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Abstract
In this manuscript, a novel general class of contractions, called Jaggi–Suzuki-type
hybrid (G-α-φ)-contraction, is introduced and some fixed point theorems that cannot
be deduced from their akin in metric spaces are proved. The dominance of this family
of contractions is that its contractive inequality can be specialized in various manners,
depending on multiple parameters. Nontrivial comparative examples are constructed
to validate the assumptions of our obtained theorems. Consequently, a number of
corollaries that reduce our result to some prominent results in the literature are
highlighted and analyzed. Additionally, we examine Ulam-type stability and
well-posedness for the new contraction proposed herein. Finally, one of our obtained
corollaries is applied to set up unprecedented existence conditions for solution to a
class of integral equations. For future aspects of our results, an open problem is noted
concerning the discretized population balance model, whose solution may be
analyzed using the techniques established herein.
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1 Introduction
The famous Banach contraction in metric spaces (MS) has paved the way for a new dawn
in metric fixed point theory, which is proven to have many applications in inequalities,
approximation theory, optimization, and so on. Researchers in this area have introduced
several new concepts in MS and obtained a wealth of fixed point (FP) results for linear and
nonlinear contractions. Recently, Noorwali and Yeşilkaya [15] introduced a new notion
of hybrid contraction, which combined and unified some existing linear and nonlinear
contractions in MS.

On the other hand, Mustafa [11] introduced an extension of MS by the name, generalized
MS (or more specifically, G-metric space (G-MS)) and proved some FP results for Banach-
type contraction mappings. This new generalization was brought to limelight by Mustafa
and Sims [14]. Subsequently, Mustafa et al. [12] and several other authors (see, e.g., [1,
5, 6, 10, 13, 17, 18]) obtained some remarkable FP results satisfying certain contractive
conditions on G-MS. However, Jleli and Samet [7] as well as Samet et al. [19] published
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observations that most of the FP results in G-MS are direct consequences of existence
results in MS. In fact, Jleli and Samet [7] noted that if a G-metric can be reduced to a
quasi-metric, then the related FP results become the known FP results in the context of
quasi-MS. Motivated by the latter observation, many investigators (see, e.g., [4, 8]) have
developed techniques for establishing FP results in G-MS that cannot be followed from
their analogue ones in ordinary or quasi-MS.

Following the existing literature, we realize that hybrid FP results in G-MS have not
been sufficiently investigated. Hence, motivated by the ideas in [4, 8, 15], we introduce a
new concept of Jaggi–Suzuki-type hybrid (G-α-φ)-contraction in G-MS and prove some
related FP theorems. An example is given to demonstrate the validity of our result and
to show that the main ideas obtained herein do not reduce to any existence result in MS.
Some corollaries are presented to show that the concept proposed in this paper is an exten-
sion and generalization of some well-known FP theorems in G-MS. Additionally, Ulam-
type stability and well-posedness of this type of hybrid contraction are established and
analyzed. Furthermore, one of our obtained corollaries is applied to establish novel exis-
tence conditions for the solution of a class of integral equations. For further research and
extension of our results, an open problem is highlighted concerning discretized popula-
tion balance model, whose solution may be analyzed using our established techniques.

2 Preliminaries
In this section, we present some fundamental notations and results that will be deployed
subsequently.

All through, every set � is considered nonempty, N is the set of natural numbers, R
represents the set of real numbers, and R+ the set of nonnegative real numbers.

Definition 1 ([14]) Let � be a nonempty set and let G : � × � × � −→R+ be a function
satisfying:

(G1) G(r, s, t) = 0 if r = s = t;
(G2) 0 < G(r, r, s) for all r, s ∈ � with r �= s;
(G3) G(r, r, s) ≤ G(r, s, t) for all r, s, t ∈ � with t �= s;
(G4) G(r, s, t) = G(r, t, s) = G(s, r, t) = · · · (symmetry in all three variables);
(G5) G(r, s, t) ≤ G(r, a, a) + G(a, s, t) for all r, s, t, a ∈ � (rectangle inequality).

Then the function G is called a generalized metric or, more specifically, a G-metric on �,
and the pair (�, G) is called a G-MS.

Example 1 ([12]) Let (�, d) be a usual MS. Then (�, Gp) and (�, Gm) are G-MS, where

Gp(r, s, t) = d(r, s) + d(s, t) + d(r, t) ∀r, s, t ∈ �, (1)

Gm(r, s, t) = max
{

d(r, s), d(s, t), d(r, t)
} ∀r, s, t ∈ �. (2)

Definition 2 ([12]) Let (�, G) be a G-MS and let {rx}x∈N be a sequence of points of �. We
say that {rx}x∈N is G-convergent to r if limx,m→∞ G(r, rx, rm) = 0; that is, for any ε > 0, there
exists x0 ∈ N such that G(r, rx, rm) < ε, ∀x, m ≥ x0. We refer to r as the limit of the sequence
{rx}x∈N.

Proposition 1 ([12]) Let (�, G) be a G-MS. Then the following are equivalent:
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(i) {rx}x∈N is G-convergent to r.
(ii) G(r, rx, rm) −→ 0 as x, m → ∞.

(iii) G(rx, r, r) −→ 0 as x → ∞.
(iv) G(rx, rx, r) −→ 0 as x → ∞.

Definition 3 ([12]) Let (�, G) be a G-MS. A sequence {rx}x∈N is called G-Cauchy if, given
ε > 0, there exists x0 ∈ N such that G(rx, rm, rl) < ε, ∀x, m, l ≥ x0, that is, G(rx, rm, rl) −→ 0
as x, m, l → ∞.

Proposition 2 ([12]) In a G-MS (�, G), the following are equivalent:
(i) The sequence {rx}x∈N is G-Cauchy.

