς + τ

2

)]∣∣∣
∣

≤ (τ – ς )2

2

(√
π�(� + 1)

2�(� + 3
2 )

) 1
�

( |ψ ′′( 3ς–τ

2 )|� + m|ψ ′′( 3τ–ς

2m )|�
2

)
,

where 1
�

+ 1
�

= 1.

Proof Using first the Hölder inequality and then the m-convexity of the function |ψ ′′|� ,
we have

I :=
∫ 1

0

(
s – s2)

∣
∣∣∣ψ

′′
(

s
(

3ς – τ

2

)
+ (1 – s)

(
3τ – ς

2

))∣
∣∣∣ds

≤
(∫ 1

0

(
s – s2)� ds

) 1
�

(∫ 1

0

∣∣
∣∣ψ

′′
(

s
(

3ς – τ

2

)
+ m(1 – s)

(
3τ – ς

2m

))∣∣
∣∣

�

ds
) 1

�

≤
(∫ 1

0

(
s – s2)� ds

) 1
�

×
(∣∣

∣∣ψ
′′
(

3ς – τ

2

)∣∣
∣∣

� ∫ 1

0
s ds + m

∣∣
∣∣ψ

′′
(

3τ – ς

2m

)∣∣
∣∣

� ∫ 1

0
(1 – s) ds

) 1
�

.

By the definition of the beta function we get

I ≤ [
B(� + 1,� + 1)

] 1
�

×
(∣

∣∣
∣ψ

′′
(

3ς – τ

2

)∣
∣∣
∣

� ∫ 1

0
s ds + m

∣
∣∣
∣ψ

′′
(

3τ – ς

2m

)∣
∣∣
∣

� ∫ 1

0
(1 – s) ds

) 1
�

.

Using the equalities B(z, z) = 21–2zB( 1
2 , z) and B(y, z) = �(y)�(z)

�(y+z) , we get

I =
( √

π�(� + 1)
�(� + 3

2 )21+2�

) 1
�

( |ψ ′′( 3ς–τ

2 )|� + m|ψ ′′( 3τ–ς

2m )|�
2

) 1
�

. (2.25)

Finally, from (2.23) and (2.25) we obtain the desired result. �
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Remark 2.15
(i) If we set m = 1 in Theorem 2.14, then we get [13, Theorem 4];
(ii) Using the assumptions of Theorem 2.14 with ψ ′′(z) ≤ K on [ 3ς–τ

2 , 3τ–ς

2 ], we get

∣∣
∣∣

1
τ – ς

∫ τ

ς

ψ(z) dz –
ψ( 3ς–τ

2 ) + ( 3τ–ς

2 ) + 2ψ( ς+τ

2 )
4

∣∣
∣∣

≤ K
(τ – ς )2

2

(
m + 1

2

) 1
�
(√

π�(� + 1)
2�(� + 3

2 )

) 1
�

. (2.26)

Theorem 2.16 Under the assumptions of Theorem 2.14, we have the following inequality:

∣∣
∣∣

1
τ – ς

∫ τ

ς

ψ(z) dz –
ψ( 3ς–τ

2 ) + ( 3τ–ς

2 ) + 2ψ( ς+τ

2 )
4

∣∣
∣∣

≤ (τ – ς )2K(� ,�)
(∣

∣∣∣ψ
′′
(

3ς – τ

2

)∣
∣∣∣

�

+ m(� + 1)
∣
∣∣∣ψ

′′
(

3τ – ς

2m

)∣
∣∣∣

�) 1
�

, (2.27)

where

K(� ,�) = 2
(

1
� + 1

) 1
�

(
1

(� + 1)(� + 2)

) 1
�

.

Proof Using first the Hölder inequality and then the m-convexity, we get

∫ 1

0

(
s – s2)

∣
∣∣
∣ψ

′′
(

s
(

3ς – τ

2

)
+ m(1 – s)

(
3τ – ς

2m

))∣
∣∣
∣ds

≤
(∫ 1

0
s� ds

) 1
�

(∫ 1

0
(1 – s)�

∣∣
∣∣ψ

′′
(

s
(

3ς – τ

2

)
+ m(1 – s)

(
3τ – ς

2m

))∣∣
∣∣

�

ds
) 1

�

≤
(∫ 1

0
s� ds

) 1
�

×
(∣∣

∣∣ψ
′′
(

3ς – τ

2

)∣∣
∣∣

� ∫ 1

0
s(1 – s)� ds + m

∣∣
∣∣ψ

′′
(

3τ – ς

2

)∣∣
∣∣

� ∫ 1

0
(1 – s)�+1 ds

) 1
�

=
(

1
� + 1

) 1
�

(
B(2,� + 1)

∣
∣∣
∣ψ

′′
(

3ς – τ

2

)∣
∣∣
∣

�

+
m|ψ ′′( 3τ–ς

2m )|�
� + 2

) 1
�

=
(

1
� + 1

) 1
�

(
�(2)�(� + 1)

