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Abstract
A family of inertial extragradient-type algorithms is proposed for solving convex
pseudomonotone variational inequality with fixed-point problems, where the
involved mapping for the fixed point is a ρ-demicontractive mapping. Under
standard hypotheses, the generated iterative sequence achieves strong convergence
to the common solution of the variational inequality and fixed-point problem. Some
special cases and sufficient conditions that guarantee the validity of the hypotheses
of the convergence statements are also discussed. Numerical applications in detail
illustrate the theoretical results and comparison with existing methods.
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1 Introduction
The objective for studying a common solution problem is its potential application to math-
ematical models with fixed-point constraints. This is especially true in real-world appli-
cations like signal processing, network resource allocation, and image recovery. This is
extremely important for signal analysis, composite reduction, optimization techniques,
and image-recovery problems; see for example, [1, 13, 20, 21, 27]. Let us look at both
problems highlighted by this study. Let D to be a nonempty, closed, and convex subset of
a real Hilbert space E with the inner product 〈·, ·〉, and induced norm ‖ · ‖. This study con-
tributes significantly by investigating the convergence analysis of iterative algorithms for
handling variational inequality problems and fixed-point problems in real Hilbert spaces.
Let N : D → E be an operator. Then, the variational inequality problem [29] is defined in
the following manner:

Find � ∗ ∈D such that
〈
N

(
� ∗), r – � ∗〉 ≥ 0, ∀r ∈D. (VIP)
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Consider VI(D,N ) to describe the solution set of the problem (VIP). Variational in-
equalities are used in a number of areas, including partial differential equations, opti-
mization, engineering, applied mathematics, and economics (see [12, 14–17, 24, 30]). The
variational inequality problem is important in applied sciences. Many researchers have
investigated not only the existence and stability of solutions, but also iterative methods
for solving such problems. Projection methods, in particular, are crucial for determining
the numerical solution to variational inequalities. Several authors have proposed projec-
tion methodologies to solve the problem [3, 4, 10, 11, 18, 25, 26, 33, 40–42]) and others in
[5–9, 34–38]. The projection technique, which is computed on the feasible set D, is used
by most of the algorithms to solve the problem. The extragradient method was developed
by Korpelevich [18] and Antipin [2]. The method has the following form:

⎧
⎪⎪⎨

⎪⎪⎩

s1 ∈D and 0 < � < 1
L ,

rk = PD[sk – �N (sk)],

sk+1 = PD[sk – �N (rk)].

(1.1)

This method needs to compute two projections on the feasible set D for each iteration.
In fact, if the feasible set D has a sophisticated structure, the computing efficacy of the
chosen method may decline.

The first is the subgradient extragradient method developed by Censor et al. [10]. This
method takes the following form:

⎧
⎪⎪⎨

⎪⎪⎩

s1 ∈D and 0 < � < 1
L ,

rk = PD[sk – �N (sk)],

sk+1 = PEk [sk – �N (rk)],

(1.2)

where

Ek =
{

z ∈ E :
〈
sk – �N (sk) – rk , z – rk

〉 ≤ 0
}

.

Following that, we will look at the strong convergence analysis of Tseng’s extragradient
method [33], which uses only one projection per iteration:

⎧
⎪⎪⎨

⎪⎪⎩

s1 ∈D and 0 < � < 1
L ,

rk = PD[sk – �N (sk)],

sk+1 = rk – �[N (rk) – N (sk)].

(1.3)

In terms of computing, the technique (1.3) is especially efficient since it only requires one
solution to a minimization problem each iteration. As a result, the method (1.3) is not
more computationally expensive, but it performs better in most situations. Suppose that
M : E → E is a mapping. The fixed-point problem for a mapping M is defined by:

M
(
� ∗) = � ∗. (FP)

The solution set of the fixed-point problem (FP) is represented by the set Fix(M). Most of
the methods for solving problem (FP) are derived from the basic Mann iteration, specifi-
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cally from s1 ∈ E , which generates sequence {sk+1} for every k ≥ 1 by

sk+1 = σksk + (1 – σk)Msk . (1.4)

To accomplish weak convergence, the variable sequence {σk} must adhere to certain cri-
teria. The Halpern iteration is another structured iterative method that is more effective
at achieving strong convergence in infinite-dimensional Hilbert spaces. The iterative se-
quence is as follows:

sk+1 = σks1 + (1 – σk)Msk , (1.5)

where s1 ∈ E and the sequence σk ⊂ (0; 1) is nonsummable and gradually declining, i.e.,

σk → 0 and
∞∑

k=1

σk = +∞.

Furthermore, the viscosity algorithm [23], in which the cost mappingM is iteratively com-
bined with a contraction mapping, is a generic variant of the Halpern iteration. In addition
to the Halpern iteration, there is a general form of it, namely the viscosity algorithm [23],
in which the cost mapping M is merged with a contraction mapping in the iterates. Fi-
nally, the hybrid steepest-descent approach published in [39] is another methodology that
provides significant convergence.

Tan et al. [31, 32] developed an innovative numerical algorithm, the extragradient vis-
cosity algorithm, for solving variational inequalities involving a fixed-point problem con-
straint of a ρ-demicontractive mapping using the extragradient algorithm [10, 18] and the
Mann-type technique [22]. The authors showed the strong convergence of all methods
under the condition that the operator is monotone and meets the Lipschitz condition.
These techniques have the advantage of being numerically estimated using optimization
tools, as shown in [31, 32].

The fundamental issue with these methods is that they rely on viscosity and Mann-type
techniques to achieve strong convergence. As is known, achieving strong convergence is
important for iterative sequences, especially in infinite-dimensional domains. There are
a few methods with strong convergence that use inertial schemes. The Mann and viscos-
ity procedures may be difficult to estimate from an algorithmic perspective, affecting the
algorithm’s convergence speed and usefulness. These algorithms increase the number of
numerical and computational steps, making the system more complicated.

As a result, the following straightforward question arises:

Is it possible to design self-adaptive strongly convergent inertial extragradient algo-
rithms that do not rely on Mann- and viscosity-type methods for solving variational
inequalities and fixed-point problems?

We respond to the above question by constructing two strong convergence extragra-
dient-type algorithms for solving monotone variational inequalities and the ρ-demi-
contractive fixed-point problem in real Hilbert spaces, inspired by the studies described
in [31, 32]. Furthermore, we avoid employing any hybrid schemes, such as the Mann-type
scheme and the viscosity scheme, to achieve the strong convergence of these methods.
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We presented novel algorithms with strong convergence that make use of inertial mecha-
nisms.

The paper is divided into sections. Section 2 gives some basic results. Section 3 intro-
duces four different methods and confirms their convergence analysis. Finally, Sect. 4 pro-
vides some numerical data to demonstrate the practical use of the methods presented.

2 Preliminaries
LetD be a nonempty, closed, and convex subset of E , the real Hilbert space. For any s, r ∈ E ,
we have

(i) ‖s + r‖2 = ‖s‖2 + 2〈s, r〉 + ‖r‖2;
(ii) ‖s + r‖2 ≤ ‖s‖2 + 2〈r, s + r〉;

(iii) ‖bs + (1 – b)r‖2 = b‖s‖2 + (1 – b)‖r‖2 – b(1 – b)‖s – r‖2.
A metric projection PD(s) of s ∈ E is defined by

PD(s) = arg min
{‖s – r‖ : r ∈D

}
.

It is well known that PD is nonexpansive and possesses the following important prop-
erties:

(1) 〈s – PD(s), r – PD(s)〉 ≤ 0, ∀r ∈D;
(2) ‖PD(s) – PD(r)‖2 ≤ 〈PD(s) – PD(r), s – r〉, ∀r ∈D.

Definition 2.1 Let M : E → E be a nonlinear mapping with Fix(M) = ∅. Then, I – M is
said to be demiclosed at zero if for any {sk} in E . Then, the following statement is true:

sk ⇀ s and (I – M)sk → 0 ⇒ s ∈ Fix(M).

Definition 2.2 Let N : D →D be an operator. It is said to be:
(1) monotone if

〈
N (s1) – N (s2), s1 – s2

〉 ≥ 0, ∀s1, s2 ∈D;

(2) Lipschitz-continuous with constant L > 0 such that

∥∥N (s1) – N (s2)
∥∥ ≤ L‖s1 – s2‖, ∀s1, s2 ∈D;

(3) sequentially weakly continuous if a sequence {N (sk)} convergent weakly to N (s) for
any sequence {sk} convergent weakly to s.

