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1 Introduction
In his pioneering work [18], Serrin proved that if there exists a solution of the following
overdetermined boundary value problem for a smooth bounded open connected domain
� ⊂R

n

⎧
⎪⎪⎨

⎪⎪⎩

�u = –1 in �,

u = 0 on ∂�,
∂u
∂ν

= const = c on ∂�,

then the solution u is radially symmetric and � is a ball. Here, ν denotes the outward unit
normal to ∂�. His proof is based on the moving-plane method, which was initiated by
Alexandrov [2]. Immediately, Weinberger [20] gave an alternative simple proof of Serrin’s
symmetry result, which was based on the maximum principle for a suitable subharmonic
function and some integral identities. Thereafter, overdetermined boundary value prob-
lems have been actively studied. For instance, Serrin’s symmetry result has been general-
ized into space forms (see [4–6, 9, 11, 15, 17] for example and references therein).

On the other hand, one may still expect the radial symmetry of the solutions to overde-
termined problems in annular domains. To describe this precisely, let �0 and �1 be simply
connected bounded C2 domains in R

n (n ≥ 2) such that �1 ⊂ �0. For the annular domain
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� := �0 \ �1, consider the following overdetermined boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

�u = –1 in �,

u = 0, ∂u
∂ν

= c0 on ∂�0,

u = a > 0, ∂u
∂ν

= c1 on ∂�1,

(1.1)

where ν is the outward unit normal to ∂� and c0, c1, and a are real constants. In 1990,
Philippin [13] proved that if each domain �i (i = 0, 1) is star shaped then the solution to
the overdetermined problem (1.1) is radially symmetric and the domain � is a standard
annulus (see also [1, 12] for more general related results). Under the additional condition
that 0 ≤ u ≤ a in �, Reichel [16] obtained the same result. Later, Sirakov [19] removed
the extra condition (see [8, 21] for n = 2). Recently, Kamburov-Sciaraffia [7] constructed a
bounded real analytic annular domain � ⊂R

n, which is different from a standard annulus,
satisfying that the overdetermined problem (1.1) admits a solution u ∈ C∞(�) with a > 0
and c0 = c1 < 0.

In this paper, we generalize the above Serrin-type result for annular domains in R
n to

space forms by using the maximum principle for suitable subharmonic functions and some
integral identities. This approach was also used to obtain the radial symmetry of solutions
to partially overdetermined problems in domains inside a convex cone in space forms by
the authors of [10]. In Sect. 2, we study overdetermined problems in annular domains
with inner spherical boundary in the unit sphere S

n. For the equations �u = –n cos r and
�u + nu = –n, we obtain radial-symmetry results (see Theorem 2.1 and Theorem 2.2).
Moreover, we prove rigidity theorems (Theorem 2.4 and Theorem 2.5) for annular do-
mains in S

n under suitable conditions on the inner spherical boundary. In Sect. 3, we con-
sider the equation �u – nu = –n on an annular domain with outer spherical boundary in
the hyperbolic space H

n. In Theorem 3.2, we are able to prove a Serrin-type symmetry
result for such domains. Furthermore, under the additional assumption that the annular
domain is weakly star shaped (see Definition 2.3), we obtain the same result with a weak-
ened Dirichlet condition on the outer spherical boundary (see Theorem 3.3).

2 Annular domains with inner spherical boundary
In this section, we study overdetermined boundary value problems in an annular domain
whose inner boundary is spherical. Before we state our results, we start with some nota-
tions. Let Mn be an n-dimensional space form of constant sectional curvature K = 0, 1,
and –1: the corresponding spaces are the Euclidean space R

n, the unit sphere S
n, and the

hyperbolic space H
n, respectively. These spaces can be regarded as the warped product

space M = I × S
n–1 with the metric g = dr2 + h(r)2gSn–1 , where r denotes the distance from

the pole p of the model space and gSn–1 denotes the round metric on S
n–1. Moreover, the

warping function h(r) is given by
• h(r) = r on I = [0,∞) in R

n;
• h(r) = sin r on I = [0,π ) in S

n;
• h(r) = sinh r on I = [0,∞) in H

n.
Now we prove the radial symmetry of the solution to an overdetermined boundary value

problem on annular domains in S
n with inner spherical boundary (see Fig. 1).

Theorem 2.1 Let � be an annular domain in S
n \ BR(N) such that ∂BR(N) ⊂ ∂�, where

BR(N) ⊂ S
n denotes the closed geodesic ball of radius 0 < R < π centered at the north pole
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Figure 1 An annular domain � with inner spherical boundary

N ∈ S
n. Suppose there is a solution u ∈ C2(�) satisfying that

⎧
⎪⎪⎨

⎪⎪⎩

�u = –n cos r = –nh′ in �,

u = 0, ∂u
∂ν

= const = c1 on ∂� \ ∂BR(N),

u = const = a > 0, ∂u
∂ν

= sin R on ∂BR(N),

where ν is the outward unit normal to ∂� and r(x) = dist(N , x). Assume that either � is
contained in the upper hemisphere S

n
+ or u is positive. Then, � is the standard annulus

{x ∈ S
n : R < r(x) < R1} and the solution u is radial and is given by

u(x) = cos r(x) – cos R1,

where R1 = sin–1(–c1).

