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Abstract

In this work, by the introduction of some parameters, a new half-discrete kernel
function in the whole plane is defined, which involves both the homogeneous and
the nonhomogeneous cases. By employing some techniques of real analysis,
especially the method of a weight function, a new half-discrete Hilbert-type
inequality with the new kernel function, as well as its equivalent Hardy-type
inequalities are established. Moreover, it is proved that the constant factors of the
newly obtained inequalities are the best possible. Finally, assigning special values to
the parameters, some new half-discrete Hilbert-type inequalities with special kernels
are presented at the end of the paper.
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1 Introduction
Suppose that p > 1, � is a measurable set, and f (x), µ (x) are two nonnegative measurable
functions defined on � . Define

Lp,µ (� ) :=
{

f : � f � p,µ :=
(∫

�
f p(x)µ (x) dx

)1/p

< �
}

.

Specifically, if µ (x) � 1, then we have the abbreviations: � f � p := � f � p,µ , and Lp(� ) :=
Lp,µ (� ).

In addition, let p > 1, an, � n > 0, n � � � Z, a = {an}n� � . Define

lp,� :=
{

a : � a� p,� :=
(∑

n� �

ap
n� n

)1/p

< �
}

.

Specifically, if � n � 1, then we have the abbreviations: � a� p := � a� p,� , and lp := lp,� .
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Consider two real-valued sequences: a = {am}�
m=1 � l2, and b = {bn}�

n=1 � l2, then

�∑
n=1

�∑
m=1

ambn

m + n
< � � a� 2� b� 2, (1.1)

where the constant factor � is the best possible. Inequality (1.1) was proposed by Hilbert
in his lectures on integral equations in 1908, and Schur established the integral analogy of
(1.1) in 1911, that is,

∫ �

0

∫ �

0

f (x)g(y)
x + y

dx dy < � � f � 2� g� 2, (1.2)

where f , g � L2(R+), and the constant factor � is also the best possible.
Inequalities (1.1) and (1.2) are commonly named as Hilbert inequalities [1]. In recent

decades, especially after the 1990s, a great many extended forms of (1.1) and (1.2) were
established, such as the following one provided by Krnić and Pečarić [2]:

�∑
n=1

�∑
m=1

ambn

(m + n)�
< B

(
�
2

,
�
2

)
� a� p,µ � b� q,� , (1.3)

where 0 < � � 4, p > 1, 1
p + 1

q = 1, µ m = mp(1–� /2)–1, � n = nq(1–� /2)–1, and B(u, v) is the Beta
function [3].

Moreover, Yang [4] established the following extension of (1.2), that is,

∫ �

0

∫ �

0

f (x)g(y)
x� + y�

dx dy <
�

� sin ��
� f � p,µ � g� q,� , (1.4)

where � , � , � > 0, � + � = 1, µ (x) = xp(1–�� )–1, and � (x) = xq(1–�� )–1.
With regard to some other extended forms of inequalities (1.1) and (1.2), we refer to

[5–11]. Such inequalities as (1.3) and (1.4) are commonly known as Hilbert-type inequal-
ities. It should be pointed out that, by introducing new kernel functions, and considering
the coefficient refinement, reverse form, multidimensional extension, a large number of
Hilbert-type inequalities were established in the past 20 years (see [12–23]).

It should also be pointed out that the kernel function in inequalities (1.1) and (1.2) are
homogeneous [11, 12], and there exists another form of (1.1) with a nonhomogeneous
kernel function [12], that is,

∫ �

0

∫ �

0

f (x)g(y)
1 + xy

dx dy < � � f � 2� g� 2. (1.5)

The discrete form of (1.5) can also be established, but its constant factor cannot be proved
to be the best possible (see [12], p. 315). In 2005, Yang provided a half-discrete form of (1.5)
and proved that the constant factor is the best possible, that is [24],

∫ �

0
f (x)

�∑
n=1

an

1 + nx
dx < � � f � 2� a� 2. (1.6)

With regard to some other half-discrete inequalities with homogeneous and nonhomoge-
neous kernels, we refer to [23, 25–32].
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The main objective of this work is to establish a new class of half-discrete Hilbert-type
inequalities defined in the whole plane with the kernel functions involving both the ho-
mogeneous and nonhomogeneous cases, such as the following two:

∫ �

–�
f (x)

∑
n� Z0

an

1 + (xn)� + (xn)2�
dx <

2
�

3�
3�

� f � p,µ � a� q,� , (1.7)

∫ �

–�
f (x)

∑
n� Z0

an

x2� – (xn)� + n2�
dx <

(4 +
�

3)�
3�

� f � p, �µ � a� q, �� , (1.8)

where µ (x) = |x|p(1–� )–1, � n = |n|q(1–� )–1, �µ (x) = |x|p(1–3� /2)–1, and �� n = |n|q(1–� /2)–1.
More generally, a new kernel function with multiple parameters, which unifies some ho-

mogeneous and nonhomogeneous cases is constructed, and then a half-discrete Hilbert-
type inequality and its equivalent forms defined in the whole plane are established. The
paper is organized as follows: detailed lemmas will be presented in Sect. 2, and the main
results and some corollaries will be presented in Sect. 3 and Sect. 4, respectively.