(ii) For every ε > 0, there exists x0 ∈N such that G(rx, rm, rm) < ε, ∀x, m ≥ x0.

Definition 4 ([12]) Let (�, G) and (�′, G′) be two G-MS and let f : (�, G) −→ (�′, G′) be
a function. Then f is said to be G-continuous at a point a ∈ � if and only if, given ε > 0,
there exists δ > 0 such that r, s ∈ � and G(a, r, s) < δ ⇒ G′(f (a), f (r), f (s)) < ε. A function f
is G-continuous on � if and only if it is G-continuous at all a ∈ �.

Proposition 3 ([12]) Let (�, G) and (�′, G′) be two G-MS. Then a function f : (�, G) −→
(�′, G′) is said to be G-continuous at a point r ∈ � if and only if it is G-sequentially con-
tinuous at r, that is, whenever {rx}x∈N is G-convergent to r, {frx} is G-convergent to fr.

Definition 5 ([12]) A G-MS (�, G) is called symmetric G-MS if

G(r, r, s) = G(s, r, r) ∀r, s ∈ �.

Proposition 4 ([12]) Let (�, G) be a G-MS. Then the function G(r, s, t) is jointly continuous
in all three of its variables.

Proposition 5 ([12]) Every G-MS (�, G) will define an MS (�, dG) by

dG(r, s) = G(r, s, s) + G(s, r, r) ∀r, s ∈ �. (3)

Note that if (�, G) is a symmetric G-MS, then

(�, dG) = 2G(r, s, s) ∀r, s ∈ �. (4)

However, if (�, G) is not symmetric, then it holds by the G-metric properties that

3
2

G(r, s, s) ≤ dG(r, s) ≤ 3G(r, s, s) ∀r, s ∈ �, (5)

and that in general, these inequalities are sharp.

Definition 6 ([12]) A G-MS (�, G) is said to be G-complete (or complete G-metric) if
every G-Cauchy sequence in (�, G) is G-convergent in (�, G).

Proposition 6 ([12]) A G-MS (�, G) is G-complete if and only if (�, dG) is a complete MS.
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Mustafa [11] proved the following result in the framework of G-MS.

Theorem 1 ([11]) Let (�, G) be a complete G-MS, and let � : � −→ � be a self-mapping
satisfying the following condition:

G(�r,�s,�t) ≤ kG(r, s, t) (6)

for all r, s, t ∈ �, where 0 ≤ k < 1. Then � has a unique FP (say u, i.e., �u = u), and � is
G-continuous at u.

Definition 7 ([2]) Let � be the set of all functions φ : R+ −→ R+ satisfying:
(i) φ is monotone increasing, that is, p1 ≤ p2 ⇒ φ(p1) ≤ φ(p2);

(ii) The series
∑∞

x=0 φx(p) is convergent for all p > 0.
Then φ is called a (c)-comparison function.

Remark 1 If φ ∈ � , then φ(p) < p for any p > 0, φ(0) = 0 and φ is continuous at 0.

Popescu [16] gave the following definitions in the setting of MS.

Definition 8 ([16]) Let α : � × � −→ R+ be a function. A self-mapping � : � −→ � is
called α-orbital admissible if for all r ∈ �,

α(r,�r) ≥ 1 ⇒ α
(
�r,�2r

) ≥ 1.

Definition 9 ([16]) Let α : � × � −→ R+ be a function. A self-mapping � : � −→ � is
called triangular α-orbital admissible if for all r ∈ �, � is α-orbital admissible and

α(r, s) ≥ 1 and α(s,�s) ≥ 1 ⇒ α(r,�s) ≥ 1.

We modify the above definitions in the framework of G-MS as follows.

Definition 10 Let α : � × � × � −→ R+ be a function. A self-mapping � : � −→ � is
called (G-α)-orbital admissible if for all r ∈ �,

α
(
r,�r,�2r

) ≥ 1 ⇒ α
(
�r,�2r,�3r

) ≥ 1.

Definition 11 Let α : � × � × � −→ R+ be a function. A self-mapping � : � −→ � is
called triangular (G-α)-orbital admissible if for all r ∈ �, � is (G-α)-orbital admissible
and

α(r, s,�s) ≥ 1 and α
(
s,�s,�2s

) ≥ 1 ⇒ α
(
r,�s,�2s

) ≥ 1.

Lemma 1 Let � : � −→ � be a triangular(G-α)-orbital admissible mapping. If there exists
r0 ∈ � such that α(r0,�r0,�2r0) ≥ 1, then

α(rx, rm, rl) ≥ 1 ∀x, m, l ∈N, (7)

where {rx}x∈N is a sequence defined by rx+1 = �rx, x ∈N.
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Proof Since � is (G-α)-orbital admissible mapping and α(r0,�r0,�2r0) ≥ 1, then we
deduce that α(r1, r2, r3) = α(�r0,�r1,�r2) ≥ 1. Continuing in this manner, we obtain
α(rx, rx+1, rx+2) ≥ 1 for all x ≥ 1. Assume that α(rx, rm, rm+1) ≥ 1, where m > x. Since �

is triangular (G-α)-orbital admissible mapping and α(rm, rm+1, rm+2) ≥ 1, then, clearly,
α(rx, rm+1, rm+2) ≥ 1 for all m, x ∈N. This validates our assumption that α(rx, rm, rm+1) ≥ 1.
Letting l = m + 1 completes the proof. �

Definition 12 ([3]) Let α : � × � × � −→ R+ be a mapping. The set � is called regular
with respect to α if and only if for every sequence {rx}x∈N in � such that α(rx, rx+1, rx+2) ≥ 1,
for all x and rx → r ∈ � as x → ∞, we have α(rx, r, r) ≥ 1 for all x.