Definition 2.3 Suppose the M : D →D is a mapping and Fix(M) = ∅. It is said to be:
(1) ρ-demicontractive if for any fixed number 0 ≤ ρ < 1 such that

∥∥M(s1) – s2
∥∥2 ≤ ‖s1 – s2‖2 + ρ

∥∥(I – M)(s1)
∥∥2, ∀s2 ∈ Fix(M), s1 ∈ E ;

or equivalently

〈
M(s1) – s1, s1 – s2

〉 ≤ ρ – 1
2

∥∥s1 – M(s1)
∥∥2, ∀s2 ∈ Fix(M), s1 ∈ E .
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Lemma 2.4 ([19]) Let N : E → E be a L-Lipschitz continuous and monotone operator on
D. Take M = PD(I – �N ), with � > 0. If {sk} is a sequence in E that satisfies sk ⇀ q and
sk – N (sk) → 0, then q ∈ VI(D,N ) = Fix(M).

Lemma 2.5 ([28]) Suppose that {ck} ⊂ [0, +∞), {dk} ⊂ (0, 1), and {ek} ⊂ R sequences sat-
isfies the following criteria:

ck+1 ≤ (1 – dk)ck + dkek , ∀k ∈N, and
+∞∑

k=1

dk = +∞.

If lim supj→+∞ rkj ≤ 0 for any subsequence {ckj} of {cj} such that

lim inf
j→+∞ (ckj+1 – ckj ) ≥ 0,

then limk→∞ ck = 0.

3 Main results
In this section, we examine the convergence of four novel inertial extragradient algorithms
for solving the fixed-point and variational inequality problems in detail. First, we consider
the given algorithms. In order to confirm the strong convergence, it is assumed that the
following conditions are satisfied:

(N 1) The common solution set is denoted by Fix(M) ∩ VI(D,N ) and it is nonempty;
(N 2) The operator N : E → E is monotone;
(N 3) The operator N : E → E is Lipschitz continuous;
(N 4) The mapping M : E → E is ρ-demicontractive for 0 ≤ ρ < 1 and demiclosed at

zero;
(N 5) The operator N : E → E is sequentially weakly continuous.

Algorithm 1 (Inertial Subgradient Extragradient Method With Constant Step-Size Rule)

STEP 0: Take s0, s1 ∈D, � ∈ (0, 1), 0 < � < 1
L and a sequence {ςk} ⊂ (0, 1 – ρ) that satisfies

the following condition:

lim
k→+∞

ςk = 0 and
+∞∑

k=1

ςk = +∞.

STEP 1: Calculate

qk = sk + �k(sk – sk–1) – ςk
[
sk + �k(sk – sk–1)

]
,

where �k is defined as follows:

0 ≤ �k ≤ �̂k and �̂k =

⎧
⎨

⎩
min{ �

2 , χk
‖sk –sk–1‖ } if sk = sk–1,

�
2 else.

(3.1)

Moreover, take a sequence χk = ◦(ςk) satisfying the condition limk→+∞ χk
ςk

= 0.
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STEP 2: Calculate

rk = PD
(
qk – �N (qk)

)
.

If qk = rk , then STOP. Otherwise, go to STEP 3.
STEP 3: Construct a half-space first

Ek =
{

z ∈ E :
〈
qk – �N (qk) – rk , z – rk

〉 ≤ 0
}

and pk = PEk (qk – �N (rk)).
STEP 4: For any sequence σk ⊂ (0, 1 – ρ). Calculate

sk+1 = (1 – σk)pk + σkM(pk).

Set k := k + 1 and go to STEP 1.

Algorithm 2 (Inertial Subgradient Extragradient Method With Nonmonotone Step-Size
Rule)

STEP 0: Take s0, s1 ∈D, � ∈ (0, 1), μ ∈ (0, 1), �1 > 0. Moreover, a sequence {�k} such that
∑∞

k=1 �k < +∞, and a sequence {ςk} ⊂ (0, 1 – ρ) that satisfies the following condition:

lim
k→+∞

ςk = 0 and
+∞∑

k=1

ςk = +∞.

STEP 1: Calculate

qk = sk + �k(sk – sk–1) – ςk
[
sk + �k(sk – sk–1)

]
,

where �k is defined as follows:

0 ≤ �k ≤ �̂k and �̂k =

⎧
⎨

⎩
min{ �

2 , χk
‖sk –sk–1‖ } if sk = sk–1,

�
2 otherwise.

(3.2)

Moreover, a sequence χk = ◦(ςk) satisfying the condition limk→+∞ χk
ςk

= 0.
STEP 2: Calculate

rk = PD
(
qk – �kN (qk)

)
.

If qk = rk , then STOP. Otherwise, go to STEP 3.
STEP 3: Create a half-space first

Ek =
{

z ∈ E :
〈
qk – �kN (qk) – rk , z – rk

〉 ≤ 0
}

and calculate pk = PEk (qk – �kN (rk)).
STEP 4: For any sequence σk ⊂ (0, 1 – ρ). Calculate

sk+1 = (1 – σk)pk + σkM(pk).
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STEP 5: Calculate

�k+1 =

⎧
⎨

⎩
min{�k + �k , μ‖qk –rk‖2+μ‖pk –rk‖2

2[〈N (qk )–N (rk ),pk –rk〉] } if 〈N (qk) – N (rk), pk – rk〉 > 0,

�k + �k , otherwise.
(3.3)

Set k := k + 1 and go to STEP 1.

Lemma 3.1 A sequence {�k} that is generated by the expression (3.3) is convergent to � and
bounded by min{μ

L ,�1} ≤ � ≤ �1 + P, where

P =
+∞∑

k=1

�k .

Proof It is given that 〈N (qk) – N (rk), pk – rk〉 > 0, such that

μ(‖qk – rk‖2 + ‖pk – rk‖2)
2〈N (qk) – N (rk), pk – rk〉 ≥ 2μ‖qk – rk‖‖pk – rk‖

2‖N (qk) – N (rk)‖‖pk – rk‖
≥ 2μ‖qk – rk‖‖pk – rk‖

2L‖qk – rk‖‖pk – rk‖
≥ μ

L
. (3.4)

By definition of �k+1, we have

min

{
μ

L
,�1

}
≤ �k ≤ �1 + P.

Let

[�k+1 – �k]+ = max{0,�k+1 – �k}

and

[�k+1 – �k]– = max
{

0, –(�k+1 – �k)
}

.

By using the definition of {�k}, we have

+∞∑

k=1

(�k+1 – �k)+ =
+∞∑

k=1

max{0,�k+1 – �k} ≤ P < +∞. (3.5)

This implies that the series
∑+∞

k=1(�k+1 – �k)+ is convergent. Following that, we must
demonstrate the convergence of

+∞∑

k=1

(�k+1 – �k)–.

Let us consider that
∑+∞

k=1(�k+1 – �k)– = +∞. Thus, we obtain

�k+1 – �k = (�k+1 – �k)+ – (�k+1 – �k)–.
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Thus, we obtain

�k+1 – �1 =
k∑

k=0

(�k+1 – �k) =
k∑

k=0

(�k+1 – �k)+ –
k∑

k=0

(�k+1 – �k)–. (3.6)

By allowing k → +∞ in the formulation (3.6), we obtain �k → –∞ as k → ∞. This
is a logical contradiction. Due to the convergence of the series

∑k
k=0(�k+1 – �k)+ and

∑k
k=0(�k+1 – �k)– taking k → +∞ in (3.6), we obtain limk→∞ �k = �. This completes the

proof of the lemma. �

Algorithm 3 (Inertial Tseng’s Extragradient Method With Constant Step-Size Rule)
STEP 0: Consider s0, s1 ∈D, � ∈ (0, 1), μ ∈ (0, 1), 0 < � < 1

L and a sequence {ςk} ⊂ (0, 1 –
ρ) that satisfies the following condition:

lim
k→+∞

ςk = 0 and
+∞∑

k=1

ςk = +∞.

STEP 1: Calculate

qk = sk + �k(sk – sk–1) – ςk
[
sk + �k(sk – sk–1)

]
,

where �k is defined as follows:

0 ≤ �k ≤ �̂k and �̂k =

⎧
⎨

⎩
min{ �

2 , χk
‖sk –sk–1‖ } if sk = sk–1,

�
2 else.

(3.7)

Moreover, a sequence χk = ◦(ςk) satisfying the condition limk→+∞ χk
ςk

= 0.
STEP 2: Calculate

rk = PD
(
qk – �N (qk)

)
.

If qk = rk , then STOP. Otherwise, go to STEP 3.
STEP 3: Calculate

pk = rk + �
[
N (qk) – N (rk)

]
.

STEP 4: For any sequence σk ⊂ (0, 1 – ρ). Calculate

sk+1 = (1 – σk)pk + σkM(pk).

Set k := k + 1 and go back to STEP 1.
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Algorithm 4 (Inertial Tseng’s Extragradient Method With Nonmonotone Step-Size Rule)

STEP 0: Consider s0, s1 ∈ D, � ∈ (0, 1), μ ∈ (0, 1), �1 > 0. Moreover, {�k} such that
∑∞

k=1 �k < +∞ and a sequence {ςk} ⊂ (0, 1 – ρ) that satisfies the following condition:

lim
k→+∞

ςk = 0 and
+∞∑

k=1

ςk = +∞.