Proof In the case where � is contained in S
n
+, we see that u is positive in � by the maximum

principle. Thus, we may assume that u is positive in �.
A straightforward computation yields

Hess h′ = –h′g and �h′ = –nh′,

where Hess h′ denotes the Hessian of h′ and g denotes the metric of Sn. Note that

(�u)2 ≤ n tr
(
Hess2 u

)
, (2.1)

where Hess2 = Hess◦Hess. Moreover, equality holds if and only if Hess u is proportional
to the metric g . By the polarized Bochner formula,

�
〈∇(

u – h′),∇u
〉

=
〈∇(

�
(
u – h′)),∇u

〉
+

〈∇(
u – h′),∇(�u)

〉

+ 2 tr
(
Hess

(
u – h′) ◦ Hess u

)
+ 2 Ric

(∇(
u – h′),∇u

)
. (2.2)

From (2.1), it follows that

tr
(
Hess

(
u – h′) ◦ Hess u

)
= tr

(
Hess2 u

)
+ h′�u = tr

(
Hess2 u

)
– nh′2 ≥ 0.

Thus, (2.2) becomes

�
〈∇(

u – h′),∇u
〉 ≥ –n

〈∇(
u – h′),∇h′〉 + 2(n – 1)

〈∇(
u – h′),∇u

〉
.
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Since u > 0 in �, we obtain
∫

�

u�
〈∇(

u – h′),∇u
〉
dV

≥ –n
∫

�

u
〈∇(

u – h′),∇h′〉dV + 2(n – 1)
∫

�

u
〈∇(

u – h′),∇u
〉
dV . (2.3)

Since

∂h′

∂ν
= sin R =

∂u
∂ν

on ∂BR(N),

using the divergence theorem, we obtain

∫

�

〈∇(
u – h′),∇(

u2)〉dV =
∫

�

div
(
u2∇(

u – h′))dV –
∫

�

u2�
(
u – h′)dV

=
∫

∂�

u2 ∂

∂ν

(
u – h′)dσ = 0,

which yields

∫

�

u
〈∇(

u – h′),∇u
〉
dV = 0. (2.4)

From (2.4),

∫

�

u
〈∇(

u – h′),∇h′〉dV = –
∫

�

u
〈∇(

u – h′), –∇h′〉dV

= –
∫

�

u
∣
∣∇(

u – h′)∣∣2 dV . (2.5)

Combining (2.3), (2.4), and (2.5),

∫

�

u�
〈∇(

u – h′),∇u
〉
dV ≥ n

∫

�

u
∣
∣∇(

u – h′)∣∣2 dV ≥ 0. (2.6)

On the other hand, from Green’s identity,

∫

�

u�
〈∇(

u – h′),∇u
〉
dV =

∫

�

〈∇(
u – h′),∇u

〉
�u dV

+
∫

∂�

u
∂

∂ν

〈∇(
u – h′),∇u

〉
dσ

–
∫

∂�

〈∇(
u – h′),∇u

〉∂u
∂ν

dσ . (2.7)

Using the divergence theorem and the boundary conditions, we obtain

∫

�

〈∇(
u – h′),∇(

uh′)〉dV =
∫

�

div
(
uh′∇(

u – h′))dV –
∫

�

uh′�
(
u – h′)dV

=
∫

∂�

uh′ ∂

∂ν

(
u – h′)dσ = 0,
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which implies that

∫

�

〈∇(
u – h′),∇u

〉
�u dV = –n

∫

�

h′〈∇(
u – h′),∇u

〉
dV

= n
∫

�

u
〈∇(

u – h′),∇h′〉dV

= –n
∫

�

u
∣
∣∇(

u – h′)∣∣2 dV ≤ 0. (2.8)

Since ∂� is a level set of u, ∇u is parallel to ν on ∂�. Thus,

∫

∂�

〈∇(
u – h′),∇u

〉∂u
∂ν

dσ = c1
2
∫

∂�\∂B

〈∇(
u – h′),ν

〉
dσ

= c1
2
∫

∂�

〈∇(
u – h′),ν

〉
dσ

= c1
2
∫

�

�
(
u – h′)dV = 0. (2.9)

Substituting (2.8) and (2.9) into (2.7),

∫

�

u�
〈∇(

u – h′),∇u
〉
dV ≤ a

∫

∂BR(N)

∂

∂ν

〈∇(
u – h′),∇u

〉
dσ . (2.10)

To compute the right-hand side of (2.10), we choose a local orthonormal frame {ei}n
i=1 such

that

en =
∂

∂r
.

Since ur is constant on ∂BR(N) and each ei is tangent to ∂BR(N) for all i = 1, . . . , n – 1, we
have

uri = 0 on ∂BR(N) (2.11)

for all i = 1, . . . , n – 1. Since ∂BR(N) is a level set of u,

ui = 0 and uij = 0 on ∂BR(N) (2.12)

for all i, j = 1, . . . , n – 1. From (2.11) and (2.12),

�u = (n – 1)
cos r
sin r

ur + urr on ∂BR(N),

which yields that

–nh′ = (n – 1)
cos R
sin R

(– sin R) + urr on ∂BR(N).