Noorwali and Yeşilkaya [15] gave the following definition of Jaggi-type hybrid contrac-
tion in MS.

Definition 13 ([15]) Let (�, d) be an MS. A self-mapping � : � −→ � is called a Jaggi–
Suzuki-type hybrid contraction if there exist φ ∈ � and α : � × � −→R+ such that

1
2

d(r,�r) ≤ d(r, s) ⇒ α(r, s)d(�r,�s) ≤ φ
(
M(r, s)

)
(8)

for all r, s ∈ �, where

M(r, s) =

⎧
⎨

⎩
[λ1( d(r,�r)·d(s,�s)

d(r,s) )q + λ2d(r, s)q]
1
q for q > 0, r �= s;

d(r,�r)λ1 · d(s,�s)λ2 for q = 0, r, s ∈ �\Fix(�),
(9)

λ1,λ2 ≥ 0 with λ1 + λ2 = 1, λ1 < 1
2 and Fix(�) = {r ∈ � : �r = r}.

3 Main results
We begin this section by defining the notion of Jaggi–Suzuki-type hybrid (G-α-φ)-
contraction in G-MS.

Definition 14 Let (�, G) be a G-MS. A self-mapping � : � −→ � is called a Jaggi–Suzuki-
type hybrid (G-α-φ)-contraction if there exist φ ∈ � and α : � × � × � −→R+ such that

1
2

G
(
r,�r,�2r

) ≤ G(r, s,�s) ⇒ α(r, s,�s)G
(
�r,�s,�2s

) ≤ φ
(
M(r, s,�s)

)
(10)

for all r, s ∈ �\Fix(�), where

M(r, s,�s) =

⎧
⎨

⎩
[λ1( G(r,�r,�2r)·G(s,�s,�2s)

G(r,s,�s) )q + λ2G(r, s,�s)q]
1
q for q > 0;

G(r,�r,�2r)λ1 · G(s,�s,�2s)λ2 for q = 0,
(11)

λ1,λ2 ≥ 0 with λ1 + λ2 = 1 and Fix(�) = {r ∈ � : �r = r}.

The following is our main result.

Theorem 2 Let (�, G) be a complete G-MS and let � : � −→ � be a Jaggi–Suzuki-type
hybrid (G-α-φ)-contraction. Assume further that
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(i) � is triangular (G-α)-orbital admissible;
(ii) There exists r0 ∈ � such that α(r0,�r0,�2r0) ≥ 1;

(iii) Either � is continuous or
(iv) �3 is continuous and α(r,�r,�2r) ≥ 1 for each r ∈ Fix(�3).

Then � has an FP in �.

Proof Let r0 ∈ � be an arbitrary point and define a sequence {rx}x∈N in � by rx = �xr0 for
all x ∈N. Assume that there exists some m ∈N such that �rm = rm+1 = rm, then, clearly, rm

is an FP of �. So, we presume that rx �= rx–1 for any x ∈ N. Since � is a Jaggi–Suzuki-type
hybrid (G-α-φ)-contraction, then from (10) we have

1
2

G
(
rx–1,�rx–1,�2rx–1

)
=

1
2

G(rx–1, rx,�rx) ≤ G(rx–1, rx,�rx)

= α(rx–1, rx,�rx)G
(
�rx–1,�rx,�2rx

)

≤ φ
(
M(rx–1, rx,�rx)

)
. (12)

Owing to the fact that � is triangular (G-α)-orbital admissible together with (7) and (12),
we have

G(rx, rx+1,�rx+1) = G(rx, rx+1, rx+2)

≤ α(rx–1, rx,�rx)G
(
�rx–1,�rx,�2rx

)

≤ φ
(
M(rx–1, rx,�rx)

)
. (13)

We now consider the given cases of (10).
Case 1: For q > 0, we obtain

M(rx–1, rx,�rx) =
[
λ1

(
G(rx–1,�rx–1,�2rx–1)G(rx,�rx,�2rx)

G(rx–1, rx,�rx)

)q

+ λ2G(rx–1, rx,�rx)q
] 1

q

=
[
λ1

(
G(rx–1, rx, rx+1)G(rx, rx+1, rx+2)

G(rx–1, rx, rx+1)

)q

+ λ2G(rx–1, rx, rx+1)q
] 1

q

=
[
λ1G(rx, rx+1, rx+2)q + λ2G(rx–1, rx, rx+1)q] 1

q .

Since φ is nondecreasing, if we assume that

G(rx–1, rx, rx+1) ≤ G(rx, rx+1, rx+2),

then (13) becomes

G(rx, rx+1, rx+2) ≤ φ
([

λ1G(rx, rx+1, rx+2)q + λ2G(rx–1, rx, rx+1)q] 1
q
)

≤ φ
([

λ1G(rx, rx+1, rx+2)q + λ2G(rx, rx+1, rx+2)q] 1
q
)

= φ
(
(λ1 + λ2)

1
q G(rx, rx+1, rx+2)

)

= φ
(
G(rx, rx+1, rx+2)

)
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< G(rx, rx+1, rx+2),

which is a contradiction. Therefore, for every x ∈N, we have

G(rx, rx+1, rx+2) < G(rx–1, rx, rx+1),

so that (13) becomes

G(rx, rx+1, rx+2) ≤ φ
([

λ1G(rx, rx+1, rx+2)q + λ2G(rx–1, rx, rx+1)q] 1
q
)

≤ φ
(
(λ1 + λ2)

1
q G(rx–1, rx, rx+1)

)

≤ φ
(
G(rx–1, rx, rx+1)

)
.

