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1 Introduction

The Hermite—Hadamard inequality was the first result given between convex functions
and integrals. This inequality was introduced by Hermite [1] in 1883 and was later proved
by Hadamard [2] in 1893. This inequality has the following mathematical form:

1 [
95(91 + 92) < / ®(5)ds < M, (1.1)
2 02— 61 Jo, 2

where & is a convex function. This inequality also holds in the reverse direction for con-
cave functions.

This inequality has many advantages, especially in approximation theory, and is widely
used. Due to its wide applications, mathematicians started working on it and came up with
many new results. For example, Dragomir and Agarwal [3] found the boundaries of the
trapezoidal formula by taking the difference of the middle part and the right part of this
inequality and used differentiable convexity in the whole process. Later, Kirmaci [4] gave
the boundaries of the midpoint formula, which were formed from the same inequality, he
took the difference of the middle part from the left part and he also derived his results by
using differentiable convexity. Qi and Xi [5] took the difference of the middle part of this
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inequality with the average of the left and right parts to establish a new inequality that is
known as Bullen’s inequality.

However, because of their significance, researchers have used fractional calculus to cre-
ate a variety of fractional integral inequalities that are useful in approximation theory. The
bounds of mathematical integration formulas can be determined using inequalities such
as Hermite—Hadamard, Simpson’s, midpoint, Ostrowski’s, and trapezoidal inequalities.
In [6], the Hermite—Hadamard-type inequality and the bounds for the trapezoidal for-
mula were established. Differentiable convexity was used in Set [7] to establish fractional
Ostrowski-type inequalities. Through the use of Riemann—Liouville fractional integrals
(RLFIs), iscan and Wu [8] established certain bounds for numerical integration as well as
an inequality of the Hermite—Hadamard type for reciprocal convex functions. Sarikaya
and Yildirim established the midpoint bounds and a new version of the fractional inequal-
ity of the Hermite—Hadamard type in [9]. Sarikaya et al. [10] used the general convexity
and RLFIs to obtain the bounds for Simpson’s 1/3 formula. In [11], the authors used the
RLFIs to discover some new boundaries for Simpson’s 1/3 formula. The s-convexity was
utilized by the authors of [12] to analyze different Simpson’s 1/3 formula bounds. Gen-
eralized RLFIs were introduced as a new class of fractional integrals in 2020 by Sarikaya
and Ertugral [13]; they also established Hermite—Hadamard-type inequalities related to
the newly defined class of integrals. The ability to be transformed into the classical inte-
gral, RLFIs, k-RLFIs, Hadamard fractional integrals, etc. is the main benefit of the newly
defined class of fractional integral operators. Zhao et al. used generalized RLFIs and re-
ciprocal convex functions in [14] to obtain some bounds for a trapezoidal formula. Using
the generalized RLFIs, Budak et al. [15] found certain approximations for Simpson’s 1/3
formula for differentiable convex functions.

Recently, Sitthiwirattham et al. [16] found some bounds for Simpson’s 3/8 formula using
the RLFIs. For further inequalities that can be addressed using fractional and quantum
integrals, see [17—27] and the references therein.

Motivated by the ongoing studies, we obtain some new parameterized inequalities of
Simpson’s 3/8 formula type using the convexity and RLFIs. The main benefit of the newly
established inequalities is that these can be converted into classical and fractional inequal-
ities of Newton type, trapezoidal type, and many others for different choices of the param-
eters and o = 1 without being establishing one by one.

The following is a description of the paper: The basics of fractional calculus and more
significant research in this area are briefly reviewed in Sect. 2. In Sect. 3, we establish an
essential identity that is key in pinpointing the paper’s major findings. In Sect. 4, we con-
struct some new parameterized Newton-type inequalities for differentiable convex func-
tions using RLFIs. In Section 5, we find numerous inequalities for o = 1 and various pa-

rameter selections. A few suggestions for further research are included in Sect. 6.