2 Some lemmas
Lemma 2.1 Let 	 � { 1,–1}, and


 :=
{

t : t =
2i + 1
2j + 1

, i, j � Z
}

.

Suppose that � � (0, 1), � , � � R+ 	 
 , and � , � , � satisfy � < � and � + � < 1. Define

K(z) :=
1 – 	 z�

1 – 	 z�
, (2.1)

where z 
= 1 for 	 = 1, and z 
= –1 for 	 = –1. Let K (1) := �
� for 	 = 1, and K(–1) := �

� for
	 = –1. Then,

G(z) := K(z)|z|� –1 (2.2)

decreases monotonically on R+, and increases monotonically on R–.

Proof We first consider the case where 	 = 1, and z � (0, 1) � (1, � ), then we have

dK
dz

=
(
1 – z� )–2z� –1H(z), (2.3)

where

H(z) = (� – � )z� – � z� –� + � . (2.4)

We can easily obtain that

dH
dz

= � (� – � )z� –1 – � (� – � )z� –� –1 = � (� – � )z� –� –1(z� – 1
)
. (2.5)
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Therefore, we have dH
dz > 0 for z � (0, 1), and dH

dz < 0 for z � (1, � ). It follows that H(z) �
H(1) = 0. By (2.3), we obtain dK

dz < 0 for z � (0, 1) � (1, � ), and therefore K(z) decreases
monotonically on R+ for 	 = 1. Since 0 < � < 1, it can also be obtained that G(z) = K(z)z� –1

decreases monotonically on R+ for 	 = 1.
Secondly, consider the case of 	 = 1, and z � (–� , 0). Setting z = –u, u � (0, � ), and

observing that � , � � R+ 	 
 , we obtain

G(z) =
1 – z�

1 – z�
|z|� –1 =

1 + u�

1 + u�
u� –1 := L(u). (2.6)

In view of 0 < � < 1, and � + � < 1, we obtain

dL
du

= –u� –2(1 + u� )–2[(1 – � – � )u� (2.7)

+ (1 – � – � + � )u� +� + (1 – � + � )u� + 1 – �
]

< 0.

This implies that L(u) decreases monotonically with u (u � R+), and therefore G(z) in-
creases monotonically with z (z � R–).

Lemma 2.1 is proved for 	 = 1. Additionally, in view of � , � � R+ 	 
 , it follows from the
above discussions that Lemma 2.1 holds obviously for the case where 	 = –1. �

Lemma 2.2 Let 	 � { 1,–1}, and


 :=
{

t : t =
2i + 1
2j + 1

, i, j � Z
}

.

Suppose that � � (0, 1), � , � � R+ 	 
 , and � , � , � satisfy � + � < � . Let � (z) = cot z, and
K(z) be defined by (2.1). Then,

∫ �

–�
K(z)|z|� –1 dz =

�
�

[
�

(
��
2�

)
– �

(
(� + � + � )�

2�

)]
. (2.8)

Proof Consider the case where 	 = 1. Observing that � , � � R+ 	 
 , we obtain

∫ �

–�
K(z)|z|� –1 dz =

∫ �

0

1 – z�

1 – z�
z� –1 dz +

∫ �

0

1 + z�

1 + z�
z� –1 dz (2.9)

=
∫ 1

0

1 – z�

1 – z�
z� –1 dz +

∫ �

1

1 – z�

1 – z�
z� –1 dz

+
∫ 1

0

1 + z�

1 + z�
z� –1 dz +

∫ �

1

1 + z�

1 + z�
z� –1 dz

=
∫ 1

0

z� –1 – z� +� –1

1 – z�
dz +

∫ 1

0

z� –� –� –1 – z� –� –1

1 – z�
dz

+
∫ 1

0

z� –1 + z� +� –1

1 + z�
dz +

∫ 1

0

z� –� –� –1 + z� –� –1

1 + z�
dz

= 2
[∫ 1

0

z� –1 – z2� –� –1

1 – z2�
dz +

∫ 1

0

z� –� –� –1 – z� +� +� –1

1 – z2�
dz

]

:= 2(J1 + J2).
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Expanding 1
1–z2� (z � (0, 1)) into a power series, and using the Lebesgue term-by-term

integration theorem, we obtain

J1 =
∫ 1

0

�∑
j=0

(
z2� j+� –1 – z2� j+2� –� –1)dz (2.10)

=
�∑
j=0

∫ 1

0

(
z2� j+� –1 – z2� j+2� –� –1)dz

=
�∑
j=0

(
1

2� j + �
–

1
2� j + 2� – �

)
.