Continuing inductively, we have

G(rx, rx+1, rx+2) ≤ φx(G(r0, r1, r2)
)
. (14)

Now, since

G(rx, rx, rx+1) ≤ G(rx, rx+1, rx+2) ≤ φx(G(r0, r1, r2)
)

for all x ∈N with rx+1 �= rx+2, then for any x, m ∈N with x < m and by the rectangle inequal-
ity, we have

G(rx, rx, rm) ≤ G(rx, rx, rx+1) + G(rx+1, rx+1, rx+2) + · · · + G(rm–1, rm–1, rm)

≤ (
φx + φx+1 + φx+2 + · · · + φm–1)(G(r0, r1, r2)

)

=
m–1∑

i=x

φi(G(r0, r1, r2)
) ≤

∞∑

i=x

φi(G(r0, r1, r2)
)
.

Since φ is a (c)-comparison function, then the series
∑∞

i=0 φi(G(r0, r1, r2)) is convergent,
and so denoting by Sp =

∑∞
i=0 φi(G(r0, r1, r2)), we have

G(rx, rx, rm) ≤ Sm–1 – Sx–1.

Hence, as x, m → ∞, we see that

G(rx, rx, rm) −→ 0.

Thus {rx}x∈N is a G-Cauchy sequence in (�, G), and so by the completeness of (�, G), there
exists t ∈ � such that {rx}x∈N is G-convergent to t, that is,

lim
x→∞ G(rx, rx, t) = 0.

We will now show that t is an FP of �. By the assumption that � is continuous, we have

lim
x→∞ G(t, t,�t) = lim

x→∞ G(rx+1, rx+1,�t) = lim
x→∞ G(�rx,�rx,�t)
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= lim
x→∞ G(�rx,�rx,�rx) = 0,

so we get �t = t, that is, t is an FP of �.
Alternatively, by the assumption that (iv) holds, we have �3t = lim�3rx = t. To see that

�t = t, assume contrary that �t �= t. Then, by (10) and Proposition 1, we obtain

1
2

G
(
t,�t,�2t

) ≤ G
(
t,�t,�2t

)

⇒ α
(
t,�t,�2t

)
G

(
�t,�2t,�3t

) ≤ φ
(
M

(
t,�t,�2t

))
.

Now,

G
(
t,�t,�2t

)
= G

(
�3t,�t,�2t

) ≤ α
(
t,�t,�2t

)
G

(
�t,�2t,�3t

)

≤ φ
(
M

(
t,�t,�2t

))
< M

(
t,�t,�2t

)
,

where

M
(
t,�t,�2t

)
=

[
λ1

(
G(t,�t,�2t) · G(�t,�2t,�3t)

G(t,�t,�2t)

)q

+ λ2G
(
t,�t,�2t

)q
] 1

q

=
[
λ1G

(
t,�t,�2t

)q + λ2G
(
t,�t,�2t

)q] 1
q

=
[
(λ1 + λ2)G

(
t,�t,�2t

)q] 1
q

= (λ1 + λ2)
1
q G

(
t,�t,�2t

)

= G
(
t,�t,�2t

)
,

which is a contradiction. Hence, �t = t.
Case 2: For q = 0, we have

M(rx–1, rx,�rx) = G
(
rx–1,�rx–1,�2rx–1

)λ1 · G
(
rx,�rx,�2rx

)λ2

= G(rx–1, rx, rx+1)λ1 · G(rx, rx+1, rx+2)λ2 .

Now, if G(rx–1, rx, rx+1) ≤ G(rx, rx+1, rx+2), then (13) becomes

G(rx, rx+1, rx+2) < G(rx, rx+1, rx+2),

which is a contradiction. Therefore,

G(rx, rx+1, rx+2) < G(rx–1, rx, rx+1).

Hence, by (13), we have

G(rx, rx+1, rx+2) < φ
(
G(rx–1, rx, rx+1)

)
< φ2(G(rx–1, rx, rx+1)

)

< · · · < φx(G(r0, r1, r2)
)
.
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By similar argument as the case of q > 0, we can show that there exist a G-Cauchy sequence
{rx}x∈N in (�, G) and a point t in � such that limx→∞ rx = t. Similarly, under the assumption
that � is continuous and by the uniqueness of limit, we have that �t = t, that is, t is an FP
of �. �

In the result that follows, we examine the uniqueness of FP of � under certain supple-
mentary assumptions.

Theorem 3 If in Theorem 2, in the event of q > 0, we assume further that (�, G) is regular
with respect to α and α(r, s,�s) ≥ 1 for any r, s ∈ Fix(�), then the FP of � is unique.

Proof Let v, t ∈ Fix(�) be such that v �= t. By replacing this in (10) and noting the additional
hypotheses, we have

1
2

G
(
t,�t,�2t

) ≤ G(t, v,�v)

⇒ G(t, v,�v) ≤ α(t, v,�v)G
(
�t,�v,�2v

)

≤ φ
(
M(t, v,�v)

)
< M(t, v,�v)

=
[
λ1

(
G(t,�t,�2t)G(v,�v,�2v)

G(t, v,�v)

)q

+ λ2G(t, v,�v)q
] 1

q

=
[
λ1

(
G(t, t, t)G(v, v, v)

G(t, v,�v)

)q

+ λ2G(t, v,�v)q
] 1

q

= λ
1
q
2 G(t, v,�v)

< G(t, v,�v),

which is a contradiction. Hence, v = t, and so the FP of � is unique. �

Example 2 Let � = [–1, 1] and let � : � −→ � be a self-mapping on � defined by

�r =

⎧
⎨

⎩

r
5 if r ∈ {–1, 1};
1
5 if r ∈ (–1, 1)

for all r ∈ �. Define G : � × � × � −→R+ by

G(r, s,�s) = |r – s| + |r – �s| + |s – �s| ∀r, s ∈ �.