STEP 1: Calculate

qk = sk + �k(sk – sk–1) – ςk
[
sk + �k(sk – sk–1)

]
,

where �k is defined as follows:

0 ≤ �k ≤ �̂k and �̂k =

⎧
⎨

⎩
min{ �

2 , χk
‖sk –sk–1‖ } if sk = sk–1,

�
2 otherwise.

(3.8)

Moreover, a sequence χk = ◦(ςk) satisfying the condition limk→+∞ χk
ςk

= 0.
STEP 2: Calculate

rk = PD
(
qk – �kN (qk)

)
.

If qk = rk , then STOP. Otherwise, go to STEP 3.
STEP 3: Calculate

pk = rk + �k
[
N (qk) – N (rk)

]
.

STEP 4: For any sequence σk ⊂ (0, 1 – ρ). Calculate

sk+1 = (1 – σk)pk + σkM(pk).

STEP 5: Compute
⎧
⎨

⎩
min{�k + �k , μ‖qk –rk‖

‖N (qk )–A(rk )‖ } if N (qk) = N (rk),

�k + �k , otherwise.
(3.9)

Set k := k + 1 and go back to STEP 1.

Lemma 3.2 A sequence {�k} that is generated by the expression (3.9) is decreasing mono-
tonically and bounded by min{μ

L ,�1} ≤ � ≤ �1 + P, where

P =
+∞∑

k=1

�k .

Proof It is given that the mapping N is Lipschitz continuous. Thus, we have

μ‖qk – rk‖
‖N (qk) – N (rk)‖ ≥ μ‖qk – rk‖

L‖qk – rk‖ ≥ μ

L
. (3.10)

The remainder of the proof is similar to that of Lemma 3.1. �
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Lemma 3.3 Let N : E → E be an operator that satisfies the conditions (N 1)–(N 5). Sup-
pose that {sk} is a sequence generated by Algorithm 2. For any � ∗ ∈ VI(D,N ), we have

∥∥pk – � ∗∥∥2 ≤ ∥∥qk – � ∗∥∥2 –
(

1 –
μ�k

�k+1

)
‖qk – rk‖2 –

(
1 –

μ�k

�k+1

)
‖pk – rk‖2.

Proof Consider that

∥∥pk – � ∗∥∥2 =
∥∥PEk

[
qk – �kN (rk)

]
– � ∗∥∥2

=
∥∥PEk

[
qk – �kN (rk)

]
+

[
qk – �kN (rk)

]
–

[
qk – �kN (rk)

]
– � ∗∥∥2

=
∥∥[

qk – �kN (rk)
]

– � ∗∥∥2 +
∥∥PEk

[
qk – �kN (rk)

]
–

[
qk – �kN (rk)

]∥∥2

+ 2
〈
PEk

[
qk – �kN (rk)

]
–

[
qk – �kN (rk)

]
,
[
qk – �kN (rk)

]
– � ∗〉. (3.11)

It is given that � ∗ ∈ VI(D,N ) ⊂D ⊂ Ek , we have

∥∥PEk

[
qk – �kN (rk)

]
–

[
qk – �kN (rk)

]∥∥2

+
〈
PEk

[
qk – �kN (rk)

]
–

[
qk – �kN (rk)

]
,
[
qk – �kN (rk)

]
– � ∗〉

=
〈[

qk – �kN (rk)
]

– PEk

[
qk – �kN (rk)

]
,� ∗ – PEk

[
qk – �kN (rk)

]〉 ≤ 0. (3.12)

Moreover, we have

〈
PEk

[
qk – �kN (rk)

]
–

[
qk – �kN (rk)

]
,
[
qk – �kN (rk)

]
– � ∗〉

≤ –
∥∥PEk

[
qk – �kN (rk)

]
–

[
qk – �kN (rk)

]∥∥2. (3.13)

By combining expressions (3.11) and (3.13), we obtain

∥∥pk – � ∗∥∥2 ≤ ∥∥qk – �kN (rk) – � ∗∥∥2 –
∥∥PEk

[
qk – �kN (rk)

]
–

[
qk – �kN (rk)

]∥∥2

≤ ∥∥qk – � ∗∥∥2 – ‖qk – pk‖2 + 2�k
〈
N (rk),� ∗ – pk

〉
. (3.14)

Furthermore, we have

〈
N

(
� ∗), y – � ∗〉 –

〈
N (y), y – � ∗〉 ≤ 0, ∀y ∈D.

Since � ∗ ∈ VI(D,N ), we obtain

〈
N (y), y – � ∗〉 ≥ 0, ∀y ∈D.

By substituting y = rk ∈D, we have

〈
N (rk), rk – � ∗〉 ≥ 0.

Thus, this implies that

〈
N (rk),� ∗ – pk

〉
=

〈
N (rk),� ∗ – rk

〉
+

〈
N (rk), rk – pk

〉 ≤ 〈
N (rk), rk – pk

〉
. (3.15)
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We obtain by combining formulas (3.14) and (3.15)

∥∥pk – � ∗∥∥2 ≤ ∥∥qk – � ∗∥∥2 – ‖qk – pk‖2 + 2�k
〈
N (rk), rk – pk

〉

≤ ∥∥qk – � ∗∥∥2 – ‖qk – rk + rk – pk‖2 + 2�k
〈
N (rk), rk – pk

〉

≤ ∥∥qk – � ∗∥∥2 – ‖qk – rk‖2 – ‖rk – pk‖2

+ 2
〈
qk – �kN (rk) – rk , pk – rk

〉
. (3.16)

By using expression pk = PEk [qk – �kN (rk)], we have

2
〈
qk – �kN (rk) – rk , pk – rk

〉

= 2
〈
qk – �kN (qk) – rk , pk – rk

〉
+ 2�k

〈
N (qk) – N (rk), pk – rk

〉

≤ �k

�k+1
2�k+1

〈
N (qk) – N (rk), pk – rk

〉

≤ μ�k

�k+1
‖qk – rk‖2 +

μ�k

�k+1
‖pk – rk‖2. (3.17)

From expressions (3.16) and (3.17) we can obtain

∥∥pk – � ∗∥∥2

≤ ∥∥qk – � ∗∥∥2 – ‖qk – rk‖2 – ‖rk – pk‖2 +
�k

�k+1

[
μ‖qk – rk‖2 + μ‖pk – rk‖2]

≤ ∥∥qk – � ∗∥∥2 –
(

1 –
μ�k

�k+1

)
‖qk – rk‖2 –

(
1 –

μ�k

�k+1

)
‖pk – rk‖2. (3.18)

�

Lemma 3.4 Let N : E → E be an operator that satisfies the conditions (N 1)–(N 5). Sup-
pose that {sk} is a sequence generated by the Algorithm 1. For any � ∗ ∈ VI(D,N ), we have

∥∥pk – � ∗∥∥2 ≤ ∥∥qk – � ∗∥∥2 – (1 – �L)‖qk – rk‖2 – (1 – �L)‖pk – rk‖2.

Proof The proof is similar to the proof of Lemma 3.3. �

Lemma 3.5 Let N : E → E be an operator that satisfies the conditions (N 1)–(N 5). Sup-
pose that {sk} is a sequence generated by the Algorithm 4. For any � ∗ ∈ VI(D,N ), we have

∥∥pk – � ∗∥∥2 ≤ ∥∥qk – � ∗∥∥2 –
(

1 – μ2 �
2
k

�
2
k+1

)
‖qk – rk‖2.

Proof Consider the following:

∥∥pk – � ∗∥∥2

=
∥∥rk + �k

[
N (sk) – N (rk)

]
– � ∗∥∥2

=
∥∥rk – � ∗∥∥2 + �

2
k
∥∥N (sk) – N (rk)

∥∥2 + 2�k
〈
rk – � ∗,N (sk) – N (rk)

〉
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=
∥∥rk + sk – sk – � ∗∥∥2 + �

2
k
∥∥N (sk) – N (rk)

∥∥2 + 2�k
〈
rk – � ∗,N (sk) – N (rk)

〉

= ‖rk – sk‖2 +
∥∥sk – � ∗∥∥2 + 2

〈
rk – sk , sk – � ∗〉

+ �
2
k
∥∥N (sk) – N (rk)

∥∥2 + 2�k
〈
rk – � ∗,N (sk) – N (rk)

〉

=
∥∥sk – � ∗∥∥2 + ‖rk – sk‖2 + 2

〈
rk – sk , rk – � ∗〉 + 2〈rk – sk , sk – rk〉

+ �
2
k
∥∥N (sk) – N (rk)

∥∥2 + 2�k
〈
rk – � ∗,N (sk) – N (rk)

〉
. (3.19)

Furthermore, we can write

〈
sk – �kN (sk) – rk , y – rk

〉 ≤ 0, ∀y ∈D. (3.20)

For given � ∗ ∈ VI(D,N ), we can write

〈
sk – rk ,� ∗ – rk

〉 ≤ �k
〈
N (sk),� ∗ – rk

〉
. (3.21)

By combining expressions (3.19) and (3.21), we can obtain

∥∥pk – � ∗∥∥2

≤ ∥∥sk – � ∗∥∥2 + ‖rk – sk‖2 + 2�k
〈
N (sk),� ∗ – rk

〉
– 2〈sk – rk , sk – rk〉

+ �
2
k
∥∥N (sk) – N (rk)

∥∥2 – 2�k
〈
N (sk) – N (rk),� ∗ – rk

〉

=
∥∥sk – � ∗∥∥2 – ‖sk – rk‖2 + �

2
k
∥∥N (sk) – N (rk)

∥∥2 – 2�k
〈
N (rk), rk – � ∗〉. (3.22)

By use of the notion of a mapping N on D, we can obtain

〈
N

(
� ∗), y – � ∗〉 –

〈
N (y), y – � ∗〉 ≤ 0, ∀y ∈D.