Observing that � (z) = cot z (0 < z < � ) can be written as the following rational fraction
expansion [3]:

� (z) =
1
z

+
�∑
j=1

(
1

z + j�
+

1
z – j�

)
,

we obtain

�
(

��
2�

)
=

2�
�

[
1
�

+
�∑
j=1

(
1

2� j + �
+

1
� – 2� j

)]
(2.11)

=
2�
�

lim
n��

( n∑
j=0

1
2� j + �

+
n∑

j=1

1
� – 2� j

)

=
2�
�

lim
n��

( n∑
j=0

1
2� j + �

–
n–1∑
j=0

1
2� j + 2� – �

)

=
2�
�

lim
n��

[
1

2� n + 2� – �
+

n∑
j=0

(
1

2� j + �
–

1
2� j + 2� – �

)]

=
2�
�

�∑
j=0

(
1

2� j + �
–

1
2� j + 2� – �

)
.

Combining (2.10) and (2.11), we obtain

J1 =
�
2�

�
(

��
2�

)
. (2.12)

Similarly, we have

J2 = –
�
2�

�
(

(� + � + � )�
2�

)
. (2.13)

Inserting (2.12) and (2.13) into (2.9), we arrive at (2.8) for 	 = 1. Additionally, if 	 = –1,
then it is obvious that (2.9) is still valid owing to � , � � R+ 	 
 , and it follows therefore
that (2.8) holds for the case where 	 = –1. Lemma 2.2 is proved. �
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Lemma 2.3 Let 	 � { 1,–1}, and


 :=
{

t : t =
2i + 1
2j + 1

, i, j � Z
}

.

Suppose that � � (0, 1), 
 � 
 , � � (0, 1] 	 
 , � , � � R+ 	 
 , and � , � , � satisfy � < � and
� + � < min{1, � }. Assume that p > 1, 1

p + 1
q = 1, Z0 := Z \ { 0}, and K(z) is defined by (2.1).

For a sufficiently large positive integer l, set

�a := { �an}n� Z0 :=
{
|n|�� –1– 2�

ql
}

n� Z0 ,

�f (x) :=

⎧⎨
⎩

|x|�
 –1+ 2

pl , x � S,

0, x � R \ S,

where S := {x : |x|sgn 
 < 1}. Then,

�J : =
∑
n� Z0

�an

∫ �

–�
K

(
x
 n� )�f (x) dx =

∫ �

–�

�f (x)
∑
n� Z0

�anK
(
x
 n� )dx (2.14)

>
l

|
 � |

[∫
[–1,1]

K(z)|z|� –1+ 2
pl dz +

∫
R\ [–1,1]

K(z)|z|� –1– 2
ql dz

]
.

Proof Write

�J =
∫

x� S–
�f (x)

∑
n� Z+

�anK
(
x
 n� )dx +

∫
x� S–

�f (x)
∑
n� Z–

�anK
(
x
 n� )dx

+
∫

x� S+
�f (x)

∑
n� Z+

�anK
(
x
 n� )dx +

∫
x� S+

�f (x)
∑
n� Z–

�anK
(
x
 n� )dx

:= J1 + J2 + J3 + J4,

where S+ := {x : x � S 	 R+}, S– := {x : x � S 	 R–}.
If x � S–, n � Z+, then we have x
 n� < 0. By Lemma 2.1, it can be proved that G(x
 n� )

decreases with n (n � Z+). Additionally, in view of � � (0, 1] 	 
 , it can also be proved that
|n|� –1– 2�

ql decreases with n (n � Z+). It follows therefore that

�anK
(
x
 n� ) = |x|
 (1–� )G

(
x
 n� )|n|� –1– 2�

ql

decreases with n (n � Z+) for a fixed x (x � S–), and it implies that

J1 >
∫

x� S–
|x|�
 –1+ 2


pl

∫ �

1
K

(
x
 y� )|y|�� –1– 2�

ql dy dx := P1.