That is,

urr = –nh′ + (n – 1) cos R = –h′ on ∂BR(N).
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Note that

∂

∂ν

〈∇(
u – h′),∇u

〉
=

〈∇ν∇
(
u – h′),∇u

〉
+

〈∇(
u – h′),∇ν∇u

〉

= 2 Hess u(∇u,ν) – Hess h′(∇u,ν) – Hess u
(∇h′,ν

)

= 2 Hess u(∇u,ν) + h′ ∂u
∂ν

– Hess u
(∇h′,ν

)

= 2urr
∂u
∂ν

+ h′ ∂u
∂ν

– urr
∂h′

∂ν

= sin R
(
urr + h′) = 0 on ∂BR(N).

Thus,

∫

�

u�
〈∇(

u – h′),∇u
〉
dV ≤ 0. (2.13)

Combining (2.6) and (2.13), we conclude that

∫

�

u�
〈∇(

u – h′),∇u
〉
dV = 0.

Note that the equality in (2.6) holds when ∇(u – h′) ≡ 0 in �. Thus,

u(x) = h′ + c = cos r + c

for some constant c. Since u vanishes on ∂� \ ∂BR(N) and � is connected, the set
∂� \ ∂BR(N) is the boundary of the geodesic ball BR1 (N) centered at N with radius
R1 = cos–1(–c). Hence, � must be the standard annulus {x ∈ S

n : R < r(x) < R1}. Further-
more, the constant c can be expressed in terms of the constant c1. To see this, observe that
on ∂� \ ∂BR(N)

∂u
∂ν

= 〈– sin r∇r,∇r〉 = – sin R1 = c1,

which implies that R1 = sin–1(–c1). Therefore, the solution is given by

u(x) = cos r + c = cos r – cos R1,

where

R1 = sin–1(–c1). �

We remark that the center N of the geodesic ball BR(N) can be replaced by any point
p ∈ S

n in Theorem 2.1. In this case, the solution u is radially symmetric with respect to
the point p. Note that consistency requires –1 ≤ c1 < 0 and R < R1.

Theorem 2.2 Let � be an annular domain in S
n
+ \ BR(N) such that ∂BR(N) ⊂ ∂�, where

BR(N) ⊂ S
n
+ denotes the closed geodesic ball of radius 0 < R < π

2 centered at the north pole
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N ∈ S
n. Given R < R1 < π

2 , suppose there is a solution u ∈ C2(�) such that

⎧
⎪⎪⎨

⎪⎪⎩

�u + nu = –n in �,

u = 0, ∂u
∂ν

= – sin R1
cos R1

on ∂� \ ∂BR(N),

u = const = a > 0, ∂u
∂ν

= sin R
cos R1

on ∂BR(N),

where ν is the outward unit normal to ∂�. Then, � is the standard annulus {x ∈ S
n : R <

r(x) < R1} and the solution u is radial and is given by

u(x) =
1

cos R1

(
cos r(x) – cos R1

)
,

where r(x) = dist(N , x).

Proof Using the Bochner formula and (2.1), we have

�|∇u|2 = 2
〈∇(�u),∇u

〉
+ 2 tr

(
Hess2 u

)
+ 2 Ric(∇u,∇u)

≥ –2n|∇u|2 +
2
n

(�u)2 + 2(n – 1)|∇u|2

=
2
n

(–n – nu)�u – 2|∇u|2

= –2�u – �u2. (2.14)

Define

P(u) := |∇u|2 + 2u + u2.

Then, (2.14) shows that P is a subharmonic function in �. We claim that the function P is
constant in � and the constant a satisfies that

a + 1 =
cos R
cos R1

.

To see this, we first note that, on the boundary ∂�, the function P is given by

P(u) =

⎧
⎨

⎩

sin2 R1
cos2 R1

on ∂� \ ∂BR(N),
sin2 R

cos2 R1
+ 2a + a2 on ∂BR(N).

Suppose that

sin2 R
cos2 R1

+ 2a + a2 >
sin2 R1

cos2 R1
.

Then,

(a + 1)2 >
sin2 R1 – sin2 R

cos2 R1
+ 1 =

1 – cos2 R1 – (1 – cos2 R)
cos2 R1

+ 1 =
cos2 R
cos2 R1

.
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Since a is positive,

a + 1 >
cos R
cos R1

. (2.15)

By the maximum principle,

max
�

P(u) = max
∂�

P(u) =
sin2 R

cos2 R1
+ 2a + a2.

Since P is not a constant function under our assumption, we have

∂P
∂ν

> 0 on ∂BR(N) (2.16)

by the Hopf lemma. Choose a local orthonormal frame {ei}n
i=1 such that en = ∂

∂r . Since ur

is constant on ∂BR(N) and each ei is tangent to ∂BR(N) for i = 1, . . . , n – 1,

uri = 0 on ∂BR(N) (2.17)

for all i = 1, . . . , n – 1. Since ∂BR(N) is a level set of u,

ui = 0 and uij = 0 on ∂BR(N) (2.18)

for all i, j = 1, . . . , n – 1. From (2.17) and (2.18),

�u = (n – 1)
cos r
sin r

ur + urr on ∂BR(N),

which yields that

–n – na = (n – 1)
cos R
sin R

(

–
sin R

cos R1

)

+ urr on ∂BR(N).