By using � ∗ ∈ VI(D,N ), we obtain

〈
N (y), y – � ∗〉 ≥ 0, ∀y ∈D.

By substituting y = rk ∈D, we can write

〈
N (rk), rk – � ∗〉 ≥ 0. (3.23)

From expressions (3.22) and (3.23) we can obtain

∥∥pk – � ∗∥∥2 ≤ ∥∥sk – � ∗∥∥2 – ‖sk – rk‖2 + μ2 �
2
k

�
2
k+1

‖sk – rk‖2

=
∥∥sk – � ∗∥∥2 –

(
1 – μ2 �

2
k

�
2
k+1

)
‖sk – rk‖2. (3.24)

�
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Lemma 3.6 Let N : E → E be a map that fulfils the criteria (N 1)–(N 5). Suppose that {sk}
is a sequence created due to Algorithm 3. For any � ∗ ∈ VI(D,N ), we have

∥∥pk – � ∗∥∥2 ≤ ∥∥qk – � ∗∥∥2 –
(
1 – �

2L2)‖qk – rk‖2.

Proof The proof is similar to the proof of Lemma 3.5. �

Theorem 3.7 Let N : E → E be an operator that satisfies the conditions (N 1)–(N 5).
Then, the sequence {sk} generated by the Algorithm 2 converges strongly to some � ∗ ∈
VI(D,N ) ∩ Fix(M), where � ∗ = PVI(D,N )∩Fix(M)(0).

Proof Claim 1: The sequence {sk} is bounded.
It is given that

sk+1 = (1 – σk)pk + σkM(pk).

To use this result of the sequence {sk+1}, we derive

∥∥sk+1 – � ∗∥∥2 =
∥∥(1 – σk)pk + σkM(pk) – � ∗∥∥2

=
∥∥pk – � ∗∥∥2 + 2σk

〈
pk – � ∗,M(pk) – pk

〉
+ σ 2

k
∥∥M(pk) – pk

∥∥2

≤ ∥∥pk – � ∗∥∥2 + σk(ρ – 1)
∥∥M(pk) – pk

∥∥2 + σ 2
k
∥∥M(pk) – pk

∥∥2

=
∥∥pk – � ∗∥∥2 – σk(1 – ρ – σk)

∥∥M(pk) – pk
∥∥2. (3.25)

By using the value of {qk}, we obtain

∥∥qk – � ∗∥∥ =
∥∥sk + �k(sk – sk–1) – ςksk – �kςk(sk – sk–1) – � ∗∥∥

=
∥∥(1 – ςk)

(
sk – � ∗) + (1 – ςk)�k(sk – sk–1) – ςk�

∗∥∥ (3.26)

≤ (1 – ςk)
∥∥sk – � ∗∥∥ + (1 – ςk)�k‖sk – sk–1‖ + ςk

∥∥� ∗∥∥

≤ (1 – ςk)
∥∥sk – � ∗∥∥ + ςkK1, (3.27)

for some fixed number K1 we have

(1 – ςk)
�k

ςk
‖sk – sk–1‖ +

∥∥� ∗∥∥ ≤ K1.

It is given that �k → � such that there exists a fixed number ϑ ∈ (0, 1 – μ) such that

lim
k→∞

(
1 –

μ�k

�k+1

)
= 1 – μ > ϑ > 0.

As a result, there exists a finite natural number N1 ∈ N such that

(
1 –

μ�k

�k+1

)
> ϑ > 0, ∀k ≥ N1. (3.28)
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By using Lemma 3.3, we can write

∥∥pk – � ∗∥∥2 ≤ ∥∥qk – � ∗∥∥2, ∀k ≥ N1. (3.29)

From expressions (3.25), (3.27), and (3.29) we infer that

∥∥sk+1 – � ∗∥∥ ≤ (1 – ςk)
∥∥sk – � ∗∥∥ + ςkK1 – σk(1 – ρ – σk)

∥∥M(pk) – pk
∥∥2. (3.30)

It is considered that {σk} ⊂ (0, 1 – ρ) such that

∥∥sk+1 – � ∗∥∥ ≤ (1 – ςk)
∥∥sk – � ∗∥∥ + ςkK1

≤ max
{∥∥sk – � ∗∥∥, K1

}

...

≤ max
{∥∥sN1 – � ∗∥∥, K1

}
. (3.31)

This implies that the sequence {sk} is a bounded sequence.
Claim 2:

(
1 –

μ�k

�k+1

)
‖qk – rk‖2 +

(
1 –

μ�k

�k+1

)
‖pk – rk‖2

+ σk(1 – ρ – σk)
∥∥M(pk) – pk

∥∥2

≤ ∥∥sk – � ∗∥∥2 –
∥∥sk+1 – � ∗∥∥2 + ςkK2, (3.32)

for some K2 > 0. By using the definition of {sk+1}, we have

∥∥sk+1 – � ∗∥∥2 =
∥∥(1 – σk)pk + σkM(pk) – � ∗∥∥2

=
∥∥pk – � ∗∥∥2 + 2σk

〈
pk – � ∗,M(pk) – pk

〉
+ σ 2

k
∥∥M(pk) – pk

∥∥2

≤ ∥∥pk – � ∗∥∥2 + σk(ρ – 1)
∥∥M(pk) – pk

∥∥2 + σ 2
k
∥∥M(pk) – pk

∥∥2

=
∥∥pk – � ∗∥∥2 – σk(1 – ρ – σk)

∥∥M(pk) – pk
∥∥2. (3.33)

By using the expression (3.18), we can derive

∥∥pk – � ∗∥∥2 ≤ ∥∥qk – � ∗∥∥2 –
(

1 –
μ�k

�k+1

)
‖qk – rk‖2 –

(
1 –

μ�k

�k+1

)
‖pk – rk‖2. (3.34)

Thus, the expression (3.27) implies that

∥∥qk – � ∗∥∥2 ≤ (1 – ςk)2∥∥sk – � ∗∥∥2 + ς2
k K2

1 + 2K1ςk(1 – ςk)
∥∥sk – � ∗∥∥

≤ ∥∥sk – � ∗∥∥2 + ςk
[
ςkK2

1 + 2K1(1 – ςk)
∥∥sk – � ∗∥∥]

≤ ∥∥sk – � ∗∥∥2 + ςkK2, (3.35)
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for K2 > 0. Combining expressions (3.33), (3.34), and (3.35), we obtain

∥∥sk+1 – � ∗∥∥2 ≤ ∥∥sk – � ∗∥∥2 + ςkK2 – σk(1 – ρ – σk)
∥∥M(pk) – pk

∥∥2

–
(

1 –
μ�k

�k+1

)
‖qk – rk‖2 –

(
1 –

μ�k

�k+1

)
‖pk – rk‖2. (3.36)

Claim 3:
By using the definition of {qk}, we obtain

∥∥qk – � ∗∥∥2

=
∥∥sk + �k(sk – sk–1) – ςksk – �kςk(sk – sk–1) – � ∗∥∥2

=
∥∥(1 – ςk)

(
sk – � ∗) + (1 – ςk)�k(sk – sk–1) – ςk�

∗∥∥2

≤ ∥∥(1 – ςk)
(
sk – � ∗) + (1 – ςk)�k(sk – sk–1)

∥∥2 + 2ςk
〈
–� ∗, qk – � ∗〉

= (1 – ςk)2∥∥sk – � ∗∥∥2 + (1 – ςk)2�2
k‖sk – sk–1‖2

+ 2�k(1 – ςk)2∥∥sk – � ∗∥∥‖sk – sk–1‖ + 2ςk
〈
–� ∗, qk – sk+1

〉
+ 2ςk

〈
–� ∗, sk+1 – � ∗〉

≤ (1 – ςk)
∥∥sk – � ∗∥∥2 + �2

k‖sk – sk–1‖2 + 2�k(1 – ςk)
∥∥sk – � ∗∥∥‖sk – sk–1‖

+ 2ςk
∥∥� ∗∥∥‖qk – sk+1‖ + 2ςk

〈
–� ∗, sk+1 – � ∗〉

= (1 – ςk)
∥∥sk – � ∗∥∥2 + ςk

[
�k‖sk – sk–1‖ �k

ςk
‖sk – sk–1‖

+ 2(1 – ςk)
∥∥sk – � ∗∥∥ �k

ςk
‖sk – sk–1‖ + 2

∥∥� ∗∥∥‖qk – sk+1‖

+ 2
〈
� ∗,� ∗ – sk+1

〉]
. (3.37)