Similarly, it can be obtained that

J2 >
∫

x� S–
|x|�
 –1+ 2


pl

∫ –1

–�
K

(
x
 y� )|y|�� –1– 2�

ql dy dx := P2,

J3 >
∫

x� S+
|x|�
 –1+ 2


pl

∫ �

1
K

(
x
 y� )|y|�� –1– 2�

ql dy dx := P3,
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J4 >
∫

x� S+
|x|�
 –1+ 2


pl

∫ –1

–�
K

(
x
 y� )|y|�� –1– 2�

ql dy dx := P4.

If 
 < 0, that is, 
 � 
 	 R–, then S– = S 	 R– = (–� , –1). Let x
 y� = z, and observe that
x– 


� = –|x|–


� (x < 0) and z 1

� –1 = |z|
1
� –1 (z < 0), then we have

P1 =
∫ –1

–�
|x|�
 –1+ 2


pl

∫ �

1
K

(
x
 y� )|y|�� –1– 2�

ql dy dx (2.15)

=
1
�

∫ –1

–�
|x|–1+ 2


l

∫ x


–�
K(z)|z|� –1– 2

ql dz dx

=
1
�

∫ –1

–�
|x|–1+ 2


l

∫ –1

–�
K(z)|z|� –1– 2

ql dz dx

+
1
�

∫ –1

–�
|x|–1+ 2


l

∫ x


–1
K(z)|z|� –1– 2

ql dz dx

=
l

2|
 � |

∫ –1

–�
K(z)|z|� –1– 2

ql dz

+
1
�

∫ –1

–�
|x|–1+ 2


l

∫ x


–1
K(z)|z|� –1– 2

ql dz dx.

It follows from Fubini’s theorem that

∫ –1

–�
|x|–1+ 2


l

∫ x


–1
K(z)|z|� –1– 2

ql dz dx (2.16)

=
∫ 0

–1
K(z)|z|� –1– 2

ql

∫ z1/


–�
|x|–1+ 2


l dx dz

=
l

2|
 |

∫ 0

–1
K(z)|z|� –1+ 2

pl dz.

Inserting (2.16) back into (2.15), we obtain

P1 =
l

2|
 � |

[∫ –1

–�
K(z)|z|� –1– 2

ql dz +
∫ 0

–1
K(z)|z|� –1+ 2

pl dz
]
.

Similarly, it can be obtained that P4 = P1, and

P2 = P3 =
l

2|
 � |

[∫ �

1
K(z)|z|� –1– 2

ql dz +
∫ 1

0
K(z)|z|� –1+ 2

pl dz
]
.

This implies that

�J > P1 + P2 + P3 + P4

=
l

|
 � |

[∫
[–1,1]

K(z)|z|� –1+ 2
pl dz +

∫
R\ [–1,1]

K(z)|z|� –1– 2
ql dz

]
.

Hence, Lemma 2.3 is proved when 
 < 0. If 
 > 0. It can also be proved that (2.14) holds
true. The proof of Lemma 2.3 is completed. �
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3 Main results

Theorem 3.1 Let 	 � { 1,–1}, and


 :=
{

t : t =
2i + 1
2j + 1

, i, j � Z
}

.

Suppose that � � (0, 1), 
 � 
 , � � (0, 1] 	 
 , � , � � R+ 	 
 , and � , � , � satisfy � < �

and � + � < min{1, � }. Let p > 1, 1
p + 1

q = 1. Assume that µ (x) = |x|p(1–�
 )–1, � n = |n|q(1–�� )–1,
where n � Z0 := Z \ { 0}. Let f (x), an 
 0 be such that f (x) � Lp,µ (R), and a = {an}n� Z0 � lq,� .
Let � (z) = cot z, and K(z) be defined by (2.1). Then, the following inequalities hold and are
equivalent:

J :=
∑
n� Z0

an

∫ �

–�
K

(
x
 n� )f (x) dx =

∫ �

–�
f (x)

∑
n� Z0

K
(
x
 n� )an dx

<
�
�

|
 |–
1
q � – 1

p

[
�

(
��
2�

)
– �

(
(� + � + � )�

2�

)]
� f � p,µ � a� q,� ,

(3.1)

L1 :=
∑
n� Z0

|n|p�� –1
[∫ �

–�
K

(
x
 n� )f (x) dx

]p

<
{

�
�

|
 |–
1
q � – 1

p

[
�

(
��
2�

)
– �

(
(� + � + � )�

2�

)]}p

� f � p
p,µ ,

(3.2)

L2 :=
∫ �

–�
|x|q�
 –1

[∑
n� Z0

K
(
x
 n� )an

]q

dx

<
{

�
�

|
 |–
1
q � – 1

p

[
�

(
��
2�

)
– �

(
(� + � + � )�

2�

)]}q

� a� q
q,� ,

(3.3)

where the constant �
� |
 |–

1
q � – 1

p [� ( ��
2� ) – � ( (� +� +� )�

2� )] in (3.1), (3.2), and (3.3) is the best
possible.