That is,

urr = –n – na + (n – 1)
cos R
cos R1

on ∂BR(N).

Thus,

∂P
∂ν

= 2 Hess u(∇u,ν) + 2
∂u
∂ν

+ 2u
∂u
∂ν

= 2urr
∂u
∂ν

+ 2
∂u
∂ν

+ 2u
∂u
∂ν

= 2(n – 1)
sin R

cos R1

(
cos R
cos R1

– 1 – a
)

on ∂BR(N).

By (2.15),

∂P
∂ν

< 0 on ∂BR(N),



Lee and Seo Journal of Inequalities and Applications         (2023) 2023:45 Page 9 of 22

which is a contradiction to (2.16). Therefore, we see that

sin2 R
cos2 R1

+ 2a + a2 ≤ sin2 R1

cos2 R1
. (2.19)

Then,

–
cos R
cos R1

≤ a + 1 ≤ cos R
cos R1

. (2.20)

Suppose that P is not a constant function. Then, we obtain

P <
sin2 R1

cos2 R1
in � (2.21)

by the maximum principle. Let

X = h
∂

∂r
,

where h(r) = sin r. Clearly,

h′(r) = cos r > 0, h′′(r) = –h(r), and div X = nh′ on S
n
+. (2.22)

From (2.21),

sin2 R1

cos2 R1

∫

�

h′ dV >
∫

�

Ph′ dV =
∫

�

(|∇u|2h′ + u2h′ + 2uh′)dV . (2.23)

Note that

〈∇h′,∇u
〉

=
〈
h′′∇r,∇u

〉
= h′′ur .

Applying the divergence theorem, we obtain
∫

�

|∇u|2h′ dV =
∫

�

〈∇(
uh′),∇u

〉
dV –

∫

�

u
〈∇h′,∇u

〉
dV

=
∫

�

div
(
uh′∇u

)
dV –

∫

�

uh′�u dV –
∫

�

uh′′ur dV

=
∫

∂�

uh′ ∂u
∂ν

dσ –
∫

�

uh′(–n – nu) dV +
∫

�

uhur dV

=
a cos R sin R

cos R1

∣
∣∂BR(N)

∣
∣ + n

∫

�

uh′ dV

+ n
∫

�

u2h′ dV +
∫

�

uhur dV . (2.24)

Using (2.22), we see that

∫

�

uhur dV =
∫

�

u
〈

∇u, h
∂

∂r

〉

dV =
1
2

∫

�

〈∇u2, X
〉
dV

=
1
2

∫

�

div
(
u2X

)
dV –

1
2

∫

�

u2 div(X) dV
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=
1
2

∫

∂�

u2〈X,ν〉dσ –
n
2

∫

�

u2h′ dV

= –
a2

2
sin R

∣
∣∂BR(N)

∣
∣ –

n
2

∫

�

u2h′ dV ,

which is equivalent to

∫

�

u2h′ dV = –
a2

n
sin R

∣
∣∂BR(N)

∣
∣ –

2
n

∫

�

uhur dV . (2.25)

Substituting (2.24) and (2.25) into (2.23), we obtain

sin2 R1

cos2 R1

∫

�

h′ dV > a sin R
∣
∣∂BR(N)

∣
∣

(
cos R
cos R1

–
a(n + 1)

n

)

+ (n + 2)
∫

�

uh′ dV –
(

1 +
2
n

)∫

�

uhur dV . (2.26)

Using the following Pohozaev identity [3–5, 14, 20]

div

( |∇u|2
2

X – hur∇u
)

=
n – 2

2
|∇u|2h′ – hur�u,

we have

∫

�

div
(|∇u|2X – 2hur∇u

)
dV

= (n – 2)
∫

�

|∇u|2h′ dV – 2
∫

�

hur(–n – nu) dV .

From (2.24) and (2.25),

∫

�

div
(|∇u|2X – 2hur∇u

)
dV

= (n – 2)
∫

�

|∇u|2h′ dV + 2n
∫

�

hur dV + 2n
∫

�

uhur dV

= (n – 2)
(

a cos R sin R
cos R1

∣
∣∂BR(N)

∣
∣ + n

∫

�

uh′ dV + n
∫

�

u2h′ dV +
∫

�

uhur dV
)

+ 2n
∫

�

〈X,∇u〉dV + 2n
∫

�

uhur dV

= (n – 2)
(

a cos R sin R
cos R1

∣
∣∂BR(N)

∣
∣ + n

∫

�

uh′ dV + n
∫

�

u2h′ dV
)

+ (3n – 2)
∫

�

uhur dV + 2n
∫

�

div(uX) dV – 2n
∫

�

u div(X) dV

= (n – 2)a sin R
∣
∣∂BR(N)

∣
∣

(
cos R
cos R1

– a
)

– 2an sin R
∣
∣∂BR(N)

∣
∣

+ (n + 2)
(∫

�

uhur dV – n
∫

�

uh′ dV
)

. (2.27)
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On the other hand, since