Combining expressions (3.29) and (3.37), we obtain

∥∥sk+1 – � ∗∥∥2

≤ (1 – ςk)
∥∥sk – � ∗∥∥2 + ςk

[
�k‖sk – sk–1‖ �k

ςk
‖sk – sk–1‖

+ 2(1 – ςk)
∥∥sk – � ∗∥∥ �k

ςk
‖sk – sk–1‖ + 2

∥∥� ∗∥∥‖qk – sk+1‖

+ 2
〈
� ∗,� ∗ – sk+1

〉]
. (3.38)

Claim 4: The sequence ‖sk – � ∗‖2 converges to zero.
Suppose that

pk :=
∥∥sk – � ∗∥∥2
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and

ek := �k‖sk – sk–1‖ �k

ςk
‖sk – sk–1‖ + 2(1 – ςk)

∥∥sk – � ∗∥∥ �k

ςk
‖sk – sk–1‖

+ 2
∥∥� ∗∥∥‖qk – sk+1‖ + 2

〈
� ∗,� ∗ – sk+1

〉
.

Then, Claim 4 can be rewritten as follows:

pk+1 ≤ (1 – ςk)pk + ςkek .

Indeed, from Lemma 2.5, it suffices to prove that lim supj→∞ ekj ≤ 0 for any subsequence
{pkj} of {pk} satisfying

lim inf
j→+∞ (pkj+1 – pkj ) ≥ 0.

This is comparable to demonstrating that

lim sup
j→∞

〈
� ∗,� ∗ – skj+1

〉 ≤ 0

and

lim sup
j→∞

‖qkj – skj+1‖ ≤ 0,

in each subsequence {‖skj – � ∗‖} of {‖sk – � ∗‖} reassuring

lim inf
j→+∞

(∥∥skj+1 – � ∗∥∥ –
∥∥skj – � ∗∥∥) ≥ 0.

Suppose that {‖skj – � ∗‖} is a subsequence of {‖sk – � ∗‖} satisfying

lim inf
j→+∞

(∥∥skj+1 – � ∗∥∥ –
∥∥skj – � ∗∥∥) ≥ 0.

Then,

lim inf
j→+∞

(∥∥skj+1 – � ∗∥∥2 –
∥∥skj – � ∗∥∥2)

= lim inf
j→+∞

(∥∥skj+1 – � ∗∥∥ –
∥∥skj – � ∗∥∥)(∥∥skj+1 – � ∗∥∥ +

∥∥skj – � ∗∥∥) ≥ 0. (3.39)

By using Claim 2 that

lim sup
j→∞

[(
1 –

μ�kj

�kj+1

)
‖qkj – rkj‖2

+
(

1 –
μ�kj

�kj+1

)
‖pkj – rkj‖2 + σkj (1 – ρ – σkj )

∥∥M(pkj ) – pkj

∥∥2
]

≤ lim sup
j→∞

[∥∥skj – � ∗∥∥2 –
∥∥skj+1 – � ∗∥∥2] + lim sup

j→∞
ςkj K2
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= – lim inf
j→∞

[∥∥skj+1 – � ∗∥∥2 –
∥∥skj – � ∗∥∥2]

≤ 0, (3.40)

the above relationship suggests that

lim
j→∞‖qkj – rkj‖ = 0, lim

j→∞‖pkj – rkj‖ = 0, lim
j→∞

∥∥M(pkj ) – pkj

∥∥ = 0. (3.41)

Thus, we obtain

lim
j→∞‖pkj – qkj‖ = 0. (3.42)

Next, we compute the following:

‖qkj – skj‖ =
∥∥skj + �kj (skj – skj–1) – ςkj

[
skj + �kj (skj – skj–1)

]
– skj

∥∥

≤ �kj‖skj – skj–1‖ + ςkj‖skj‖ + �kjςkj‖skj – skj–1‖

= ςkj

�kj

ςkj

‖skj – skj–1‖ + ςkj‖skj‖ + ς2
kj

�kj

ςkj

‖skj – skj–1‖ −→ 0. (3.43)

This, together with limj→∞ ‖pkj – qkj‖ = 0, yields that

lim
j→∞‖pkj – skj‖ = 0. (3.44)

From the definition of skj+1 = (1 – σkj )pkj + σkjM(pkj ), one sees that

lim
j→∞‖skj+1 – pkj‖ = σkj

∥∥M(pkj ) – pkj

∥∥ ≤ (1 – ρ)
∥∥M(pkj ) – pkj

∥∥. (3.45)

Thus, we obtain

lim
j→∞‖skj+1 – pkj‖ = 0. (3.46)

The above expression implies that

lim
j→∞‖skj – skj+1‖ ≤ lim

j→∞‖skj – pkj‖ + lim
j→∞‖pkj – skj+1‖ = 0 (3.47)

and

lim
j→∞‖qkj – skj+1‖ ≤ lim

j→∞‖qkj – pkj‖ + lim
j→∞‖pkj – skj+1‖ = 0. (3.48)

This implies that the sequence {skj} is a bounded sequence. We can infer that {skj} weakly
converges to some û ∈ E . By using the value � ∗ = PVI(D,N )∩Fix(M)(0), we have

〈
0 – � ∗, y – � ∗〉 ≤ 0, ∀y ∈ VI(D,N ) ∩ Fix(M). (3.49)
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From the expression (3.43) it is provided that {qkj} weakly converges to û ∈ E . By using the
expression (3.41), limk→∞ �k = �, and Lemma 2.4, one concludes that û ∈ VI(D,N ). It fol-
lows from (3.44) that {pkj} weakly converges to û ∈ E . Due to the use of the demiclosedness
of (I – M), we derive that û ∈ Fix(M). This implies that û ∈ VI(D,N ) ∩ Fix(M). Thus,
we obtain

lim
j→∞

〈
� ∗,� ∗ – skj

〉
=

〈
� ∗,� ∗ – û

〉 ≤ 0. (3.50)

Next, we can use limj→∞‖skj+1 – skj‖ = 0. Thus, we can write

lim sup
j→∞

〈
� ∗,� ∗ – skj+1

〉

≤ lim sup
j→∞

〈
� ∗,� ∗ – skj

〉
+ lim sup

j→∞

〈
� ∗, skj – skj+1

〉 ≤ 0. (3.51)

By using Claim 3 and Lemma 2.5, we see that sk → � ∗ as k → ∞. This completes the
proof of the theorem. �

Theorem 3.8 Let N : E → E be an operator that satisfies the conditions (N 1)–(N 5).
Then, the sequence {sk} generated by the Algorithm 4 converges strongly to � ∗ ∈ VI(D,N )∩
Fix(M), where � ∗ = PVI(D,N )∩Fix(M)(0).

Proof Claim 1: {sk} is a bounded sequence.
Let us consider that

sk+1 = (1 – σk)pk + σkM(pk).

By using the definition of a sequence {sk+1}, we have

∥∥sk+1 – � ∗∥∥2 =
∥∥(1 – σk)pk + σkM(pk) – � ∗∥∥2

=
∥∥pk – � ∗∥∥2 + 2σk

〈
pk – � ∗,M(pk) – pk

〉
+ σ 2

k
∥∥M(pk) – pk

∥∥2

≤ ∥∥pk – � ∗∥∥2 + σk(ρ – 1)
∥∥M(pk) – pk

∥∥2 + σ 2
k
∥∥M(pk) – pk

∥∥2

=
∥∥pk – � ∗∥∥2 – σk(1 – ρ – σk)

∥∥M(pk) – pk
∥∥2. (3.52)

By using the value of {qk}, we obtain

∥∥qk – � ∗∥∥ =
∥∥sk + �k(sk – sk–1) – ςksk – �kςk(sk – sk–1) – � ∗∥∥

=
∥∥(1 – ςk)

(
sk – � ∗) + (1 – ςk)�k(sk – sk–1) – ςk�

∗∥∥ (3.53)

≤ (1 – ςk)
∥∥sk – � ∗∥∥ + (1 – ςk)�k‖sk – sk–1‖ + ςk

∥∥� ∗∥∥

≤ (1 – ςk)
∥∥sk – � ∗∥∥ + ςkM1, (3.54)

for some fixed number M1 we have

(1 – ςk)
�k

ςk
‖sk – sk–1‖ +

∥∥� ∗∥∥ ≤ M1.
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By using �k → � such that χ ∈ (0, 1 – μ2), we have

lim
k→∞

(
1 – μ2 �

2
k

�
2
k+1

)
= 1 – μ2 > χ > 0.