2 Fractional integrals and related inequalities
In this section, some inequalities and basics of fractional calculus are recalled.

Definition 1 ([28, 29]) Let & € L,[60;,6,]. The RLFIs of order @ > 0 with 6; > 0 are stated
as follows:

b

1
Ifiﬁ(%):m j (e-p) '®(p)dp, x>0
1
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and

(%)

80 = s [ (o= S dp, <

respectively, where I is used for the notation of the Gamma function.

The following fractional Hermite—Hadamard-type inequality was first demonstrated in
2013 by Sarikaya et al.

Theorem 1 ([6]) For a positive and convex mapping & : 1 C R — R with & € L,[01,65]
and 0 < 6, < 0,, the following inequality holds:

&(61) + G(62)
—

01 + 6 Ma+1) .
6( 1; 2) = 2(92(1_+91)a []91+(’5(92) +]62_®(91)] <

Following that, Sarikaya and Yildrim demonstrated the new fractional Hermite—Hada-

mard inequality as follows:

Theorem 2 ([9]) For a positive and convex mapping & : I C R — R with & € L1[6;,0,],
0 <61 <0, and 61,6, € I, the following inequality holds:

&(61) + &(6,)
—

91 + 92 F(Ol + 1) @ ”
< <
@( ' ) < e U B0 + s, BO)] <

3 A new and crucial identity
In this paper, we prove a RLFIs identity involving a three-step kernel and differentiable

functions.

Lemma 1 For a differentiable function & : [61,60,] — R over (61,6,) with & € L[6;,6,], the
following equality holds:

(L+2=v)[B(60) + B©:)] + (v - x)[@<2913+ 92) N Qj(@l +3292>] o
Me+1) ., 3
= G Zone Ve OO +J5, 6(01)]

1
= (62— 91)/ A(p)[®'(pb2 + (1 - p)61) — &' (p61 + (1 - p)62) | dp,
0
where A, u,v > 0 and
p“ =2, pelo, % ’

A(P): )OD(—IL, PG[%:%)y
p*—-v, pe [%,1].
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Proof From the definition of A(p), we have

1
| a@IS (062 + 1= 0)0) - (061 + 1= p))] (32)

1

= f (% = 2)&' (06 + (1 - p)61) dp + /13 (0% = 1) & (0 + (1 - p)6:1) dp

0 3

1
+ / (,0"‘ - v)@’(,o@z +(1=p)o1)dp
5

2

+/0§()”—p“)05/(,091 +(1-p)bs) d,0+[§(u—,o"‘)®/(p91 +(1-p)8)dp

1
+/; (v=p")& (pbr + (1 p)62) dp

3

:11 +12+13 +14+I5 +16.

From integration by parts, we have

I = /0§ (0% = 2)&(pbs + (1 - p)61) dp (3.3)

1 1
L Ber(1-pe)]’ a3
= (p* — 1) =22 PR - / P B(pr + (1= p)6r) dp
0, — 61 o B2—01Jo

1 1\* 291 +92
zez—el[«g) 'A)®< 3 )”6(91)}

o
0y — 01
2

I = ﬁ ’ (0% = )& (06 + (1 - p)6:) dp (3.4)

3

i 92191[«%)&‘“)@(91 +3202> ) <<%>a‘“>®<291;92>}

2

3 a-1
ﬁ P B(pbs + (1 - p)61) dp,
3

1
3
[ (oo 1= pior)ap,
0

o
0y — 01

and

1
I3 = /2 (p* = )& (pb2 + (1 - p)61) dp (3.5)

3

1 2a 91+292
e =((5) -)e(*5)]

o
0, — 01

1
fz P &(p0s + (1 - p)61) dp.
3
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By adding the equalities (3.3)—(3.5) and from the definition of the right RLFI, we have the

following relation

(62 — O [1 + I + I3] (3.6)
— 2801 + (1 x)@(@) . u)@(@)
Ma+1) ,
+(1-v)6(6,) - m]92_6(91)~