Then (�, G) is a complete G-MS. Define φ : R+ −→ R+ by φ(p) = p
2 for all p ≥ 0 and α :

� × � × � −→ R+ by

α(r, s,�s) =

⎧
⎨

⎩
1 if r, s ∈ {–1} ∪ [0, 1];

0 otherwise.
(15)

Then, obviously, φ ∈ � , � is triangular(G-α)-orbital admissible, � is continuous for all
r ∈ �, and �3 is continuous for any r ∈ Fix(�3). Also, there exists r0 = 1

2 ∈ � such that
α( 1

2 ,�( 1
2 ),�2( 1

2 )) = α( 1
2 , 1

5 , 1
5 ) ≥ 1. Hence, conditions (i)-(iv) of Theorem 2 are satisfied.
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To see that � is a Jaggi–Suzuki-type hybrid(G-α-φ)-contraction, notice that α(r, s,�s) =
0 for all r, s ∈ (–1, 0) and G(�r,�s,�2s) = 0 for all r, s ∈ (–1, 1). Hence, inequality (10) holds
for all r, s ∈ (–1, 1).

Now, for r, s ∈ {–1, 1}, if r = s = 1, then G(�r,�s,�2s) = 0 for all q ≥ 0. If r = s = –1, then
letting λ1 = 2

5 , λ2 = 3
5 , and q = 1, we obtain

1
2

G
(
r,�r,�2r

)
=

1
2

G
(

–1,
–1
5

,
1
5

)

=
6
5

<
8
5

= G
(

–1, –1,
–1
5

)
= G(r, s,�s)

⇒ α(r, s,�s)G
(
�r,�s,�2s

)
= α

(
–1, –1,

–1
5

)
G

(
–1
5

,
–1
5

,
1
5

)

=
4
5

<
6
5

=
1
2

(
12
5

)

=
1
2

(
M

(
–1, –1,

–1
5

))

= φ
(
M(r, s,�s)

)
.

Also, for q = 0, we have

α(r, s,�s)G
(
�r,�s,�2s

)
=

4
5

<
1
2

(
12
5

)
= φ

(
M(r, s,�s)

)
.

If r �= s, then for r = 1, s = –1, we have

1
2

G
(
r,�r,�2r

)
=

1
2

G
(

1,
1
5

,
1
5

)
=

4
5

< 4 = G
(

1, –1,
–1
5

)
= G(r, s,�s),

while for r = –1, s = 1, we obtain

1
2

G
(
r,�r,�2r

)
=

1
2

G
(

–1,
–1
5

,
1
5

)
=

6
5

< 4 = G
(

–1, 1,
1
5

)
= G(r, s,�s).

These imply that for all r, s ∈ {–1, 1} with r �= s, letting λ1 = 1
5 , λ2 = 4

5 and q = 3, we obtain

α(r, s,�s)G
(
�r,�s,�2s

)
= α

(
1, –1,

–1
5

)
G

(
1
5

,
–1
5

,
1
5

)

= α

(
–1, 1,

1
5

)
G

(
–1
5

,
1
5

,
1
5

)

=
4
5

<
8
5

=
1
2

(
16
5

)

=
1
2

(
M

(
1, –1,

–1
5

))
=

1
2

(
M

(
–1, 1,

1
5

))

= φ
(
M(r, s,�s)

)
.



Jiddah et al. Journal of Inequalities and Applications         (2023) 2023:46 Page 11 of 19

Also, for q = 0, we take λ1 = λ2 = 1
2 . Then

α(r, s,�s)G
(
�r,�s,�2s

)
= α

(
1, –1,

–1
5

)
G

(
1
5

,
–1
5

,
1
5

)

= α

(
–1, 1,

1
5

)
G

(
–1
5

,
1
5

,
1
5

)

=
4
5

<
24
25

=
1
2

(
48
25

)

=
1
2

(
M

(
1, –1,

–1
5

))
=

1
2

(
M

(
–1, 1,

1
5

))

= φ
(
M(r, s,�s)

)
.

Hence, inequality (10) is satisfied for all r, s ∈ �. Therefore, � is a Jaggi–Suzuki-type hybrid
(G-α-φ)-contraction that satisfies all the hypotheses of Theorem 2 and r = 1

5 is the FP of
�.

We now demonstrate that our result is independent of the result of Noorwali and
Yeşilkaya [15]. Let α : � × � −→ R+ be as given by Definition (13), r0 ∈ � be such that
α(r0,�r0) ≥ 1, φ(p) = 19p

40 for all p ≥ 0, and d : � × � −→R+ be defined by

d(r, s) = |r – s| ∀r, s ∈ �.

Consider r, s ∈ {–1, 1} and take, for Case 2, r �= s, λ1 = 2
5 , and λ2 = 3

5 . Then from inequality
(10) we see that

1
2

G
(
r,�r,�2r

)
=

1
2

G
(

1,
1
5

,
1
5

)
=

4
5

< 4 = G
(

1, –1,
–1
5

)
= G(r, s,�s)

⇒ α(r, s,�s)G
(
�r,�s,�2s

)
= α

(
1, –1,

–1
5

)
G

(
1
5

,
–1
5

,
1
5

)

=
4
5

<
24
25

=
19
40

(
192
95

)

=
19
40

(
M

(
1, –1,

–1
5

))

= φ
(
M(r, s,�s)

)

for r = 1, s = –1 and

1
2

G
(
r,�r,�2r

)
=

1
2

G
(

–1,
–1
5

,
1
5

)
=

6
5

< 4 = G
(

–1, 1,
1
5

)
= G(r, s,�s)