Thus, there exists some fixed k0 ∈N such that

(
1 – μ2 �

2
k

�
2
k+1

)
> χ > 0, ∀k ≥ k0. (3.55)

By using Lemma 3.5, we can rewrite

∥∥pk – � ∗∥∥2 ≤ ∥∥qk – � ∗∥∥2, ∀k ≥ k0. (3.56)

From expressions (3.52), (3.54), and (3.56) we infer that

∥∥sk+1 – � ∗∥∥ ≤ (1 – ςk)
∥∥sk – � ∗∥∥ + ςkM1 – σk(1 – ρ – σk)

∥∥M(pk) – pk
∥∥2. (3.57)

Thus, for {σk} ⊂ (0, 1 – ρ), we obtain

∥∥sk+1 – � ∗∥∥ ≤ (1 – ςk)
∥∥sk – � ∗∥∥ + ςkM1

≤ max
{∥∥sk – � ∗∥∥, M1

}

...

≤ max
{∥∥sk0 – � ∗∥∥, M1

}
. (3.58)

Consequently, we may infer that the sequence {sk} is a bounded sequence.
Claim 2:

(
1 – μ2 �

2
k

�
2
k+1

)
‖qk – rk‖2 + σk(1 – ρ – σk)

∥∥M(pk) – pk
∥∥2

≤ ∥∥sk – � ∗∥∥2 –
∥∥sk+1 – � ∗∥∥2 + ςkM2, (3.59)

for some fixed M2 > 0. Indeed, by using the definition of {sk+1}, we have

∥∥sk+1 – � ∗∥∥2 =
∥∥(1 – σk)pk + σkM(pk) – � ∗∥∥2

=
∥∥pk – � ∗∥∥2 + 2σk

〈
pk – � ∗,M(pk) – pk

〉
+ σ 2

k
∥∥M(pk) – pk

∥∥2

≤ ∥∥pk – � ∗∥∥2 + σk(ρ – 1)
∥∥M(pk) – pk

∥∥2 + σ 2
k
∥∥M(pk) – pk

∥∥2

=
∥∥pk – � ∗∥∥2 – σk(1 – ρ – σk)

∥∥M(pk) – pk
∥∥2. (3.60)

By using Lemma 3.5, we obtain

∥∥pk – � ∗∥∥2 ≤ ∥∥qk – � ∗∥∥2 –
(

1 – μ2 �
2
k

�
2
k+1

)
‖qk – rk‖2. (3.61)
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By using expression (3.54), we can obtain

∥∥qk – � ∗∥∥2 ≤ (1 – ςk)2∥∥sk – � ∗∥∥2 + ς2
k M2

1 + 2M1ςk(1 – ςk)
∥∥sk – � ∗∥∥

≤ ∥∥sk – � ∗∥∥2 + ςk
[
ςkM2

1 + 2M1(1 – ςk)
∥∥sk – � ∗∥∥]

≤ ∥∥sk – � ∗∥∥2 + ςkM2, (3.62)

where for some fixed constant M2 > 0. From expressions (3.60), (3.61), and (3.62) we obtain

∥∥sk+1 – � ∗∥∥2 ≤ ∥∥sk – � ∗∥∥2 + ςkM2 – σk(1 – ρ – σk)
∥∥M(pk) – pk

∥∥2

–
(

1 – μ2 �
2
k

�
2
k+1

)
‖qk – rk‖2. (3.63)

Claim 3:
Using the value of {qk}, we can write as follows:

∥∥qk – � ∗∥∥2

=
∥∥sk + �k(sk – sk–1) – ςksk – �kςk(sk – sk–1) – � ∗∥∥2

=
∥∥(1 – ςk)

(
sk – � ∗) + (1 – ςk)�k(sk – sk–1) – ςk�

∗∥∥2

≤ ∥∥(1 – ςk)
(
sk – � ∗) + (1 – ςk)�k(sk – sk–1)

∥∥2 + 2ςk
〈
–� ∗, qk – � ∗〉

= (1 – ςk)2∥∥sk – � ∗∥∥2 + (1 – ςk)2�2
k‖sk – sk–1‖2

+ 2�k(1 – ςk)2∥∥sk – � ∗∥∥‖sk – sk–1‖ + 2ςk
〈
–� ∗, qk – sk+1

〉

+ 2ςk
〈
–� ∗, sk+1 – � ∗〉

≤ (1 – ςk)
∥∥sk – � ∗∥∥2 + �2

k‖sk – sk–1‖2 + 2�k(1 – ςk)
∥∥sk – � ∗∥∥‖sk – sk–1‖

+ 2ςk
∥∥� ∗∥∥‖qk – sk+1‖ + 2ςk

〈
–� ∗, sk+1 – � ∗〉

= (1 – ςk)
∥∥sk – � ∗∥∥2 + ςk

[
�k‖sk – sk–1‖ �k

ςk
‖sk – sk–1‖

+ 2(1 – ςk)
∥∥sk – � ∗∥∥ �k

ςk
‖sk – sk–1‖ + 2

∥∥� ∗∥∥‖qk – sk+1‖

+ 2
〈
� ∗,� ∗ – sk+1

〉]
. (3.64)

Combining expressions (3.56) and (3.64), we obtain

∥∥sk+1 – � ∗∥∥2

≤ (1 – ςk)
∥∥sk – � ∗∥∥2 + ςk

[
�k‖sk – sk–1‖ �k

ςk
‖sk – sk–1‖

+ 2(1 – ςk)
∥∥sk – � ∗∥∥ �k

ςk
‖sk – sk–1‖ + 2

∥∥� ∗∥∥‖qk – sk+1‖

+ 2
〈
� ∗,� ∗ – sk+1

〉]
. (3.65)
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Claim 4: ‖sk – � ∗‖2 is a sequence that is convergent to zero.
Set

pk :=
∥∥sk – � ∗∥∥2

and

ek := �k‖sk – sk–1‖ �k

ςk
‖sk – sk–1‖ + 2(1 – ςk)

∥∥sk – � ∗∥∥ �k

ςk
‖sk – sk–1‖

+ 2
∥∥� ∗∥∥‖qk – sk+1‖ + 2

〈
� ∗,� ∗ – sk+1

〉
.

Then, Claim 4 can be rewritten as follows:

ck+1 ≤ (1 – ςk)pk + ςkek .

By Lemma 2.5, it suffices to show that lim supj→∞ ekj ≤ 0 for {ckj} of {pk} such as

lim inf
j→+∞ (ckj+1 – ckj ) ≥ 0.

This seems to be equivalent to stating that

lim sup
j→∞

〈
� ∗,� ∗ – skj+1

〉 ≤ 0

and

lim sup
j→∞

‖qkj – skj+1‖ ≤ 0,

one from each subsequence {‖skj – � ∗‖} of {‖sk – � ∗‖} following that

lim inf
j→+∞

(∥∥skj+1 – � ∗∥∥ –
∥∥skj – � ∗∥∥) ≥ 0.

Suppose that {‖skj – � ∗‖} is a subsequence of {‖sk – � ∗‖} satisfying

lim inf
j→+∞

(∥∥skj+1 – � ∗∥∥ –
∥∥skj – � ∗∥∥) ≥ 0,

then, we have

lim inf
j→+∞

(∥∥skj+1 – � ∗∥∥2 –
∥∥skj – � ∗∥∥2)

= lim inf
j→+∞

(∥∥skj+1 – � ∗∥∥ –
∥∥skj – � ∗∥∥)(∥∥skj+1 – � ∗∥∥ +

∥∥skj – � ∗∥∥) ≥ 0. (3.66)

As a result of Claim 2 that

lim sup
j→∞

[(
1 –

μ2
�

2
kj

�
2
kj+1

)
‖qkj – rkj‖2 + σkj (1 – ρ – σkj )

∥∥M(pkj ) – pkj

∥∥2
]

≤ lim sup
j→∞

[∥∥skj – � ∗∥∥2 –
∥∥skj+1 – � ∗∥∥2] + lim sup

j→∞
ςkj K2
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= – lim inf
j→∞

[∥∥skj+1 – � ∗∥∥2 –
∥∥skj – � ∗∥∥2]

≤ 0, (3.67)

the above relationship implies that

lim
j→∞‖qkj – rkj‖ = 0, lim

j→∞
∥∥M(pkj ) – pkj

∥∥ = 0. (3.68)

It follows that

‖pkj – rkj‖ =
∥∥rkj + �kj

[
N (qkj ) – N (rkj )

]
– rkj

∥∥ ≤ �kj L‖qkj – rkj‖. (3.69)

Thus, we have

lim
j→∞‖pkj – rkj‖ = 0. (3.70)

The remaining proof is similar to Claim 4 of Theorem 3.7. As a result, we omit it here and
this completes the proof of the theorem. �

4 Numerical illustrations
In contrast to some past work in the literature, this part discusses the algorithmic impli-
cations of the supplied techniques, as well as a study of how differences in control settings
affect the numerical efficacy of the recommended algorithms. All calculations are per-
formed in MATLAB R2018b on an HP i5 Core (TM) i5-6200 laptop with 8.00 GB (7.78 GB
usable) RAM.