Similarly, from the definition of the left RLFI, we have

(02 — 01)[1s + I5 + I6] (3.7)
61 + 26 20; + 6
= AB(6y) + (p,—,\)cﬁ( ”3 2) +(v—u)(’5( 13+ 2)
Mo +1)
1-v)8(6,) - ———J5 . 6(6,).
+(1=)86) - 6
Thus, we obtain the desired equality by summing (3.6) and (3.7). a

4 Fractional Newton inequalities
In this section, some inequalities of Newton type are established using the RLFIs.

Theorem 3 Let & as in Lemma 1 hold. If |®'| contains the convexity property, then we

have:
26, + 6. 01 + 26
(142 - 0)[6(0) + 6(0)] +(v—k)|:®<%) +®(%>] (4.1)
Fo+1) ., o
- m[]gl+®(92) +]92_Q5(91)]‘
< (62— 0)[A1 (M @) + As(p, @) + As(v, )] (|&'(01)| + |8 (62)]),
where
1 200 5 1+1 1 x 1o
AT =%, 0<A<(3)%
Al()\,a)=/3}p“—k}dp= iﬂl 1+3’“1(01+1) 3 < X (3)
0 3 T 30l (gr)’ A> (g)a,
33:d(1a7+11) - %’ 0< H= (%)a’

2
3 1 1+a
Az, ) :/1 | —uldp = Eutre + L - () <= ()
3

© 2l 2\«
3~ 3G’ n>(3)

and

31+Ct _ol+a v

1 3¢+l (g +1) — 3
= @ _ = 20 141 2l 5y 2ye
A3(U’a) ‘/2 |'O \)|d,0 wa? ¢ 7 32+ (g41) ~ 3’ (3) V=
3

v 3l+a_ol+a

37 3eI(g41)’
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Proof Taking the modulus in (3.1) and using the convexity of |&'|, we have

‘(1 - 0)[B0) + B(0)] + (v —x)[es(%;ez) + @(01 ;292)]

Cla+1) 0y «
- ﬁ[fgﬁcﬁ(ez) +J5_6(6)]

1
< —91)/0 [A)|[|8 (62 + (1= p)61)| + |& (b1 + (1= p)62)|]dp

= (92—91)[/03|,0°‘ = 1[[|8' (062 + (1= p)01)| + &' (061 + (1 - p)62) ] d
+/1§|p°‘—ul[lﬁ/(p92+(1—p)01)| + &' (061 + (1 - p)62)|]dp
1
o |pa_u|[|@/(pe2+(1_p)el)|+|@/(pel+(1_p)92)|]dp]

< (6, —91)[0@5/(91” +[8'(6,)])

% ; 1
x(/ !p“—k!d,o+ﬁ ‘p"‘—u’dp+f2’p“—v‘d,o)]
0 3 3

= (62— 01)[A1 (A, @) + Az (i, @) + A3 (v, @) | (|8 (61)] + |&'(62)]).

Thus, the proof is completed.

O
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Theorem 4 Let & as in Lemma 1 hold. If |&'|1, q > 1 contains the convexity property, then

we have

e nwfeen) o]+ - o 22 ro( 2122

Cla+1) o, i}
B (9201-;1)05 []91+®(02) +]92,®(91)]

© 4 (A1000) — 440, 0) |8 (0)])

}

(0, — )[4y * ()| (A )| &' (82)]

IA
_=

+ (Aa(h )| (01)] " + (A1(h @) — Aa(h, @))|&'(62)]7)

Q=

+ Ay (e (As(11,0)| 6] + (Aalpt,0) — As(p1,0)) [ &/(61)[)
+ (As(lt;a)‘ﬁl(@l”q + (Az (1, @) —A5(IM0‘)) |®,(92)|q) g }
)