�(� + 3)

∣∣
∣∣ψ

′′
(

3ς – τ

2

)∣∣
∣∣

�

+
m|ψ ′′( 3τ–ς

2m )|�
� + 2

) 1
�

=
(

1
� + 1

) 1
�

(
1

(� + 1)(� + 2)

) 1
�

×
(∣∣

∣∣ψ
′′
(

3ς – τ

2

)∣∣
∣∣

�

+ m(� + 1)
∣∣
∣∣ψ

′′
(

3τ – ς

2m

)∣∣
∣∣

�) 1
�

. (2.28)

Keeping in mind (2.23) and (2.28), we obtain (2.27). �

Remark 2.17 If we set m = 1 in Theorem 2.16, then we get [13, Theorem 5].
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Theorem 2.18 Let ψ : J0 ⊆R →R be a twice differentiable function on J0, let ς , τ ∈ J with
ς < τ , and let ψ ′′ ∈ C[ 3ς–τ

2 , 3τ–ς

2 ] be such that ψ ′′(z) ∈R for all z ∈ ( 3ς–τ

2 , 3τ–ς

2 ). If � ≥ 1 and
|ψ ′′|� is an m-convex mapping on [ 3ς–τ

2 , 3τ–ς

2 ], then we have the following inequality:

∣∣
∣∣

1
τ – ς

∫ τ

ς

ψ(z) dz –
ψ( 3ς–τ

2 ) + ψ( 3τ–ς

2 ) + 2ψ( ς+τ

2 )
4

∣∣
∣∣

≤ (τ – ς )2K2(�)
(

2
∣
∣∣∣ψ

′′
(

3ς – τ

2

)∣
∣∣∣

�

+ m(q + 1)
∣
∣∣∣ψ

′′
(

3τ – ς

2m

)∣
∣∣∣

�) 1
�

, (2.29)

where

K2(�) =
(

2
(� + 1)(� + 2)(� + 3)

) 1
�

.

Proof Let � > 1. Using first the Hölder inequality and then the m-convexity, we get

∫ 1

0

(
s – s2)

∣
∣∣
∣ψ

′′
(

s
(

3ς – τ

2

)
+ m(1 – s)

(
3τ – ς

2m

))∣
∣∣
∣ds

=
∫ 1

0
s1– 1

�

(
s

1
� (1 – s)

∣∣
∣∣ψ

′′
(

s
(

3ς – τ

2

)
+ m(1 – s)

(
3τ – ς

2m

))∣∣
∣∣

)
ds

≤
(∫ 1

0
s ds

)1– 1
�
(∫ 1

0
s(1 – s)�

∣∣∣
∣ψ

′′
(

s
(

3ς – τ

2

)
+ m(1 – s)

(
3τ – ς

2m

))∣∣∣
∣

�

ds
) 1

�

≤
(∫ 1

0
s ds

)1– 1
�
(∣∣

∣∣ψ
′′
(

3ς – τ

2

)∣∣
∣∣

� ∫ 1

0
s2(1 – s)� ds

+ m
∣∣∣
∣ψ

′′
(

3τ – ς

2m

)∣∣∣
∣

� ∫ 1

0
s(1 – s)�+1 ds

) 1
�

=
(

1
2

)1– 1
�
(

B(3,� + 1)
∣∣
∣∣ψ

′′
(

3ς – τ

2

)∣∣
∣∣

�

+ mB(2,� + 2)
∣∣
∣∣ψ

′′
(

3τ – ς

2m

)∣∣
∣∣

�) 1
�

=
(

1
2

)1– 1
�
(

1
(� + 1)(� + 2)(� + 3)

) 1
�

×
(

2
∣∣
∣∣ψ

′′
(

3ς – τ

2

)∣∣
∣∣

�

+ m(� + 1)
∣∣
∣∣ψ

′′
(

3τ – ς

2m

)∣∣
∣∣

�) 1
�

. (2.30)

In view of (2.23) and (2.30), we deduce that (2.29) holds when � > 1. From (2.24) we deduce
that (2.29) is true when � = 1. This completes the proof of Theorem 2.18. �

Remark 2.19 If we set m = 1 in Theorem 2.18, then we get [13, Theorem 6].

3 Applications to special means
In this section, we skilfully use the main results of Sect. 2 to give some applications to
special means of positive real numbers. We first need to recall the following basic defi-
nitions of different means and techniques of numerical integration. For arbitrary positive
numbers ς , τ such that ς 	= τ , we consider the following means.
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(i) The arithmetic mean:

A := A(ς , τ ) =
ς + τ

2
.

(ii) The geometric mean:

G := G(ς , τ ) =
√

ςτ .

(iii) The logarithmic mean:

L(ς , τ ) :=
τ – ς

log(τ ) – log(ς )
.