Example 4.1 Consider that a mapping N : Rm →R
m is described using

N (u) = Mu + q,

where q = 0. Moreover, we have

M = NNT + B + D.

The matrices N = rand(m) and K = rand(m) are chosen randomly, whereas the other two
are generated in the following manner:

B = 0.5K – 0.5KT and D = diag
(
rand(m, 1)

)
.

The feasible set D is interpreted as follows:

D =
{

u ∈R
m : –10 ≤ si ≤ 10

}
.

It is evident that the mapping N is monotone and Lipschitz is continuous with the value
L = ‖M‖. Moreover, the function M : E → E is considered as follows:

M(u) =
1
2

u.
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The starting points for these tests are s0 = s1 = (2, 2, . . . , 2). The dimension of the Hilbert
space is treated differently while studying the behavior of higher-dimension Hilbert
spaces. The stopping condition for such experiments is Dk = ‖qk – rk‖ ≤ 10–10. The ini-
tial points to run these experiments are taken as s0 = s1 = (2, 2, . . . , 2). The dimension of
the Hilbert space is taken differently to study the behavior for higher-dimension Hilbert
spaces. The stopping criterion for such experiments is taken as Dk = ‖qk – rk‖ ≤ 10–10. Fig-
ures 1–6 and Tables 1 and 2 illustrate empirical observations for Example 2. The following
control criteria are in effect:

(1) Algorithm 2 (alg-1): �1 = 0.55, � = 0.45, μ = 0.44, χk = 100
(1+k)2 , ςk = 1

(2k+4) , σk = k
(2k+1) .

(2) Algorithm 4 (alg-2): �1 = 0.55, � = 0.45, μ = 0.44, χk = 100
(1+k)2 , ςk = 1

(2k+4) , σk = k
(2k+1) .

(3) Algorithm 1 in [31] (mtalg-1): γ1 = 0.55, δ = 0.45, φ = 0.44, �k = 1
(2k+4) ,

�k = 1
2 (1 – �k), χk = 100

(1+k)2 .
(4) Algorithm 2 in [31] (mtalg-2): γ1 = 0.55, δ = 0.45, φ = 0.44, �k = 1

(2k+4) ,
�k = 1

2 (1 – �k), χk = 100
(1+k)2 .

(5) Algorithm 1 in [32] (vtalg-1): τ1 = 0.55, � = 0.45, μ = 0.44, χk = 100
(1+k)2 , ςk = 1

(2k+4) ,
σk = k

(2k+1) , f (u) = u
2 .

Figure 1 Numerical comparison of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in [31],
Algorithm 1 in [32], and Algorithm 2 in [32] whenm = 5

Figure 2 Numerical comparison of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in [31],
Algorithm 1 in [32], and Algorithm 2 in [32] whenm = 10
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Figure 3 Numerical comparison of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in [31],
Algorithm 1 in [32], and Algorithm 2 in [32] whenm = 20

Figure 4 Numerical comparison of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in [31],
Algorithm 1 in [32], and Algorithm 2 in [32] whenm = 50

Figure 5 Numerical comparison of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in [31],
Algorithm 1 in [32], and Algorithm 2 in [32] whenm = 100

(6) Algorithm 2 in [32] (vtalg-2): τ1 = 0.55, � = 0.45, μ = 0.44, χk = 100
(1+k)2 , ςk = 1

(2k+4) ,
σk = k

(2k+1) , f (u) = u
2 .
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Figure 6 Numerical comparison of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in [31],
Algorithm 1 in [32], and Algorithm 2 in [32] whenm = 200

Table 1 Numerical values for Figs. 1–6

m The cumulative number of iterations

alg-1 alg-2 mtalg-1 mtalg-2 vtalg-1 vtalg-2

5 35 19 94 78 60 49
10 46 24 102 80 62 51
20 42 25 93 85 59 53
50 39 29 86 87 57 55
100 37 33 84 88 56 56
200 38 36 84 94 56 62

Table 2 Numerical values for Figs. 1–6

m Time required to complete the task

alg-1 alg-2 mtalg-1 mtalg-2 vtalg-1 vtalg-2

5 0.246841 0.1317703 0.5865135 0.4009539 0.360533465 0.3001653
10 0.284076 0.1523123 0.5159276 0.4722816 0.375091336 0.3097725
20 0.2602246 0.1633652 0.4246998 0.4630932 0.393142367 0.3358743
50 0.293302 0.1854808 0.4320612 0.5335381 0.331728156 0.3663686
100 0.2566573 0.2301228 0.4752024 0.5067862 0.358997537 0.3936471
200 0.3544296 0.3695034 0.7371152 0.8441844 0.516623963 0.6142675

Example 4.2 Consider a nonlinear mapping N : R2 →R2 described using

N (u, y) = (u + y + sin u; –u + y + sin y).

Furthermore, the workable set D is just a set written as follows:

D = [–1, 1] × [1, 1].

It is simple to demonstrate that N is monotone and Lipschitz continuous given the con-
stant L = 3. Suppose another mapping M : R2 →R2 is described as follows:

M(z) = ‖E‖–1Ez,
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Table 3 Numerical values for Figs. 7–14

s0 = s1 Total number of iterations

alg-1 alg-2 mtalg-1 mtalg-2 vtalg-1 vtalg-2

(1, 1)T 49 35 68 75 82 85
(2, 2)T 48 36 61 65 77 78
(1, –1)T 44 33 72 83 86 92
(–2, 3)T 51 37 65 70 81 79

Table 4 Numerical values for Figs. 7–14

s0 = s1 Required CPU time

alg-1 alg-2 mtalg-1 mtalg-2 vtalg-1 vtalg-2

(1, 1)T 0.2284193 0.1631707 0.2969821 0.3224385 0.3469049 0.3625844
(2, 2)T 0.2297859 0.1757931 0.3720656 0.3078242 0.3847476 0.4105755
(1, –1)T 0.1986126 0.1512495 0.3220028 0.3729462 0.3787876 0.4068135
(–2, 3)T 0.2380988 0.1703252 0.2690971 0.3069672 0.3448697 0.3428332

where E is defined by:

E =

(
1 0
0 2

)

.

The mapping M is clearly 0-demicontractive, with ρ = 0. Depending on the stopping con-
dition, the starting point for this experiment is calculated differently as Dk = ‖qk – rk‖ ≤
10–10. Figures 7–14 and Tables 3 and 4 demonstrate quantitative data for Example 4.2. The
following control criteria are in effect:

(1) Algorithm 2 (briefly, alg-1): �1 = 0.45, � = 0.35, μ = 0.33, χk = 10
(1+k)2 , ςk = 1

(3k+6) ,
σk = k

(3k+1) .
(2) Algorithm 4 (briefly, alg-2): �1 = 0.45, � = 0.35, μ = 0.33, χk = 10

(1+k)2 , ςk = 1
(3k+4) ,

σk = k
(3k+1) .

(3) Algorithm 1 in [31] (briefly, mtalg-1): γ1 = 0.45, δ = 0.35, φ = 0.33, �k = 1
(3k+6) ,

�k = 1
2.5 (1 – �k), χk = 10

(1+k)2 .
(4) Algorithm 2 in [31] (briefly, mtalg-2): γ1 = 0.45, δ = 0.35, φ = 0.33, �k = 1

(3k+6) ,
�k = 1

2.5 (1 – �k), χk = 10
(1+k)2 .

(5) Algorithm 1 in [32] (briefly, vtalg-1): τ1 = 0.45, � = 0.35, μ = 0.33, χk = 10
(1+k)2 ,

ςk = 1
(3k+6) , σk = k

(3k+1) , f (u) = u
2 .

(6) Algorithm 2 in [32] (briefly, vtalg-2): τ1 = 0.45, � = 0.35, μ = 0.33, χk = 10
(1+k)2 ,

ςk = 1
(3k+6) , σk = k

(3k+1) , f (u) = u
2 .

Example 4.3 Take the following set:

D :=
{

u ∈ L2([0, 1]
)

: ‖u‖ ≤ 1
}

.

Let N : D → E be an operator described through

N (u)(t) =
∫ 1

0

(
u(t) – H(t, s)f

(
u(s)

))
ds + g(t),
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Figure 7 Numerical comparsion of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in [31],
Algorithm 1 in [32], and Algorithm 2 in [32] when s0 = s1 = (1, 1)T

Figure 8 Numerical comparsion of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in [31],
Algorithm 1 in [32], and Algorithm 2 in [32] when s0 = s1 = (1, 1)T

where

H(t, s) =
2tse(t+s)

e
√

e2 – 1
, f (u) = cos u, g(t) =

2tet

e
√

e2 – 1
.