+Al_a(v,a){(As(v,a)|Q5/(92)|q +(As(v, @) — Ag(v, ) |®/(91)|q)%

Q=

i

+ (As(v,0)[®' ()] + (A5 (v, @) — Ag(v,@)) |8 (6)|")

where
} gy L kg < (L
As(h ) = ,0|/0a —)»|d,0 = ] 2+ 3% 2(as2) 18’ -3
0 A1 A> (%)
18 3¢+2(q+42)’ 372
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22+oc_1 n 1
2 30202 67 0<pn=(3)%
2 2+a 5
As(u«,Of):/1 plo —uldp =1 Foutre + g -, (B <=3,
3 w 22+a_1 2
6~ @(ar2)’ w>(5)"

and

32+O(_22+Ot 5 2\
327" Sy < (2
1 3‘“2(a+2) 18’ O<‘)_(3) 4
- o _ =) o 142 224320 13y 2\«
Ag(v,a) /2 ,0|p v|dp 722V Yt Ty 18 (3)*<v=1,
3 50 32+0 92+

18 ~ 3252’ v>1.

Proof Using the power mean inequality in (3.1) after taking the modulus and using the

properties of the modulus, we have

‘(1 +A— V)[Q5(91) + ®(92)] +(v- A)[Qﬁ(@) " 6(01%292)]

IN'a +1)

= @, — e V) + )5, 6(61)]

1
< (92—91)/0 |A)|[|8' (062 + (1= p)h)| + |&' (061 + (1 - p)6s)|] dp
- (92-91)[/3|p“ = |[[8 (082 + (1= p)B1) | + |& (061 + (1= p)6:)|] dp
/ 0% = u|[|6' (06 + (1 = )81)| + |& (061 + (1 = p)6s)[]dp

+f2 |pa_u|[|@/(p92+(1_p)el)|+|@/(pel+(1_p)ez)|]dp]

3 S5/ [ 1
<=0 ([M1o-lae) | ([ 1ol o+ a- o) a)

+ (/§|,0°‘—)L||Q5’(p91 +(1—,0)92)|qdp)§}

- / |p® —uldp) q{(/lglp“—M||®’(p92+(1—p)91)|qdp)q

1

f o — 1||® (061 + (1 - p)Gz)qup) }

(
(
+( o “"dp> {(/ [0 ]|/ (06> + (1 - 1) | d,o)
(

1

1

f’p vHQﬁ 001 + (1 - p92)|qd,o)}].
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Now, using the convexity of |&'|7, we have

|(1 +2=0)[B(61) + B(6)] + (v -A)[@(Zel +92) + es(el +292>]

3 3

Mo +1)

= @, — e VA 02) + )5, 6(61)]

IA

(62— 61)

« [Ai‘m,a){(w/(ez)qup|pa_x|dp+ |¢s/(el)|q/3(1_p)|pw_wp)"
0 0

- <|®/(91)|q/030|p°‘—)\|dp+ IQS/(%)I'I/OB(I—,O)I/J“—)\Idp>q}

1_% / q % o / q % o %
v, (u,a){(|®<ez>| | olot=uldo+ @l [ a-plo —u|dp>
3 3
2 2 1
’ q 3 o ’ q 3 o g
+(|®(91)| ﬁ plp* —nldp +|®'(6:)] /1 1-p)|p —uldp) }
3 3
1

1-1 1 1 7
eay oo (1@ [ ol vl do |8 [ 0-plo®~v]dp)
3 3

1 1 i
+ (IQS’(@l)Iq/2 plp*—v|dp+ |(’5’(6’z)|q/2 (l—p)lp“—VIdp> ”
= (02— )[4, 7 () {(Aa0)| & (B)[* + (A1 () — As, @) |®/(01)|”)5

+ (440, 00| 80D + (4100 @) — As0,0)) [ 6/(62)]7) )

Q=

s Ay (o) { (A5 (1,0 [ B @) + (Aa(e, ) ~ As(p1, 0)) |&'(61)|)