⇒ α(r, s,�s)G
(
�r,�s,�2s

)
= α

(
–1, 1,

1
5

)
G

(
–1
5

,
1
5

,
1
5

)

=
4
5

<
89

100
=

19
40

(
178
95

)

=
19
40

(
M

(
–1, 1,

1
5

))

= φ
(
M(r, s,�s)

)
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for r = –1, s = 1. However, inequality (8) due to Noorwali and Yeşilkaya [15] yields

1
2

d(r,�r) =
1
2

d
(

1,
1
5

)
=

1
2

d
(

–1,
–1
5

)
=

2
5

< 2 = d(1, –1) = d(–1, 1) = d(r, s),

but α(r, s)d(�r,�s) = α(1, –1)d
(

1
5

,
–1
5

)
= α(–1, 1)d

(
–1
5

,
1
5

)

=
2
5

>
19
50

=
19
40

(
76
95

)

=
19
40

(
M(1, –1)

)
=

19
40

(
M(–1, 1)

)

= φ
(
M(r, s)

)

for all r, s ∈ {–1, 1}.
Also, Noorwali and Yeşilkaya [15] declared in Case 1 of Definition (13) that r and s are

distinct since M(r, s) is undefined if r = s. However, our result is valid for all r, s ∈ �\Fix(�).
The above comparison is illustrated graphically for all r, s ∈ {–1, 1} using Figs. 1 and 2.

Figure 1 Illustration of contractive inequality (10) for all r, s ∈ {–1, 1}

Figure 2 Illustration of contractive inequality (8) for all r, s ∈ {–1, 1}
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Therefore, Jaggi–Suzuki-type hybrid (G-α-φ)-contraction is not the Jaggi–Suzuki-type
hybrid contraction defined by Noorwali and Yeşilkaya [15], and so Theorem 8 due to
Noorwali and Yeşilkaya [15] is not applicable to this example.

Remark 2 Suppose in Definition 14 that 1
2 G(r,�r,�2r) ≤ G(r, s,�s) for all r, s ∈ �.

Then we obtain the following consequences of our main result.

Definition 15 ([2]) Let � : � −→ � and α : � × � × � −→R+ be two mappings. Then �

is said to be α-admissible if for all r, s, t ∈ �,

α(r, s, t) ≥ 1 ⇒ α(�r,�s,�t) ≥ 1.

Definition 16 ([2]) Let (�, G) be a G-MS and let � : � −→ � be a self-mapping of �. Then
� is said to be a (G-α-φ)-contraction of type I if there exist two functions α : �×�×� −→
R+ and φ ∈ � such that for all r, s, t ∈ �,

α(r, s, t)G(�r,�s,�t) ≤ φ
(
G(r, s, t)

)
.

Corollary 1 (see [[2], Theorem 29]) Let (�, G) be a complete G-MS. Assume that � : � −→
� is a(G-α-φ)-contraction of type I such that the following conditions are satisfied:

(i) � is α-admissible;
(ii) There exists r0 ∈ � such that α(r0,�r0,�r0) ≥ 1;

(iii) � is G-continuous.
Then there exists u ∈ � such that �u = u.

Proof Consider Definition (14) and let �s = t, α : � × � × � −→ R+ be α-admissible
mapping, q > 0, λ1 = 0, and λ2 = 1. Then � is a (G-α-φ)-contractive mapping of type I , and
so inequality (10) becomes

α(r, s, t)G(�r,�s,�t) ≤ φ
(
G(r, s, t)

)

for all r, s, t ∈ � and φ ∈ � . Hence, the proof follows from Theorem 29 of Alghamdi and
Karapınar [2]. �

Corollary 2 (see [[20], Theorem 3.1]) Let (�, G) be a complete G-MS. Suppose that the
self-mapping � : � −→ � satisfies

G(�r,�s,�t) ≤ φ
(
G(r, s, t)

)

for all r, s, t ∈ �. Then � has a unique FP (say u) and � is G-continuous at u.

Proof Consider Definition (14) and let α(r, s,�s) = 1 for all r, s ∈ �, �s = t, q > 0, λ1 = 0,
and λ2 = 1. Then inequality (10) becomes

G(�r,�s,�t) ≤ φ
(
G(r, s, t)

)
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for all r, s, t ∈ � and φ ∈ � . This coincides with Theorem 3.1 due to Shatanawi [20], and
so the proof follows in a similar manner. �

Corollary 3 (see [Theorem 1]) Let (�, G) be a complete G-MS and let � : � −→ � be a
self-mapping satisfying

G(�r,�s,�t) ≤ kG(r, s, t)

for all r, s, t ∈ � where 0 ≤ k < 1. Then � has a unique FP (say u) and � is G-continuous at
u.

Proof Consider Definition (14) and let α(r, s,�s) = 1 for all r, s ∈ �, �s = t, q > 0, λ1 = 0,
λ2 = 1, and φ(p) = kp for all p ≥ 0, k ∈ [0, 1). Then (10) coincides with (6) of Theorem 1.
Therefore, it is easy to see that we can find a unique point u in � such that �u = u and �

is G-continuous at u. �

Remark 3 If, in addition to the assumptions of Remark 2, we specialize the parameters
λi (i = 1, 2) and q, as well as let α(r, s,�s) = 1 for all r, s ∈ � and φ(p) = kp for all t ≥ 0,
k ∈ (0, 1), then the following result is also a direct consequence of Theorem 2.

Corollary 4 Let (�, G) be a complete G-MS. If there exists k ∈ (0, 1) such that, for all r, s ∈
�, the mapping � : � −→ � satisfies

G
(
�r,�s,�2s

) ≤ kG(r, s,�s), (16)

then � has an FP in �.