Proof Let K̃ (x
 y� ) := K(x
 n� ), g(y) := an, and h(y) := n for y � [n – 1, n), n � Z+. Let
K̃(x
 y� ) := K(x
 n� ), g(y) := an, and h(y) := |n| for y � [n, n + 1), n � Z–. By Hölder’s in-
equality, we have

∑
n� Z0

an

∫ �

–�
K

(
x
 n� )f (x) dx (3.4)

=
∫ �

–�
f (x)

∑
n� Z0

K
(
x
 n� )an dx =

∫ �

–�

∫ �

–�
K̃

(
x
 y� )f (x)g(y) dx dy

=
∫ �

–�

∫ �

–�

[
K̃

(
x
 y� )]1/p[h(y)

](�� –1)/p
|x|(1–�
 )/qf (x)

×
[
K̃

(
x
 y� )]1/q

|x|(�
 –1)/q[h(y)
](1–�� )/pg(y) dx dy

�
{∫ �

–�

∫ �

–�
K̃

(
x
 y� )[h(y)

]�� –1
|x|p(1–�
 )/qf p(x) dy dx

}1/p
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×
{∫ �

–�

∫ �

–�
K̃

(
x
 y� )|x|�
 –1[h(y)

]q(1–�� )/pgq(y) dx dy
}1/q

=
[∫ �

–�
� (x)|x|p(1–�
 )/qf p(x) dx

]1/p[∑
n� Z0

� (n)|n|q(1–�� )/paq
n

]1/q

,

where

� (x) =
∑
n� Z0

K
(
x
 n� )|n|�� –1, (3.5)

� (n) =
∫ �

–�
K

(
x
 n� )|x|�
 –1 dx. (3.6)

Since � � 1, it can be shown that |n|� –1 decreases monotonically if n � Z+, and in-
creases monotonically if n � Z–. Moreover, by Lemma 2.1, and observing that 
 � 
 and
� � (0, 1] 	 
 , it can be proved that whether x � R+ or x � R–, G(x
 n� ) decreases mono-
tonically with n if n � Z+, and increases monotonically with n if n � Z–. Therefore, for a
fixed x,

K
(
x
 n� )|n|�� –1 = |x|
 –�
 G

(
x
 n� )|n|� –1

decreases monotonically with n if n � Z+, and increases monotonically with n if n � Z–. It
follows therefore that

� (x) =
∑
n� Z0

K
(
x
 n� )|n|�� –1 <

∫ �

–�
K

(
x
 y� )|y|�� –1 dy.

Supposing that x < 0, and observing that 
 � 
 and � � (0, 1] 	 
 , we obtain x– 

� = –|x|–



�

and z 1
� –1 = |z|

1
� –1. Letting x
 y� = z, it follows that

� (x) <
∫ �

–�
K

(
x
 y� )|y|�� –1 dy =

|x|–�


�

∫ �

–�
K(z)|z|� –1 dz. (3.7)

By a similar discussion, it can also be proved that (3.7) is valid for x > 0. Inserting (2.8) into
(3.7), we obtain

� (x) <
� |x|–�


� �

[
�

(
��
2�

)
– �

(
(� + � + � )�

2�

)]
. (3.8)

Additionally, it can be obtained that

� (n) =
� |n|–��

|
 |�

[
�

(
��
2�

)
– �

(
(� + � + � )�

2�

)]
. (3.9)

Inserting (3.8) and (3.9) back into (3.4), we obtain (3.1). In what follows, it is to be proved
that (3.2) and (3.3) hold under the condition that inequality (3.1) holds. In fact, Let b =
{bn}n� Z0 , where

bn := |n|p�� –1
[∫ �

–�
K

(
x
 n� )f (x) dx

]p–1

,
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then,

L1 =
∑
n� Z0

|n|p�� –1
[∫ �

–�
K

(
x
 n� )f (x) dx

]p

(3.10)

=
∑
n� Z0

bn

∫ �

–�
K

(
x
 n� )f (x) dx

<
�
�

|
 |–
1
q � – 1

p

[
�

(
��
2�

)
– �

(
(� + � + � )�

2�

)]
� f � p,µ � b� q,�

=
�
�

|
 |–
1
q � – 1

p

[
�

(
��
2�

)
– �

(
(� + � + � )�

2�

)]
� f � p,µ L1/q

1 .