}

)
A (0,0 { (A0, )| B/ O] + (As(v,) — As(v, ))& (0)]1) 7

Q=

+ (As(u,a)lﬁ’(el)lq + (A2, @) — As(p, ))& (62) |

+ (As(v,0)[&'(01)|" + (A3(v, @) ~ A6(v,@)) |8/(62)] ) 7 }].
Thus, the proof is completed. 0

Theorem 5 Let & as in Lemma 1 hold. If |&'|1, g > 1 contains the convexity property, then
we have

’(1 +3=v)[6(01) + B(6a)] + (v - ”[6(@) * 6(@)]
INa+1)
(62—

[]91+Q5(92)+]92_ (€ )]

<(62-61) [(A7()w a,p) +As(v,a,p))

x {<5|(’5’(91)|”’ + |®’(92)Iq>% + <|(’5’(91)|" + 5|Q5/(92)Iq> 7 }
18 18
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165/(61)]7 + |®/(92)|q) }

+ 2A9(M,a,p)< 6

where

NURY
A7()\,05;P)= (/ |10 _)"| dp) )
0

1

1 » »
Ag(v,a,p) = (/2 % =] dp) ,
3

1

Y
A9(,U«;Ol;l9): (‘/1 |,O —,u| dp)
3

andq ' +p7t =

Proof Using the Holder inequality in (3.1) after taking the modulus and using the proper-
ties of the modulus, we have

‘(1 + 4= )[&(601) + B(6)] + (v - A)[@(@) ’ 6(01%292)]

IN'a +1)

= @, — e V) + )5, 6(61)]

1
< (92—91)/0 |A)|[|8' (062 + (1= p)h)| + |&' (061 + (1 - p)6s)|] dp
- (92—91)[/3|p°’ = |[[8 (082 + (1= p)B1) | + |& (061 + (1= p)6:)|] dp
/ 0% = u|[|6' (06 + (1 = )81)| + |& (061 + (1 = p)6s)[]dp

+/2 |pa_u|[|@/(pez+(1_p)el)|+|@/(pel+(1_p)ez)|]dp]

< (%—%)[(/f!p“ —klpdp>}’{(/O%W(p@z+(1—p)01)!qdp);
+ (/%|Q§/(,091 +(1—,0)92)|qd,0>%}

( Ip u|pdp) {(flglt’ﬁ’(pé’z+(1—p)91)|qdp>%1

(f &' (061 + (1 - p92)|qdp)l}

(/;

()

+

+

! 1
| VIpdp) {(/2 |®’(,092+(1—p)91)|qdp>

’6 001+ (1 - pGQ)‘qdp> ”
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Now, using convexity we have,

’(1 F - 0)[B(0) + B(6)] + (v —x)[e5<2913+92> ¥ @(91 +3292>]

Ma+1) ., )
_ ﬁ[ﬂauﬁ(@z) +]92_Qj(91)]‘

< 02-00 arcn){ ([ ele @]+ - pleo0]")dp )

([ wlewrsa-plewr )|
0

+A9(M,05:P){ <ﬁ§ (p|®'(62)|" + (1 - p)|&'(61)|") dﬂ)

3

+ (/13 (p|®' @) + (1 - p)[®'(62)]") dp) ' }

3

1
q

1
q

1
+A8(u,a,p){</2 (pl@’(92)|q+(1—p)|®/(91>|")dp)

1 g
+ (f (p|®'@D]" + (1 - p)|&'62)]") dp) ”

= (92 - 91)|:(A7()\x04,19) +A8(V:0lrp))

: {<5|®'(91)"’ + |®,(92)|q):1 ' (Iﬁ’(el)w ; 5|es/(92)lq>;}
18 18

1&/(61)]7 + |®/(92)|q> 3}
. .

+ 2A9(u,oc,p)<
Thus, the proof is completed. O

5 Special cases and an example
In this section, we give some special cases of newly established inequalities on the basis of
the parameters used in the inequalities. We also present an example to show the validity
of the given inequality.