∇u =
∂u
∂ν

ν on ∂�,

applying the divergence theorem, we have

∫

�

div
(|∇u|2X – 2hur∇u

)
dV

=
∫

∂�

|∇u|2〈X,ν〉dσ – 2
∫

∂�

〈X,∇u〉〈∇u,ν〉dσ

= –
∫

∂�

|∇u|2〈X,ν〉dσ

= –
sin2 R1

cos2 R1

∫

∂�\∂BR(N)
〈X,ν〉dσ –

sin2 R
cos2 R1

∫

∂BR(N)
〈X,ν〉dσ

= –
sin2 R1

cos2 R1

∫

�

div(X) dV +
sin2 R1 – sin2 R

cos2 R1

(
– sin R

∣
∣∂BR(N)

∣
∣
)

= –n
sin2 R1

cos2 R1

∫

�

h′ dV –
sin R(sin2 R1 – sin2 R)

cos2 R1

∣
∣∂BR(N)

∣
∣. (2.28)

Combining (2.27) and (2.28),

n
sin2 R1

cos2 R1

∫

�

h′ dV = –
sin R(sin2 R1 – sin2 R)

cos2 R1

∣
∣∂BR(N)

∣
∣

– (n – 2)a sin R
∣
∣∂BR(N)

∣
∣

(
cos R
cos R1

– a
)

+ 2na sin R
∣
∣∂BR(N)

∣
∣

+ (n + 2)
(

n
∫

�

uh′ dV –
∫

�

uhur dV
)

. (2.29)

Combining (2.26) and (2.29),

0 <
sin2 R – sin2 R1

cos2 R1
– 2a(n – 1)

cos R
cos R1

+ 2an + (2n – 1)a2.

Using (2.19), we can rewrite the above inequality as

0 < –a2 – 2a – 2a(n – 1)
cos R
cos R1

+ 2na + (2n – 1)a2

= 2a(n – 1)
(

a + 1 –
cos R
cos R1

)

.

However, this is a contradiction to (2.20). Therefore, we see that P is a constant function.
It follows that the two boundary values of P must be equal:

sin2 R1

cos2 R1
=

sin2 R
cos2 R1

+ 2a + a2,
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which gives

a + 1 =
cos R
cos R1

. (2.30)

Since �P = 0 in �, the equality in (2.14) holds. This implies that Hess u must be propor-
tional to the metric g by (2.1). Thus,

Hess u =
�u
n

g = (–1 – u)g. (2.31)

Let γ : J → S
n
+ be a unit-speed maximal geodesic satisfying that

γ (0) = N , ∇γ ′(s)γ
′(s) = 0 and

∣
∣γ ′(s)

∣
∣2 = 1.

Define f (s) := u(γ (s)) on J . Then,

f ′(s) =
〈∇u,γ ′(s)

〉

and by (2.31)

f ′′(s) =
〈∇γ ′(s)∇u,γ ′(s)

〉
+

〈∇u,∇γ ′(s)γ
′(s)

〉

= Hess u
(
γ ′(s),γ ′(s)

)

=
(
–1 – u

(
γ (s)

))∣
∣γ ′(s)

∣
∣2

= –1 – f (s).

By the boundary conditions along ∂BR(N),

f (R) = a and f ′(R) = –
sin R

cos R1
.

Thus, we obtain the following initial value problem:

⎧
⎪⎪⎨

⎪⎪⎩

f ′′(s) + f (s) = –1 on J ,

f ′(R) = – sin R
cos R1

,

f (R) = a.

The general solution is given by

f (s) = c1 cos s + c2 sin s – 1

for some constants c1 and c2. From the initial conditions,

–
sin R

cos R1
= f ′(R) = –c1 sin R + c2 cos R,

a = f (R) = c1 cos R + c2 sin R – 1.
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Using (2.30), we obtain

c1 = (a + 1) cos R +
sin2 R
cos R1

=
1

cos R1
,

c2 = (a + 1) sin R –
sin R

cos R1
cos R = 0.

Thus, the solution to the initial value problem is given by

f (s) =
cos s

cos R1
– 1.

Since f (s) depends only on the distance, we conclude that

u(x) =
1

cos R1

(
cos r(x) – cos R1

)
,

where r(x) = dist(x, N). Since u vanishes on ∂� \ ∂BR(N) by the boundary condition, ∂� \
∂BR(N) is the boundary of the geodesic ball centered at N with radius R1. Therefore, � is
the standard annulus {x ∈ S

n : R < r(x) < R1}. �

In Theorem 2.2, we assumed that the annular domain is contained in the upper hemi-
sphere Sn

+ and assumed that u = a > 0 and ∂u
∂ν

> 0 on the inner spherical boundary. Instead,
assuming each boundary component of the annular domain is geometrically rather simple,
we are able to prove the same radial symmetry of the domain in the case where u = a < –1
and ∂u

∂ν
< 0 on the spherical boundary.

Definition 2.3 An annular domain � is called weakly star shaped with respect to p if each
component of the boundary ∂� can be written as a graph over a geodesic sphere with
center p.