It follows from (3.10) that (3.2) holds true. Similarly, inequality (3.3) can be proved. In fact,
setting

g(x) := |x|q�
 –1
[∑

n� Z0

K
(
x
 n� )an

]q–1

,

and using (3.1), it follows that

L2 =
∫ �

–�
|x|q�
 –1

[∑
n� Z0

K
(
x
 n� )an

]q

dx (3.11)

=
∫ �

–�
g(x)

∑
n� Z0

K
(
x
 n� )an dx

<
�
�

|
 |–
1
q � – 1

p

[
�

(
��
2�

)
– �

(
(� + � + � )�

2�

)]
� g� p,µ � a� q,�

=
�
�

|
 |–
1
q � – 1

p

[
�

(
��
2�

)
– �

(
(� + � + � )�

2�

)]
� a� q,� L1/p

2 .

Therefore, (3.3) follows obviously. Furthermore, it can be proved that (3.1) holds true when
inequality (3.2) or (3.3) is valid. In fact, assuming (3.2) holds true, it follows from Hölder’s
inequality that

J =
∑
n� Z0

[
|n|�
 –1/p

∫ �

–�
K

(
x
 n� )f (x) dx

](
an|n|–�
 +1/p) (3.12)

� L1/p
1

[∑
n� Z0

aq
n|n|q(1–�
 )–1

]1/q

= L1/p
1 � a� q,� .

Applying inequality (3.2) to (3.12), we arrive at (3.1). Similarly, if we suppose that inequality
(3.3) holds true, it can also be proved that (3.1) is valid. Thus, inequalities (3.1), (3.2), and
(3.3) are equivalent.

In what follows, it will be proved that the constant factors in (3.1), (3.2), and (3.3) are
the best possible. In fact, suppose that there exists a constant C that satisfies

0 < C �
�
�

|
 |–
1
q � – 1

p

[
�

(
��
2�

)
– �

(
(� + � + � )�

2�

)]
, (3.13)
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so that

J =
∑
n� Z0

an

∫ �

–�
K

(
x
 n� )f (x) dx =

∫ �

–�
f (x)

∑
n� Z0

K
(
x
 n� )an dx (3.14)

< C� f � p,µ � a� q,� .

Replace an and f (x) in (3.14) with �an and �f (x) defined in Lemma 2.3, respectively, and use
(2.14), then we have

∫
[–1,1]

K(z)|z|� –1+ 2
pl dz +

∫
R\ [–1,1]

K(z)|z|� –1– 2
ql dz (3.15)

<
|
 � |

l
�J <

|
 � |C
l

� �f � p,µ � �a� q,�

=
|
 � |C

l

(
2
∫

S+
x

2

l –1 dx

) 1
p
(

2 + 2
�∑

n=2

n
–2�

l –1

) 1
q

<
2|
 � |C

l

(∫
S+

x
2

l –1 dx

) 1
p
(

1 +
∫ �

1
x– 2�

l –1 dx
) 1

q

= 2|
 � |C
(

1
2|
 |

) 1
p
(

1
l

+
1

2�

) 1
q
.

Apply Fatou’s lemma to (3.15), and use (2.8), then it follows that

�
�

[
�

(
��
2�

)
– �

(
(� + � + � )�

2�

)]

=
∫ �

–�
K(z)|z|� –1 dz

=
∫

[–1,1]
lim

l��
K(z)|z|� –1+ 2

pl dz +
∫
R\ [–1,1]

lim
l��

K(z)|z|� –1– 2
ql dz

� lim
l��

[∫
[–1,1]

K(z)|z|� –1+ 2
pl dz +

∫
R\ [–1,1]

K(z)|z|� –1– 2
ql dz

]

� lim
l��

[
2|
 � |C

(
1

2|
 |

) 1
p
(

1
l

+
1

2�

) 1
q
]

= C|
 |
1
q �

1
p .

It follows that

C 

�
�

|
 |–
1
q � – 1

p

[
�

(
��
2�

)
– �

(
(� + � + � )�

2�

)]
. (3.16)

Combine (3.13) and (3.16), then we have

C =
�
�

|
 |–
1
q � – 1

p

[
�

(
��
2�

)
– �

(
(� + � + � )�

2�

)]
.