From Lemma 1, we have the following special cases:

(i) By setting A = §, 1 = 3, and v = %, we have the following equality

0, + 0 0, + 260
%[@(eg%@(z 13+ ") +3@5( ”32 2)+@5(92)]

~ Mo +1)
2(60, — 61)*

(6 — 61

1
- T)/o A(p)[&'(pba + (1 = p)61) = &' (pth + (1= p)s)] dp,

6., 6(62) +J5,_6(61)]

Page 10 of 17



Ali et al. Journal of Inequalities and Applications (2023) 2023:49

where

o 1 1
1Y -y pe[oﬁgx
A(IO) = ,Oa - %y ,0 € [%;%);
p(x - %r pE [%11]'

This is established by Hezenci et al. in [30] and this identity helps us to obtain
Newton inequalities for Riemann-Liouville fractional integrals.

(ii) By setting = A = v = 3, we have the following new equality

2

(’5(91) + QS(@Z) IMNa+1)
2(6, — 61)*
(92 - 91) (

[]gﬁ@(eZ) +]92_Q5(91)]

> "(p62+ (1= p)6r) — & (b1 + (1 - p)62) | dp

This new identity can help us to obtain the bounds of the trapezoidal formula for
Riemann-Liouville fractional integrals.

(ili) By setting o = 1, we have the following equality

%[(1 + 4= V)[B(61) + B(6,)] + (v _x)[@(W) . 6(%)]}

LY P
- B(2)dsx
GZ_GI\L]

_ 1
- (927291) /0 AP)[® (00> + (1= p)01) = &' (061 + (1= p)62) ] dp,

where

1Y _)"7 P E [O’ %):
Ap)=1p-u, pelz ),
pP—V, pE [%: 1]'

This equality was established by You et al. in [31, Corollary 2].
From Theorem 3, we have the following special cases:
(i) Bysetting A = §, it = 3, and v = %, we have the following fractional Newton

inequality

'%[6(91) + 3@(291; 92) + 3@5(91 +3292) + @(02)]

F(Ol+1)
2(6, - 61)«
6, — 61

[, &(6) +fg;_es(el>]‘

[Bi(e) + Bs(a) + Bo(e)](|®'(61) | +

)
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where
1
1 20 (1y1+1 1 1 In(g)
3], 1 Tra(8) 7@ + g~y 0<o = ()’
Bi(a) = p*——ldp= ()
0 1 _ 1 o> —3
24~ 30+ (g41)’ In(1)’
ol+a_q 1 ln(%)
211 <
5 3‘”1(o¢+1) 6’ 0<O[_ ln(%)’
3 1 1 1+a In(3) In(3
_ @ = =] e ()i 12t 1 In(g < In(y)
By(a) _/1 Py dp =112 + wigy — 2 ) <%=y
1 alteg In(})
z - o>
6 3xtl(g+1)’ In(3)
and
1 31+0(_21+0t 7 0 < ln(%)
a 7 30 (qr1) 24’ o= In(2)’
Bs(a) = pY—2ldp = 1 oltaslie n(Z)
3 8 2o (Tylvy 4 224870 360 o TS
3 T+a '8 3otl(g+l) 247 n(3)”

This was established by Hezenci et al. in [30].
(ii) By settingu=1=v = %, we have the following fractional trapezoidal-type new

inequality

'6(01) +60,) T(a+1)
2 C2(0y — 0y
5 6, — 0,

s, 6(6) +132_e5(91>]‘ (5.1)

[Ci(@) + Ca(a) + C3()](|&' (0] + |&'(62)])