Theorem 2.4 Let � be an annular domain in S
n \ BR(N) such that ∂BR(N) ⊂ ∂�, where

BR(N) ⊂ S
n
+ denotes the closed geodesic ball of radius R centered at the north pole N ∈ S

n.
Assume that � is weakly star shaped with respect to N . Given R < R1 < π , suppose there is
a solution u ∈ C2(�) such that

⎧
⎪⎪⎨

⎪⎪⎩

�u + nu = –n in �

u = 0, ∂u
∂ν

= – sin R1
cos R1

on ∂� \ ∂BR(N)

u = a < –1, ∂u
∂ν

= sin R
cos R1

< 0 on ∂BR(N),

where ν is the outward unit normal to ∂�. Then, � is the standard annulus {x ∈ S
n : R <

r(x) < R1} and the solution u is radial and is given by

u(x) =
1

cos R1

(
cos r(x) – cos R1

)
,

where r(x) = dist(N , x).
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Proof Define two P-functions as follows:

P(u) = |∇u|2 + 2u + u2 and P̃(u) =
〈∇u,∇h′〉 + uh′ + h′,

where h(r) = sin r and r(x) = dist(N , x). Then,

�P ≥ 0 and �P̃ = 0.

The function P on the boundary is given by

P(u) =

⎧
⎨

⎩

sin2 R1
cos2 R1

on ∂� \ ∂BR(N),
sin2 R

cos2 R1
+ 2a + a2 on ∂BR(N).

Suppose that

sin2 R
cos2 R1

+ 2a + a2 >
sin2 R1

cos2 R1
.

In this case, we use the same argument as in the proof of Theorem 2.2 to obtain a contra-
diction. Therefore, we see that

sin2 R
cos2 R1

+ 2a + a2 ≤ sin2 R1

cos2 R1
,

which gives

cos R
cos R1

≤ a + 1 ≤ –
cos R
cos R1

. (2.32)

Now suppose that neither P nor P̃ is a constant function. Choose an orthonormal frame
{e1, . . . , en} on ∂� \ ∂BR(N) such that en = ν . Using the same argument as above, we obtain

ui = 0, uνi = 0, uij = 0 for all i, j = 1, . . . , n – 1.

By the Hopf lemma,

0 <
∂P
∂ν

= 2 Hess u(∇u,ν) + 2
∂u
∂ν

+ 2u
∂u
∂ν

= 2uνν

∂u
∂ν

+ 2
∂u
∂ν

= –
2 sin R1

cos R1
(uνν + 1) on ∂� \ ∂BR(N).

Since sin R
cos R1

< 0 by our assumption,

uνν + 1 > 0 on ∂� \ ∂BR(N). (2.33)

Note that both the maximum and minimum values of the function P̃ are attained on the
boundary of � because P̃ is a harmonic function. We have the following two possibilities:
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(a) P̃ has the maximum value at y1 ∈ ∂� \ ∂BR(N);
(b) P̃ has the maximum value at y2 ∈ ∂BR(N).

In case (a), by the Hopf lemma,

0 <
∂P̃
∂ν

(y1) = Hess u
(∇h′,ν

)
+ Hess h′(∇u,ν) + u

∂h′

∂ν
+ h′ ∂u

∂ν
+

∂h′

∂ν

= uνν

∂h′

∂ν
– h′ ∂u

∂ν
+ u

∂h′

∂ν
+ h′ ∂u

∂ν
+

∂h′

∂ν

= (uνν + 1)
∂h′

∂ν
.

Note that

∂h′

∂ν
= – sin r〈∇r,ν〉 < 0 on ∂� \ ∂BR(N),

since � ∪ BR(N) is star shaped with respect to N . Thus,

uνν(y1) + 1 < 0,

which is a contradiction to (2.33). In case (b),

0 <
∂P̃
∂ν

(y2) =
∂h′

∂ν
(n – 1)

(
cos R
cos R1

– a – 1
)

.

Note that

∂h′

∂ν
= – sin r〈∇r,ν〉 = sin R > 0 on ∂BR(N).

However, (2.32) shows that

∂P̃
∂ν

(y2) ≤ 0,

which is a contradiction. Therefore, either P or P̃ is a constant function.
Suppose P̃ is a constant function. This implies that

∂P̃
∂ν

= 0 on ∂�

and

uνν + 1 = 0 on ∂� \ ∂BR(N).

Then,

∂P
∂ν

= 0 on ∂� \ ∂BR(N).

Since P has the maximum value on ∂�\ ∂BR(N), P is a constant function in � by the Hopf
lemma. Thus, we may assume that P is a constant function. Therefore, the two boundary
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values are equal, which implies that

sin2 R1

cos2 R1
=

sin2 R
cos2 R1

+ 2a + a2.

The remaining part of the proof is exactly the same as that of Theorem 2.2. Finally, we
conclude that

u(x) =
1

cos R1

(
cos r(x) – cos R1

)
,

where r(x) = dist(N , x). Moreover, � is the standard annulus {x ∈ S
n : R < r(x) < R1}. �

In Theorem 2.4, changing the boundary conditions on ∂BR(N) into

u = a > –1 and
∂u
∂ν

=
sin R

cos R1
> 0 on ∂BR(N)

gives the same conclusion. More precisely, applying the same argument as in the proof of
Theorem 2.4, we have the following.