4 Ulam-type stability
Ulam stability was introduced by Ulam and seen to be a category of data dependence. This
idea was further developed by Hyers and other researchers (see [9]). Karapınar and Fulga
[9] investigated the general Ulam-type (Ut) stability in the sense of an FP problem in MS.
Here, we consider the general Ut stability as an FP problem in the framework of G-MS.

Suppose that � : � −→ � is a self-mapping on a G-MS (�, G). Then we say that the FP
problem

�r = r (17)

has the general Ut stability if and only if there exists a nondecreasing function μ : R+ −→
R+ continuous at 0, μ(0) = 0 in a manner that for every ε > 0 and for any s′ ∈ � satisfying
the inequality

G
(
s′,�s′,�2s′) ≤ ε, (18)

there exists a solution t ∈ � of (17) such that

G
(
t, s′,�s′) ≤ μ(ε). (19)
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For a positive number C, we take μ(p) = Cp for all p ≥ 0. Then the FP of (17) is said to be
Ut stable.

Let (�, G) be a G-MS. Then the FP problem (17) is said to be well posed on (�, G) if the
following assumptions are satisfied:

(i) � has a unique FP t ∈ �;
(ii) G(rx, t, t) = 0 for any sequence {rx}x∈N in � such that limx→∞ G(rx,�rx,�2rx) = 0.

Theorem 4 Let (�, G) be a complete G-MS. If in addition to the assumptions of Theorem 3
and Remark 2 we have λ2 ∈ [0, 1), then the following hold:

(i) FP equation (17) is Ulam–Hyers stable if α(u, v,�v) ≥ 1 for each u, v satisfying (18);
(ii) FP equation (17) is well posed if α(t, rx,�rx) ≥ 1 for any {rx}x∈N in � such that

limx→∞ G(rx,�rx,�2rx) = 0 and Fix(�) = {t}.

Proof (i) In Theorem 3, we have shown that there exists unique t ∈ � such that �t = t. Let
s′ ∈ � such that, for any ε > 0, we have

G
(
s′,�s′,�2s′) ≤ ε.

Then, obviously, t satisfies (18), and so we have α(t, s′,�s′) ≥ 1. Hence, by the rectangle
inequality,

G
(
t, s′,�s′) ≤ G

(
t,�s′,�2s′) + G

(
�2s′, s′,�s′)

= G
(
�t,�s′,�2s′) + G

(
s′,�s′,�2s′)

≤ α
(
t, s′,�s′)G

(
�t,�s′,�2s′) + G

(
s′,�s′,�2s′)

≤ φ
(
M

(
t, s′,�s′)) + G

(
s′,�s′,�2s′)

< M
(
t, s′,�s′) + G

(
s′,�s′,�2s′)

=
[
λ1

(
G(t,�t,�2t) · G(s′,�s′,�2s′)

G(t, s′,�s′)

)q

+ λ2G
(
t, s′,�s′)q

] 1
q

+ G
(
s′,�s′,�2s′)

=
[
λ1

(
G(t, t, t) · G(s′,�s′,�2s′)

G(t, s′,�s′)

)q

+ λ2G
(
t, s′,�s′)q

] 1
q

+ G
(
s′,�s′,�2s′)

= λ
1
q
2 G

(
t, s′,�s′) + G

(
s′,�s′,�2s′),

from which we obtain

(
1 – λ

1
q
2
)
G

(
t, s′,�s′) < G

(
s′,�s′,�2s′)

implying that

G
(
t, s′,�s′) <

(
1

1 – λ
1
q
2

)
G

(
s′,�s′,�2s′) ≤ Cε,

where C = 1

1–λ

1
q
2

for any q > 0 and λ2 ∈ [0, 1).
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(ii) Noting the supplementary condition and since Fix(�) = t, we have

G(t, rx,�rx) ≤ G
(
t,�rx,�2rx

)
+ G

(
�2rx, rx,�rx

)

= G
(
�t,�rx,�2rx

)
+ G

(
rx,�rx,�2rx

)

≤ α(t, rx,�rx)G
(
�t,�rx,�2rx

)
+ G

(
rx,�rx,�2rx

)

≤ φ
(
M(t, rx,�rx)

)
+ G

(
rx,�rx,�2rx

)

< M(t, rx,�rx) + G
(
rx,�rx,�2rx

)

=
[
λ1

(
G(t,�t,�2t) · G(rx,�rx,�2rx)

G(t, rx,�rx)

)q

+ λ2G(t, rx,�rx)q
] 1

q

+ G
(
rx,�rx,�2rx

)

=
[
λ1

(
G(t, t, t) · G(rx,�rx,�2rx)

G(t, rx,�rx)

)q

+ λ2G(t, rx,�rx)q
] 1

q

+ G
(
rx,�rx,�2rx

)

= λ
1
q
2 G(t, rx,�rx) + G

(
rx,�rx,�2rx

)
,

from which we obtain

(
1 – λ

1
q
2
)
G(t, rx,�rx) < G

(
rx,�rx,�2rx

)

implying that

G(t, rx,�rx) <
(

1

1 – λ
1
q
2

)
G

(
rx,�rx,�2rx

)
.

Letting x → ∞ and keeping in mind Proposition (1) and limx→∞ G(rx,�rx,�2rx) = 0, we
obtain

lim
x→∞ G(rx, t, t) = lim

x→∞ G(t, rx,�rx) ≤ lim
x→∞ G

(
rx,�rx,�2rx

)
= 0.

That is, FP equation (17) is well posed.
�

5 Application to solution of an integral equation
In this section, Corollary 4 is applied to examine the existence criteria for a solution for a
class of integral equations. Ideas in this section are motivated by [21].