6, -0 N 1 17, ,
L 1[ i (5) . _5}(|@(91)|+|@(92)

l+a o+1

)

where
1 a (1y1 1 1 In(})
3 m(i)“ + 3+l (g+1) 67 O<a = (L)’
Cl(a)=/0 ,Oa——‘d/): ) m(%)n3
E_3ot+l(a+1)r a>|n(%)’
alve1 1 In(3)
9 ) 3a+l(a+1) 6’ 0<O[§ ln(%)’
3 1 Lo In(}) In(3)
_ a _ a (1 a 1+2 _1 2 2
CZ(OI)—\/1 14 Z‘dp— 1+a(2) + 3‘“1(oz+1) 2 ln(%) <o < ln(%)’
3 1 alveg N In(3)
6 3¢tl(g+1)’ o m(%)
and
31+O(721+Ot _ 1 ln(%)
Cs(a) = 1 p—~|dp={ ¥ 0<a=iay
’ 2 2 o (Lyg g 2t 5 In3)
3 1+ ‘2 30+l (g 41) 6’ 1n(%)'

(ili) By setting o = 1, we recapture the inequality established in [31, Corollary 5].
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30 T T T

The left term
The right term

25

20

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Figure 1 An example of the inequality (5.2) depending on ¢, computed and plotted with MATLAB

Example 1 Let us consider a function & : [61,6,] = [0,1] — R given by &(p) = p? in the
inequality (5.1). Then, the left-hand side of (5.1) reduces to

|6(91)+05(92) o+ 1) [ . &(6:) +J5,_6(61)]
01+ -

2 26, - 6y)

1 « 1 a’+a+2

1 1
|z _= 1-— a-1 2d / a-1 2d |- == |
‘2 2[/0( PYTprdos |t 0t | = - e 2)

The right hand-side of (5.1) becomes

0y — 6,

[Ci(@) + Ca() + C3(@)](|&(6)] + |&'(62)))

o 1 @ 1 1
= — + - —.
l+a\2 a+1 2

Then, by the inequality, we have

1 ata+2 a (1\* 1 1
- - < -] + -—. (5.2)
2 2(a+1)(x+2) 1+a\2 a+1l 2

One can see the validity of the inequality (5.2) in Fig. 1.

As can be seen in Fig. 1, the left-hand side of (5.1) in Example 1 is always below the
right-hand side of this equation, for all values of @ € (0, 5].

From Theorem 4, we have the following special cases:
(i) By setting A = %, W= %, and v = %, we have the following fractional Newton
inequality

'%[6(91) + 3@5(291; 92) + 3@(91 +3262) + @(92)]

B Mo +1)
2(0, — 61)*

[ﬁﬁ@ﬁﬂ&ﬁﬁw
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- 0y — 61
- 2

+ (Bal@)|6'0)|7 + (B(@) - Ba(@))|6'(62)|7) )

(B @) (Ba(@)] & 62" + (Buleo) — Bala)|6/01)|7)

Q=

. B;iq(a){(Bg(a)|®/(92)|q + (BZ(O[) —B5(Ol)) |Q5’(91)|q)

J

+ B3 7 (@)] (Bo(@)] & 6:)] + (Bs(@) ~ Be(a) | &' (61)])

Q-

+ (Bs(@)|®'(61)|" + (Ba() — Bs(@)) |8 (62)|)

Q=

+ (B6(a){05/(91)|q + (Bg(ol) —Ba(a))|®’(92)’q)% }],

where
1 a (1\1+2 1 1 In(§)
3 o 1 m(g) * +3“+2(a+2)_m’ 0<a§ln(%)’
By(a) = pp—gdp= ) . in(L
0 T2 ~ 332q12)’ o> i
A2 (0 +2) In(3)
22+a_q 1 ln(%)
5 ) 3‘“2(a+2) - 12 0<C{§ ln(%)’
3 2 2+ In(%) In(3)
_ o _ a (1y1+5 1+2 _ 5 2 2
Bs(a) —/1 p|p" = 5’613,0 =13a() "+ 32(+2) 36 In(d) <a= n(3)’
3 2+a_ 1n(l)
1 _ 271 2
12~ 3972(qr2)’ o> In(%)
and
32+ _g2+a 35 ln(%)
Be(a) = Pl 7] gp = | 3@ " 1w O<a=ia)
6 - 2 PP 8 p= ( )1+7 92+ 4 32+« _ 91 o> ln(%)
3 2+a 30+2(g+2) 1447 in(2)°