Theorem 2.5 Let � be an annular domain in S
n \ BR(N) such that ∂BR(N) ⊂ ∂�, where

BR(N) ⊂ S
n
+ denotes the geodesic ball of radius R centered at the north pole N ∈ S

n. Assume
that � is a weakly star-shaped domain with respect to N . Given R < R1 < π , suppose there
is a solution u ∈ C2(�) such that

⎧
⎪⎪⎨

⎪⎪⎩

�u + nu = –n in �

u = 0, ∂u
∂ν

= – sin R1
cos R1

on ∂� \ ∂BR(N)

u = a > –1, ∂u
∂ν

= sin R
cos R1

> 0 on ∂BR(N),

where ν is the outward unit normal to ∂�. Then, � is the standard annulus {x ∈ S
n : R <

r(x) < R1} and the solution u is radial and is given by

u(x) =
1

cos R1

(
cos r(x) – cos R1

)
,

where r = dist(N , x).

3 Annular domains with outer spherical boundary
In the unit sphere S

n, an overdetermined boundary value problem for an annular domain
� with outer spherical boundary can be regarded as the problem for the domain with
an inner spherical boundary. To be precise, for p ∈ S

n, let � be a domain in S
n \ BR(p)

such that ∂BR(p) ⊂ ∂�, where BR(p) denotes the geodesic ball of radius R centered at p.
Then, � is also a domain in Bπ–R(–p) such that ∂Bπ–R(–p) ⊂ ∂�. This observation gives
the following result, which is basically the same as Theorem 2.1.

Theorem 3.1 Let � be an annular domain in BR(N) such that ∂BR(N) ⊂ ∂�, where
BR(N) ⊂ S

n denotes the geodesic ball of radius 0 < R < π centered at the north pole N ∈ S
n.



Lee and Seo Journal of Inequalities and Applications         (2023) 2023:45 Page 17 of 22

Figure 2 An annular domain � with outer spherical boundary

Suppose there is a solution u ∈ C2(�) such that

⎧
⎪⎪⎨

⎪⎪⎩

�u = –n cos r = –nh′ in �,

u = 0, ∂u
∂ν

= const = c1 on ∂� \ ∂BR(N),

u = const = a < 0, ∂u
∂ν

= – sin R on ∂BR(N),

where ν is the outward unit normal to ∂� and the function h(r) is defined as before with
r(x) = dist(N , x). Assume that either � is contained in S

n
+ or u is negative. Then, � is an

annulus {x ∈ S
n : R1 < r(x) < R} and the radial solution u is given by

u(x) = cos r(x) – cos R1.

In the following, we prove the radial symmetry of the solution to an overdetermined
boundary value problem on annular domains in H

n with outer spherical boundary (see
Fig. 2).

Theorem 3.2 Let � be an annular domain in BR(p) such that ∂BR(p) ⊂ ∂�, where BR(p) ⊂
H

n denotes the geodesic ball of radius R centered at p ∈ H
n. Given 0 < R1 < R, suppose there

is a solution u ∈ C2(�) such that

⎧
⎪⎪⎨

⎪⎪⎩

�u – nu = –n in �,

u = 0, ∂u
∂ν

= sinh R1
cosh R1

on ∂� \ ∂BR(p),

u = const = a, ∂u
∂ν

= – sinh R
cosh R1

on ∂BR(p),

where ν is the outward unit normal to ∂�. If 1 – cosh R
cosh R1

≤ a < 0, then � is the standard
annulus {x ∈H

n : R1 < r(x) < R}. Moreover, the solution u is radial and is given by

u(x) =
1

cosh R1

(
cosh R1 – cosh r(x)

)
,

where r(x) = dist(p, x).

Proof Let P(u) := |∇u|2 + 2u – u2. Then, from the Bochner formula,

�P ≥ 0.
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Note that the maximum value of P is attained on the boundary of � by the maximum
principle. Using the boundary conditions,

P(u) =

⎧
⎨

⎩

sinh2 R1
cosh2 R1

on ∂� \ ∂BR(p),
sinh2 R

cosh2 R1
+ 2a – a2 on ∂BR(p).

From the assumption that 1 – cosh R
cosh R1

≤ a < 0, we have

(a – 1)2 ≤ cosh2 R
cosh2 R1

.

Then,

a2 – 2a ≤ cosh2 R
cosh2 R1

– 1 =
(sinh2 R + 1) – (sinh2 R1 + 1)

cosh2 R1
=

sinh2 R
cosh2 R1

–
sinh2 R1

cosh2 R1
.

Thus,

sinh2 R
cosh2 R1

+ 2a – a2 ≥ sinh2 R1

cosh2 R1
,

which means that the function P defined on � attains its maximum value on ∂BR(p). Sup-
pose P is not a constant function. From the Hopf lemma, it follows that

∂P
∂ν

> 0 on ∂BR(p). (3.1)

Choose a local frame {ei}n
i=1 such that en = ∂

∂r . Note that ur is constant on ∂BR(p). Since
each ei is tangent to ∂BR(p) for i = 1, . . . , n – 1, it follows that

uri = 0 on ∂BR(p) (3.2)

for i = 1, . . . , n – 1. Moreover, since ∂BR(p) is a level set of u,

ui = 0 and uij = 0 on ∂BR(p) (3.3)

for i, j = 1, . . . , n – 1. From (3.2) and (3.3),

–n + na = �u = (n – 1)
cosh r
sinh r

ur + urr = (n – 1)
cosh R
sinh R

(

–
sinh R

cosh R1

)

+ urr on ∂BR(p),

which yields that

urr = –n + na + (n – 1)
cosh R
cosh R1

on ∂BR(p).