Consider the integral equation

u(t) = h(t) +
∫ b

a
L(t, s)f

(
s, u(s)

)
ds, t ∈ [a, b], (20)

where h : [a, b] × R −→ R, L : [a, b] × [a, b] −→ R+, and f : [a, b] × R −→ R are given
continuous functions and u is unknown.

Let � = C([a, b],R) be the set of all continuous real-valued functions defined on [a, b].
We equip � with the mapping

G(u, v, w) = max
a≤t≤b

(∣∣u(t) – v(t)
∣∣ +

∣∣u(t) – w(t)
∣∣ +

∣∣v(t) – w(t)
∣∣). (21)
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Then, obviously, (�, G) is a complete G-MS. Consider the self-mapping � : � −→ � de-
fined by

�u(t) = h(t) +
∫ b

a
L(t, s)f

(
s, u(s)

)
ds, t ∈ [a, b]. (22)

One can see that u∗ is an FP of � if and only if u∗ is a solution to (20).
Now, we study the existence conditions of integral equation (20) under the following

hypotheses.

Theorem 5 Assume that the following conditions are satisfied:
(C1) |f (s, u) – f (s, v)| + |f (s, u) – f (s, w)| + |f (s, v) – f (s, w)| ≤ |u – v| + |u – w| + |v – w| for

all s ∈ [a, b], u, v, w ∈ �;
(C2) maxt∈[a,b]

∫ b
a |L(t, s)|ds = η < 1.

Then integral equation (20) has a solution in �.

Proof Taking (21) into account, we obtain

G
(
�u,�v,�2v

)
= max

t∈[a,b]

∣∣�u(t) – �v(t)
∣∣ + max

t∈[a,b]

∣∣�u(t) – �2v(t)
∣∣ + max

t∈[a,b]

∣∣�v(t) – �2v(t)
∣∣

= max
t∈[a,b]

∣∣∣∣

∫ b

a
L(t, s)

(
f
(
s, u(s)

)
– f

(
s, v(s)

))
ds

∣∣∣∣

+ max
t∈[a,b]

∣∣∣∣

∫ b

a
L(t, s)

(
f
(
s, u(s)

)
– f

(
s,�v(s)

))
ds

∣∣∣∣

+ max
t∈[a,b]

∣∣∣∣

∫ b

a
L(t, s)

(
f
(
s, v(s)

)
– f

(
s,�v(s)

))
ds

∣∣∣∣

≤ max
t∈[a,b]

∫ b

a

∣∣L(t, s)
∣∣[

∣∣f
(
s, u(s)

)
– f

(
s, v(s)

)∣∣ +
∣∣f

(
s, u(s)

)
– f

(
s,�v(s)

)∣∣

+
∣∣f

(
s, v(s)

)
– f

(
s,�v(s)

)∣∣]ds

≤ max
t∈[a,b]

∫ b

a

∣∣L(t, s)
∣∣[

∣∣u(s) – v(s)
∣∣ +

∣∣u(s) – �v(s)
∣∣ +

∣∣v(s) – �v(s)
∣∣]ds

≤
(

max
t∈[a,b]

∫ b

a

∣∣L(t, s)
∣∣ds

)

(
max
t∈[a,b]

∫ b

a

[∣∣u(s) – v(s)
∣∣ +

∣∣u(s) – �v(s)
∣∣ +

∣∣v(s) – �v(s)
∣∣]ds

)

= ηG(u, v,�v).

Hence, all the conditions of Corollary 4 are satisfied. It follows that � has an FP u∗ in �,
which corresponds to a solution of integral equation (20).

Conversely, if u∗ is a solution of (20), then u∗ is also a solution of (22) so that �u∗ = u∗,
that is, u∗ is an FP of �. �

6 Open problem
For further research, an open problem is highlighted as follows:
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A discretized population balance for continuous systems at steady state can be modeled
by the nonlinear integral equation

g(t) =
μ

2(1 + 2μ)

∫ t

0
g(t – r)g(r) dr + e–t , μ ∈R. (23)

So far, it is still open as to whether or not the existence conditions for solution of (23) can
be obtained using any of the results established in this paper.

Remark 4
(i) We can deduce many other corollaries by replacing �r with s or �2s with t and by

particularizing some of the parameters in Definition (14).
(ii) None of the results presented in this work can be expressed in the form G(r, s, s) or

G(r, r, s). Hence, they cannot be obtained from their equivalent versions in MS.

7 Conclusion
An extension of MS, called G-MS, was introduced by Mustafa and Sims [14], and sev-
eral FP results were studied in that space. However, Jleli and Samet [7] as well as Samet
et al. [19] noted that most FP theorems obtained in G-MS are direct consequences of
their analogs in MS. With a different opinion to the latter observation, a new general class
of contractions, under the name Jaggi–Suzuki-type hybrid (G-α-φ)-contraction, is intro-
duced in this manuscript, and some FP theorems that cannot be deduced from their cor-
responding ones in MS are proved. The prevalence of this family of contractions is the fact
that its contractive inequality can be specialized in several ways depending on the given
parameters. Consequently, a handful of corollaries, including some recently announced
results in the literature, are highlighted and analyzed. Nontrivial comparative examples are
constructed to validate the assumptions of our obtained theorems. Furthermore, we ex-
amined Ulam-type stability and well-posedness for the new contraction proposed herein.
In addition, one of our obtained corollaries is applied to setup novel existence conditions
for the solution of a class of integral equations. For some future aspects of our results,
an open problem concerning discretized population balance model is highlighted, and its
solution may be analyzed using the techniques established in this work.
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