In this case, E = L2([0, 1]) denotes a Hilbert space via an inner product

〈u, y〉 =
∫ 1

0
u(t)y(t) dt, ∀u, y ∈ E ,
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Figure 9 Numerical comparsion of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in [31],
Algorithm 1 in [32], and Algorithm 2 in [32] when s0 = s1 = (2, 2)T

Figure 10 Numerical comparsion of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in
[31], Algorithm 1 in [32], and Algorithm 2 in [32] when s0 = s1 = (2, 2)T

where its induced norm is:

‖u‖ =

√∫ 1

0

∣∣u(t)
∣∣2 dt.

A function M : L2([0, 1]) → L2([0, 1]) is of the form

M(u)(t) =
∫ 1

0
tu(s) ds, t ∈ [0, 1].

A simple calculation suggests that M is 0-demicontractive. The solution is � ∗(t) = 0. The
stopping condition in this experiment is Dk = ‖qk – rk‖ ≤ 10–6. Figures 15–18 and Tables 5
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Figure 11 Numerical comparsion of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in
[31], Algorithm 1 in [32], and Algorithm 2 in [32] when s0 = s1 = (1, –1)T

Figure 12 Numerical comparsion of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in
[31], Algorithm 1 in [32], and Algorithm 2 in [32] when s0 = s1 = (1, –1)T

and 6 illustrate numerical observations for Example 4.3. The following control criteria are
in effect:

(1) Algorithm 2 (briefly, alg-1): �1 = 0.33, � = 0.66, μ = 0.55, χk = 1
(1+k)2 , ςk = 1

(4k+8) ,
σk = k

(5k+1) .
(2) Algorithm 4 (briefly, alg-2): �1 = 0.33, � = 0.66, μ = 0.55, χk = 1

(1+k)2 , ςk = 1
(4k+8) ,

σk = k
(5k+1) .

(3) Algorithm 1 in [31] (briefly, mtalg-1): γ1 = 0.33, δ = 0.66, φ = 0.55, �k = 1
(4k+8) ,

�k = 1
2 (1 – �k), χk = 1

(1+k)2 .
(4) Algorithm 2 in [31] (briefly, mtalg-2): γ1 = 0.33, δ = 0.66, φ = 0.55, �k = 1

(4k+8) ,
�k = 1

2 (1 – �k), χk = 1
(1+k)2 .
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Figure 13 Numerical comparsion of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in
[31], Algorithm 1 in [32], and Algorithm 2 in [32] when s0 = s1 = (–2, –3)T

Figure 14 Numerical comparsion of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in
[31], Algorithm 1 in [32], and Algorithm 2 in [32] when s0 = s1 = (–2, –3)T

(5) Algorithm 1 in [32] (briefly, vtalg-1): τ1 = 0.33, � = 0.66, μ = 0.55, χk = 1
(1+k)2 ,

ςk = 1
(4k+8) , σk = k

(4k+1) , f (u) = u
3 .

(6) Algorithm 2 in [32] (briefly, vtalg-2): τ1 = 0.33, � = 0.66, μ = 0.55, χk = 1
(1+k)2 ,

ςk = 1
(4k+8) , σk = k

(4k+1) , f (u) = u
3 .

Example 4.4 Consider that the feasible set D is provided by

D :=
{

u ∈ L2([0, 1]
)

: ‖u‖ ≤ 1
}

.
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Table 5 Numerical values for the Figs. 15–18

s0 = s1 Total number of iterations

alg-1 alg-2 mtalg-1 mtalg-2 vtalg-1 vtalg-2

1 44 33 76 70 66 57
t 42 31 89 84 58 48
sin(t) 45 34 75 64 58 51
cos(t) 47 35 74 94 58 51

Table 6 Numerical values for the Figs. 15–18

s0 = s1 Required CPU time

alg-1 alg-2 mtalg-1 mtalg-2 vtalg-1 vtalg-2

1 0.1310831 0.1149104 0.2380825 0.2171721 0.1915358 0.178602
t 0.0583617 0.0538350 0.1154974 0.1059993 0.0784157 0.0548289
sin(t) 0.1372786 0.1029274 0.2692971 0.185825 0.1745996 0.1476468
cos(t) 0.1364229 0.1253482 0.2207376 0.2697567 0.172504 0.1452834

Figure 15 Numerical comparison of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in
[31], Algorithm 1 in [32], and Algorithm 2 in [32] when s0 = 1

Figure 16 Numerical comparison of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in
[31], Algorithm 1 in [32], and Algorithm 2 in [32] when s0 = s1 = t

Let us design an operator N : D → E as

N (u)(t) = max
{

u(t), 0
}

=
u(t) + |u(t)|

2
.
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Figure 17 Numerical comparison of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in
[31], Algorithm 1 in [32], and Algorithm 2 in [32] when s0 = s1 = sin(t)

Figure 18 Numerical comparison of Algorithm 2 and Algorithm 4 with Algorithm 1 in [31], Algorithm 2 in
[31], Algorithm 1 in [32], and Algorithm 2 in [32] when s0 = s1 = cos(t)

Let E = L2([0, 1]) represent a real Hilbert space. Its induced norm and inner product are
described by

〈u, y〉 =
∫ 1

0
u(t)y(t) dt, ∀u, y ∈ E

and

‖u‖ =

√∫ 1

0

∣∣u(t)
∣∣2 dt.

It is trivial to verify that N is monotone and 1-Lipschitz continuous, and that the projec-
tion on D is naturally straightforward, that is,

PC(u) =

⎧
⎨

⎩

u
‖u‖ , if ‖u‖ > 1,

u, ‖u‖ ≤ 1.
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Table 7 Numerical values for Example 4.4

s0 = s1 Total number of iterations

alg-1 alg-2 mtalg-1 mtalg-2 vtalg-1 vtalg-2

t2 53 43 88 79 78 66
cos(t) 61 47 93 85 81 73
exp(t) 66 42 91 81 75 78
3t 65 51 97 87 71 79

Table 8 Numerical values for Example 4.4

s0 = s1 Required CPU time

alg-1 alg-2 mtalg-1 mtalg-2 vtalg-1 vtalg-2

t2 0.1745382 0.1275749 1.5867949 1.1684235 1.5915358 1.50273734
cos(t) 0.1976944 0.2557759 1.8563924 1.5462935 1.7394833 1.74387483
exp(t) 1.0575325 0.1547495 1.6949494 1.0997845 1.1872049 1.84874373
3t 1.0025344 0.1937548 1.2207376 1.7112947 1.1990292 1.95858459

A mapping M : L2([0, 1]) → L2([0, 1]) takes the following form:

M(u)(t) =
∫ 1

0
tu(s) ds, t ∈ [0, 1].

A simple analysis demonstrates that M is 0-demicontractive. The solution is � ∗(t) = 0.
These trials begin differently by setting a halting requirement Dk = ‖qk – rk‖ ≤ 10–6. Ta-
bles 7 and 8 include numerical results for Example 4.4. The following conditions are used
as control criteria:

(1) Algorithm 2 (briefly, alg-1): �1 = 0.25, � = 0.44, μ = 0.75, χk = 1
(1+k)2 , ςk = 1

(5k+10) ,
σk = k

(2k+1) .
(2) Algorithm 4 (briefly, alg-2): �1 = 0.25, � = 0.44, μ = 0.75, χk = 1

(1+k)2 , ςk = 1
(5k+10) ,

σk = k
(2k+1) .

(3) Algorithm 1 in [31] (briefly, mtalg-1): γ1 = 0.25, δ = 0.44, φ = 0.75, �k = 1
(5k+10) ,

�k = 1
2 (1 – �k), χk = 1

(1+k)2 .
(4) Algorithm 2 in [31] (briefly, mtalg-2): γ1 = 0.25, δ = 0.44, φ = 0.75, �k = 1

(5k+10) ,
�k = 1

2 (1 – �k), χk = 1
(1+k)2 .

(5) Algorithm 1 in [32] (briefly, vtalg-1): τ1 = 0.25, � = 0.44, μ = 0.75, χk = 1
(1+k)2 ,

ςk = 1
(5k+10) , σk = k

(2k+1) , f (u) = u
4 .

(6) Algorithm 2 in [32] (briefly, vtalg-2): τ1 = 0.25, � = 0.44, μ = 0.75, χk = 1
(1+k)2 ,

ςk = 1
(5k+10) , σk = k

(2k+1) , f (u) = u
4 .

5 Conclusion
We proposed four inertial extragradient-type methods to solve the monotone variational
inequality problem numerically as well as a fixed-point problem. These methods are
viewed as a modified version of the two-step extragradient method. Two strong conver-
gence theorems have been established for the proposed methods. These numerical re-
sults were established in order to confirm the numerical effectiveness of the suggested
algorithms over the existing methods. These computational results show that the non-
monotone variable step-size rule continues to improve the iterative sequence’s usefulness
in this context.
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