Hence, it is proved that the constant factor in inequality (3.1) is the best possible. Ob-
serving that inequalities (3.1), (3.2), and (3.3) are equivalent, it can also be proved that the
constant factors in (3.2) and (3.3) are the best possible. Theorem 3.1 is proved. �
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4 Corollaries
Let � = 3� , 
 = � = 1 in Theorem 3.1. Then, (3.1) is transformed into the following Hilbert-
type inequality with a nonhomogeneous kernel.

Corollary 4.1 Let 	 � { 1,–1}, and


 :=
{

t : t =
2i + 1
2j + 1

, i, j � Z
}

.

Suppose that � � (0, 1), � � 
 , and � , � satisfy 0 < � < 2� and � + � < 1. Let p > 1, 1
p + 1

q = 1.
Assume that µ (x) = |x|p(1–� )–1, � n = |n|q(1–� )–1, where n � Z0 := Z \ { 0}. Let f (x), an 
 0 be
such that f (x) � Lp,µ (R), and a = {an}n� Z0 � lq,� . Let � (z) = cot z. Then,

∫ �

–�
f (x)

∑
n� Z0

an

1 + 	 (xn)� + (xn)2�
dx (4.1)

<
�
3�

[
�

(
��
6�

)
– �

(
(� + 4� )�

6�

)]
� f � p,µ � a� q,� ,

where the constant factor �
3� [� ( ��

6� ) – � ( (� +4� )�
6� )] in (4.1) is the best possible.

Set � = �
2 in Corollary 4.1, then � � 
 , and 0 < � < 2

3 . Since � ( �
12 ) = 3 +

�
3, we obtain

∫ �

–�
f (x)

∑
n� Z0

an

1 + 	 (xn)� + (xn)2�
dx <

(4 +
�

3)�
3�

� f � p,µ � a� q,� , (4.2)

where µ (x) = |x|p(1–� /2)–1, � n = |n|q(1–� /2)–1. Letting 	 = 1, we have (1.7).
Set � = � in Corollary 4.1, then � � 
 , 0 < � < 1

2 , and (4.1) reduces to the following
inequality.

∫ �

–�
f (x)

∑
n� Z0

an

1 + 	 (xn)� + (xn)2�
dx <

2
�

3�
3�

� f � p,µ � a� q,� , (4.3)

where µ (x) = |x|p(1–� )–1, � n = |n|q(1–� )–1.
Set � = 3�

2 in Corollary 4.1, then � � 
 , and 0 < � < 2
5 . In view of � ( 11�

12 ) = 3 +
�

3, we
arrive at

∫ �

–�
f (x)

∑
n� Z0

an

1 + 	 (xn)� + (xn)2�
dx <

(4 +
�

3)�
3�

� f � p,µ � a� q,� , (4.4)

where µ (x) = |x|p(1–3� /2)–1, � n = |n|q(1–3� /2)–1.
Let � = � –�

2 , 
 = � = 1 in Theorem 3.1. Then, another Hilbert-type inequality with a
nonhomogeneous kernel can be obtained.

Corollary 4.2 Let 	 � { 1,–1}, and


 :=
{

t : t =
2i + 1
2j + 1

, i, j � Z
}

.
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Suppose that � , � � 
 , 0 < � < � and � + � < 2. Let p > 1, 1
p + 1

q = 1. Assume that µ (x) =
|x|p(� –� +2)/2–1, � n = |n|q(� –� +2)/2–1, where n � Z0 := Z \{ 0}. Let f (x), an 
 0 be such that f (x) �
Lp,µ (R), and a = {an}n� Z0 � lq,� . Let � (z) = cot z. Then,

∫ �

–�
f (x)

∑
n� Z0

1 – 	 (xn)�

1 – 	 (xn)�
an dx <

2�
�

�
(

(� – � )�
4�

)
� f � p,µ � a� q,� , (4.5)

where the constant factor 2�
3� � ( (� –� )�

4� ) in (4.5) is the best possible.

Letting � = (2k + 1)� , k � N+, we have 0 < (k + 1)� < 1, � � 
 , and (4.5) is transformed
into the following inequality

∫ �

–�
f (x)

∑
n� Z0

an∑2k
j=0 	 2k–j(xn)j�

dx <
2�

(2k + 1)�
�

(
k�

4k + 2

)
� f � p,µ � a� q,� , (4.6)

where µ (x) = |x|p(1–k� )–1, � n = |n|q(1–k� )–1.
Setting k = 1 in (4.6), we can also obtain (4.3). Moreover, Setting k = 2 in (4.6), we have

0 < � < 1
3 , � � 
 . It follows that

∫ �

–�

∑
n� Z0

anf (x)
1 + 	 (xn)� + (xn)2� + 	 (xn)3� + (xn)4�

dx <
2�
5�

�
(

�
5

)
� f � p,µ � a� q,� , (4.7)

where µ (x) = |x|p(1–2� )–1, � n = |n|q(1–2� )–1.
Let � = 3� , 
 = –1, � = 1 in Theorem 3.1, and replace f (x)x2� with f (x). Then, the fol-

lowing Hilbert-type inequality with a homogeneous kernel of degree 2� can be obtained.