It follows that

∂P
∂ν

= –2(n – 1)
sinh R

cosh R1

(
cosh R
cosh R1

– 1 + a
)

≤ 0 on ∂BR(p),
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which is a contradiction to (3.1). Hence, P is a constant function and �P = 0. As before,
equality holds in (2.1), which implies that

Hess u =
�u
n

g = (u – 1)g,

where g denotes the metric of Hn. The same argument as in Theorem 2.2 shows that � is
the standard annulus {x ∈H

n : R1 < r(x) < R} and

u(x) =
1

cosh R1

(
cosh R1 – cosh r(x)

)
,

where r(x) = dist(p, x). �

In the proof of Theorem 3.2, the assumption that 1 – cosh R
cosh R1

≤ a < 0 is necessary. Instead,
under the condition that the annular domain is weakly star shaped, the assumption on the
constant a can be weakened as follows.

Theorem 3.3 Let � be an annular domain in BR(p) such that ∂BR(p) ⊂ ∂�, where BR(p) ⊂
H

n denotes the geodesic ball of radius R centered at p ∈ H
n. Assume that � is weakly star

shaped with respect to p. Given 0 < R1 < R, suppose there is a solution u ∈ C2(�) such that

⎧
⎪⎪⎨

⎪⎪⎩

�u – nu = –n in �,

u = 0, ∂u
∂ν

= sinh R1
cosh R1

on ∂� \ ∂BR(p),

u = const = a < 0, ∂u
∂ν

= – sinh R
cosh R1

on ∂BR(p),

where ν is the outward unit normal to ∂�. Then, � is the standard annulus {x ∈H
n : R1 <

r(x) < R}. Moreover, the solution u is radial and is given by

u(x) =
1

cosh R1

(
cosh R1 – cosh r(x)

)
,

where r(x) = dist(p, x).

Proof One can prove Theorem 3.3 by using the same argument as in the proof of Theo-
rem 2.4. Here, we give the sketch of the proof. Define

P(u) := |∇u|2 + 2u – u2 and P̃ :=
〈∇u,∇h′〉 – uh′ + h′,

where h(r) = sinh r and r(x) = dist(p, x). Then,

�P ≥ 0 and �P̃ = 0.

The boundary conditions show that

P(u) =

⎧
⎨

⎩

sinh2 R1
cosh2 R1

on ∂� \ ∂BR(p),
sinh2 R

cosh2 R1
+ 2a – a2 on ∂BR(p).
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Suppose that

sinh2 R
cosh2 R1

+ 2a – a2 >
sinh2 R1

cosh2 R1
.

Then,

a – 1 > –
cosh R
cosh R1

.

Applying the maximum principle,

max
�

P(u) = max
∂�

P(u) =
sinh2 R

cosh2 R1
+ 2a – a2.

By the Hopf lemma and the assumption,

0 <
∂P
∂ν

= –2(n – 1)
sinh R

cosh R1

(
cosh R
cosh R1

– 1 + a
)

< 0 on ∂BR(p),

which is a contradiction. Therefore, we see that

sinh2 R
cosh2 R1

+ 2a – a2 ≤ sinh2 R1

cosh2 R1
. (3.4)

Then,

a – 1 ≤ –
cosh R
cosh R1

. (3.5)

Suppose that neither P nor P̃ is a constant function. Then,

0 <
∂P
∂ν

= 2
sinh R1

cosh R1
(uνν + 1) on ∂� \ ∂BR(p),

which implies that

uνν + 1 > 0 on ∂� \ ∂BR(p). (3.6)

Since P̃ is harmonic, the maximum value of P̃ is attained on ∂�. Suppose that P̃ has the
maximum value at y1 ∈ ∂� \ ∂BR(p). By using (3.6), the Hopf lemma and the assumption
that BR(p) \ � is star shaped with respect to p,

0 <
∂P̃
∂ν

(y1) = (uνν + 1)
∂h′

∂ν
= (uνν + 1) sinh r〈∇r,ν〉 < 0,
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which gives a contradiction. Now, suppose that P̃ has the maximum value at y2 ∈ ∂B. Sim-
ilarly, by the Hopf lemma and (3.5),

0 <
∂P̃
∂ν

(y2) =
∂h′

∂ν
(n – 1)

(
cosh R
cosh R1

+ a – 1
)

= sinh r〈∇r,ν〉(n – 1)
(

cosh R
cosh R1

+ a – 1
)

≤ 0,

which again gives a contradiction. Thus, either P or P̃ is a constant function. Suppose P̃ is
a constant function. Then,

uνν + 1 = 0 on ∂� \ ∂BR(p),

which shows that

∂P
∂ν

= 0 on ∂� \ ∂BR(p).

By (3.4), P attains its maximum value on ∂� \ ∂BR(p). However, from the Hopf lemma, it
follows that P is a constant function in �. Thus, we have �P = 0 in �. Now, we can apply
the same argument as in the proof of Theorem 2.2 to finish the proof. �
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