This was established by Hezenci et al. in [30].
(ii) Bysettingpu=A=v= %, we have the following fractional trapezoidal-type new

inequality

6(91) + @(92) F(Ol + 1)
2 26, - 6))"
- 6, — 61

[, ®(6:) + J5,_®(60))]

N

[C117 (Ol){(c4(ot)‘(’5/(92)|q +(Ci(@) - Ca(@)) |6/(91)‘q)
}
+ Gy @] (Co(e)| /)| + (Cale) — C@) |6 @[

}

+Cy (@) (Cole)|®'(62)] + (Cala) - Cole)) &' (61)]")

i

Q=

2
+(Cl|&' @] + (Ci(@) - Cu) &' @)[)

Q=

+(Cs(@)|®'(01)|" + (Ca(@) - Cs(@))|®'(62)])

Q=

Q=

+ (Co(@)|'(01)|" + (C3(e) - Co(@))|®'(62)])
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where
1
1 _a (1y1+2 1 1 In(3)
3|, 1 2va(2) € gy T 0<o s (1)’
Cala)= | p|p*=5|dp =1 | ) in(1)
0 = 1
36 T 302(q2)’ @2 ndy
1
92+ _] 1 1“(7)
2771 1 <
) . 3072(qr2) | 127 O<a=< ()’
3 2 240 in(}) in(})
— o _ = ) o (Iyl+g 1427 5 M3 Py
CS((X) _ﬁ PP 2 dp - 2+a(2) *+ 30+2(r42) 367 ln(%) <a= ln(%)’
3 1 92+ _1 o> ln(%)
12 3%+2(g+2)’ 1n(§)
and
32+ _92+a 5 In( ;)
1 e 367 O<a<—3,
Col@)= | plp*—v|dp=1 "> % ()
6 2 L(l)1+g 92+a | 32+ 13 o> ln(%)
3 2+ V2 30+2(¢+2) 36’ 1n(%)'

(ili) By setting o = 1, we recapture the inequality established in [31, Corollary 6].
From Theorem 5, we have the following special cases:

(i) By setting A = %, n= %, and v = %, we have the following fractional Newton

inequality
)1[6(91) " 3@<M> " 3@(@) N @(92)]
8 3 3
Me+1) o
- WUGHQS(QZ) +]92_Q5(91)]‘

<92—91 A 1 A 7
5K + -,
= 7 80119 8\ g p

x {(%/(emq + |es/<ez>|‘f)é . (I@’(el)w + 5|®/(92>|q>%}
18 18

2y () (1@

This was established by Hezenci et al. in [30].

(ii) Bysettingpu=A=v= %, we have the following fractional trapezoidal-type new
inequality

'6(91)+®(92) F(Ol + 1)
2 T 2(6, - 01)"

<92—91 A 1 A 1
~r % + -0,
=2 \p®P) o\ ®p

| (2o |®/<92>|q)5 Nk 5|®/(92>|q>%}
18 18

ey (L) (NI

[131+Q5(92) +]§f_,_®(91)] ‘
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6 Conclusion

Using the RLFIs, we illustrated several novel Simpson’s second-type inequalities for dif-
ferentiable convex functions. Additionally, it is demonstrated that the newly established
inequalities are a continuation of those that already existed. We used specific choices for
the parameters in the new inequalities because we attained some known inequalities for
these choices. It is important to note that equivalent inequalities can also be obtained us-
ing Hadamard, Conformable, and Katugampola fractional operators as well as fractional
operators with an exponential kernel. Future workers will be able to obtain comparable
inequalities for multiple convexity types and coordinated convexity on fractals, which is a
fascinating and novel challenge.
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