Corollary 4.3 Let 	 � { 1,–1}, and


 :=
{

t : t =
2i + 1
2j + 1

, i, j � Z
}

.

Suppose that � � (0, 1), � � 
 , and � , � satisfy 0 < � < 2� and � + � < 1. Let p > 1, 1
p + 1

q = 1.
Assume that µ (x) = |x|p(1+� –2� )–1, � n = |n|q(1–� )–1, where n � Z0 := Z \ { 0}. Let f (x), an 
 0
be such that f (x) � Lp,µ (R), and a = {an}n� Z0 � lq,� . Let � (z) = cot z. Then,

∫ �

–�
f (x)

∑
n� Z0

an

x2� + 	 (xn)� + n2�
dx (4.8)

<
�
3�

[
�

(
��
6�

)
– �

(
(� + 4� )�

6�

)]
� f � p,µ � a� q,� ,

where the constant factor �
3� [� ( ��

6� ) – � ( (� +4� )�
6� )] in (4.8) is the best possible.

Set � = �
2 in Corollary 4.3, then � � 
 , and 0 < � < 2

3 . Since � ( �
12 ) = 3 +

�
3, we obtain

the following inequality

∫ �

–�
f (x)

∑
n� Z0

an

x2� + 	 (xn)� + n2�
dx <

(4 +
�

3)�
3�

� f � p,µ � a� q,� , (4.9)

where µ (x) = |x|p(1–3� /2)–1, � n = |n|q(1–� /2)–1. Letting 	 = –1, we obtain inequality (1.8).
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Set � = � in Corollary 4.3, then � � 
 , and 0 < � < 1
2 , and (4.8) is transformed into the

following inequality

∫ �

–�
f (x)

∑
n� Z0

an

x2� + 	 (xn)� + n2�
dx <

2
�

3�
3�

� f � p,µ � a� q,� , (4.10)

where µ (x) = |x|p(1–� )–1, � n = |n|q(1–� )–1.
Let � = � –�

2 , 
 = –1, � = 1 in Theorem 3.1, and replace f (x)x� –� with f (x). Then, the
following Hilbert-type inequality involving a homogeneous kernel with degree � – � can
be obtained.

Corollary 4.4 Let 	 � { 1,–1}, and


 :=
{

t : t =
2i + 1
2j + 1

, i, j � Z
}

.

Suppose that � , � � 
 , 0 < � < � and � + � < 2. Let p > 1, 1
p + 1

q = 1. Assume that µ (x) =
|x|p(� –� +2)/2–1, � n = |n|q(� –� +2)/2–1, where n � Z0 := Z \{ 0}. Let f (x), an 
 0 be such that f (x) �

Lp,µ (R), and a = {an}n� Z0 � lq,� . Let � (z) = cot z. Then,

∫ �

–�
f (x)

∑
n� Z0

x� – 	 n�

x� – 	 n�
an dx <

2�
�

�
(

(� – � )�
4�

)
� f � p,µ � a� q,� , (4.11)

where the constant factor 2�
� � ( (� –� )�

4� ) in (4.11) is the best possible.

Letting � = (2k + 1)� , k � N+, we have 0 < (k + 1)� < 1, � � 
 , and (4.11) is transformed
into the following inequality

∫ �

–�
f (x)

∑
n� Z0

an∑2k
j=0 	 2k–jxj� n(2k–j)�

dx <
2�

(2k + 1)�
�

(
k�

4k + 2

)
� f � p,µ � a� q,� , (4.12)

where µ (x) = |x|p(1–k� )–1, � n = |n|q(1–k� )–1.
Setting k = 1, and 	 = 1 in (4.12), (4.10) can also be obtained. Additionally, let k = 2 in

(4.12), then 0 < � < 1
3 , � � 
 , and it follows that

∫ �

–�
f (x)

∑
n� Z0

an

x4� + x3� n� + (xn)2� + x� n3� + n4�
dx <

2�
5

�
(

�
5

)
� f � p,µ � a� q,� , (4.13)

where µ (x) = |x|p(1–2� )–1, � n = |n|q(1–2� )–1.
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