(iv) The generalized logarithmic mean:

Ln(ς , τ ) :=
[

τ n+1 – ςn+1

(τ – ς )(n + 1)

] 1
n

,

where n ∈ Z \ {–1, 0};
(v) The midpoint formula: Let d be a partition with points

ς = z0 < z1 < · · · < zm–1 < zm = τ of the interval [ς , τ ] and consider the quadrature
formula

∫ τ

ς

ψ(z) dz = Tj(ψ , d) + Ej(ψ , d), j = 1, 2,

where

T1(ψ , d) =
m–1∑

j=0

ψ(zj) + ψ(zj+1)
2

(zj+1 – zj)

for the trapezoidal version, and

T2(ψ , d) =
m–1∑

j=0

ψ

(
zj + zj+1

2

)
(zj+1 – zj)

for the midpoint version, whereas Ej(f , d) represents the approximation error.

Proposition 3.1 If n ∈ Z \ {–1, 0} and ς , τ ∈ R with 0 < ς < τ , then we have the following
inequality:

∣∣An(ς , τ ) – Ln
n(ς , τ )

∣∣

≤ min{K1, K2}
(
2

1
� |n|(τ – ς )

)[
A

(∣
∣∣∣
3ς – τ

2

∣
∣∣∣

(n–1)�

, m
∣
∣∣∣
3τ – ς

2m

∣
∣∣∣

(n–1)�)] 1
�

. (3.1)

Proof Using Corollary 2.11 with substitution ψ(z) = zn, by simple mathematical calcula-
tions we get (3.1). �
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Proposition 3.2 If ς , τ ∈R with 0 < ς < τ , then we have the following inequality:

∣
∣G–2(ς , τ ) – A–2(ς , τ )

∣
∣

≤ min{K1, K2}
(
4

1
� (τ – ς )

)[
A

(∣∣
∣∣
3ς – τ

2

∣∣
∣∣

–3�

, m
∣∣
∣∣
3τ – ς

2m

∣∣
∣∣

–3�)] 1
�

. (3.2)

Proof Using Corollary 2.11 with substitution ψ(z) = 1
z2 , by simple mathematical calcula-

tions we get (3.2). �

Proposition 3.3 If � ≥ 1 and ς , τ ∈Rwith 0 < ς < τ , then we have the following inequality:

∣∣A–1(ς , τ ) – L–1(ς , τ )
∣∣

≤ min{K1, K2}
(
2

1
� (τ – ς )

)
[
A

(∣
∣∣∣
3ς – τ

2

∣
∣∣∣

–2�

, m
∣
∣∣∣
3τ – ς

2m

∣
∣∣∣

–2�)] 1
�

. (3.3)

Proof Using Corollary 2.11 with substitution ψ(z) = 1
z , by simple mathematical calcula-

tions we get (3.3). �

Proposition 3.4 If � ≥ 1 and |ψ ′|� is an m-convex function, then for every partition of
[ 3ς–τ

2 , 3τ–ς

2 ], the midpoint error satisfies

∣∣E2(ψ ; d)
∣∣ ≤ min(K1, K2)

m–1∑

j=0

(zj+1 – zj)2
[∣
∣∣
∣ψ

′
(

3zj – zj+1

2

)∣
∣∣
∣

�

+ m
∣
∣∣
∣ψ

′
(

3zj+1 – zj

2m

)∣
∣∣
∣

�] 1
�

≤ 2 min(K1, K2)
m–1∑

j=0

(zj+1 – zj)2 max

[∣
∣∣
∣ψ

′
(

3zj – zj+1

2

)∣
∣∣
∣, m

∣
∣∣
∣ψ

′
(

3zj+1 – zj

2m

)∣
∣∣
∣

]
.

Proof From Corollary 2.11 we obtain

∣
∣∣
∣

∫ zj+1

zj

ψ(z) dz(zj+1 – zj)ψ
(

zj + zj+1

2

)∣
∣∣
∣

≤ min(K1, K2)(zj+1 – zj)2
[∣
∣∣
∣ψ

′
(

3zj – zj+1

2

)∣
∣∣
∣

�

+ m
∣
∣∣
∣ψ

′
(

3zj+1 – zj

2m

)∣
∣∣
∣

�] 1
�

.

On the other hand, we have
∣∣
∣∣

{∫ τ

ς

ψ(z) dz – T2(ψ , d)
}∣∣
∣∣

=

∣
∣∣∣
∣

m–1∑

j=0

{∫ zj+1

zj

ψ(z) dz – (zj+1 – zj)ψ
(

zj + zj+1

2

)}∣
∣∣∣
∣

≤ min(K1, K2)
m–1∑

j=0
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∣∣ψ
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4 Conclusions
Inequalities and convexity are correlated and are used to obtain optimal results. In this pa-
per, we have used the m-convexity and Hölder inequality, which play an important role in
optimization theory. A class of Hermite–Hadamard-type inequalities is developed using
the traditional convex and m-convex maps. Furthermore, the main results are used to es-
tablish certain means, and quadrature formulae are used to calculate the error estimates.
In future studies, the researchers can design similar forms of inequalities using various
convexities.
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