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Abstract
This paper first investigates the equivalence of the space and translation invariance of
Stepanov-like doubly weighted pseudo almost automorphic stochastic processes for
nonequivalent weight functions; secondly, based on semigroup theory, fractional
calculations, and the Krasnoselskii fixed-point theorem, we obtain the existence and
uniqueness of Stepanov-like doubly weighted pseudo almost automorphic mild
solutions for a class of nonlinear fractional stochastic neutral functional differential
equations under non-Lipschitz conditions. These results enrich the complex dynamics
of Stepanov-like doubly weighted pseudo almost automorphic stochastic processes.
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1 Introduction
Historically, a great many mathematical models for dynamic processes in the fields of en-
gineering, biological, and physical sciences are elucidated by stochastic differential equa-
tions. Under the background of dynamical systems, functional differential equations have
become an important focus of attention of investigation and research, in view of the ubiq-
uity and persistence of time delays, see [1] and [2] for details. In [3], the author presented
a comprehensive study of functional differential equations endowed with infinite delay.
Since uncertainties and random factors are commonly encountered in differential equa-
tions, which are the key factors causing system instability, in recent years, the theory of
stochastic functional differential equations has attracted the attention of more and more
researchers, such as the related stability, ergodicity, etc. [4–7].

With the development of differential equations, the qualitative properties of fractional
differential equations both with and without delays have long been an active topic in the
interest of researchers. In particular, the Mittag–Leffler stability and asymptotic stability
of solutions have been widely studied due to their importance in applications in the areas
of engineering and applied sciences. For more detailed information on this subject, see
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[8–10]. As a combination of stochastic functional differential equations and fractional dif-
ferential equations, the fractional stochastic neutral functional differential equation made
its entrance into the hot topic [11–13]. Most importantly, noninteger-order stochastic dif-
ferential equations possess the capability of describing the memory effects and real behav-
ior that play a crucial role in mathematical models. Hence, it is significant and necessary
to further explore this kind of equations.

In the course of studying the qualitative behavior of solutions to stochastic differential
equations, the changes in the environment are not precisely periodic, therefore, the in-
vestigation of almost periodic solutions occupies an important position in the aspect of
the qualitative theory of stochastic differential equations. As an extension of an almost
periodic stochastic process, the almost automorphic stochastic process and other gener-
alizations have developed rapidly and have been widely investigated in many publications
due to its applications and significance in physics, mathematical biology, and mechanics
[14–20], which constitute a significant part of mild solutions. In addition, while the au-
thors in these papers studied the existence and uniqueness of solutions, the classical Ba-
nach fixed-point theorem is indispensable, but whether the properties of the solution will
still hold if we replace the Banach fixed-point theorem with the more general Krasnosel-
skii fixed-point theorem under non-Lipschitz conditions [21] is an important question
that needs to be studied.

It is worth mentioning that Chen and Lin introduced the concept of a weighted pseudo
almost automorphic stochastic process and studied its translation invariance and com-
position theorem [22]. Further, Tang and Chang proposed the Stepanov-like weighted
pseudo almost automorphic stochastic process that included the former as a special case,
and investigated the existence and uniqueness of Stepanov-like weighted pseudo almost
automorphic mild solutions in a real separable Hilbert space to a class of stochastic differ-
ential equations under global Lipschitz conditions [23]. Very recently, Yang and Zhu intro-
duced the Stepanov-like doubly weighted pseudo almost automorphic stochastic process
for nonequivalent weight functions, and explored its properties, such as the completeness,
convolution invariance, etc.; further, the authors proved the existence and uniqueness for
the stochastic differential equations driven by G-Brownian motion by using the Banach
fixed-point theorem [24]. However, up to now, there are very few research results about
Stepanov-like doubly weighted pseudo almost automorphic stochastic processes and still
many properties have not been explored, let alone its applications to fractional stochastic
functional differential equation, so it is necessary to further study this area.

Motivated by the above-mentioned works, the goal of our work is to investigate the the-
ory for the p-mean Stepanov-like doubly weighted pseudo almost automorphic stochastic
process and its applications to a class of nonlinear fractional stochastic neutral functional
differential equation as follows:

c
sDκ

t
[
x(t) – h(t, xt)

]
= Ax(t) + f1(t, xt) + f2(t, xt)

dw(t)
dt

, t ≥ s, (1)

where c
sDκ

t is the Caputo fractional derivative of order κ ∈ ( 1
2 , 1); A is a sectorial linear

operator and –A is the infinitesimal generator of an analytic semigroup on Hilbert space
[25]; f1, f2, and h are suitable functions and w(t) is a two-sided cylindrical Wiener process,
which will be specified in Sect. 2.
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The structure of this paper is as follows. Section 2 preliminarily introduces several
definitions and related lemmas. Section 3 investigates the equivalence of the space and
translation invariance of Stepanov-like doubly weighted pseudo almost automorphic
stochastic processes for nonequivalent weight functions, which enrich the dynamics
of Stepanov-like doubly weighted pseudo almost automorphic stochastic processes. In
Sect. 4, based on semigroup theory and the famous Krasnoselskii fixed-point theorem,
by using analytical skills of the Lebesgue dominated convergence theorem, Fubini theo-
rem, Burkholder–Davis–Gundy inequality, etc., we obtain the existence and uniqueness of
p-mean Stepanov-like doubly weighted pseudo almost automorphic mild solutions for a
class of nonlinear fractional stochastic neutral functional differential equation under non-
Lipschitz conditions. Moreover, an example is investigated to illustrate our conclusions.

2 Preliminaries
Let (�,F ,P) stand for a complete probability space with the filtration {Ft}t≥0 satisfying
the usual conditions, and H and K are real separable Hilbert spaces. The family of all p-
mean integrable H-valued random variables is denoted by Lp(P,H) for p ≥ 2, which is a
Banach space equipped with the norm ‖ · ‖Lp = (E‖ · ‖p)

1
p < ∞ for the expectation E. De-

note by L2(K;H) the space of all Hilbert–Schmidt operators from K to H equipped with
the Hilbert–Schmidt norm ‖ · ‖2. We assume {w(t)}t∈R is a K-valued Q-Wiener process
with the covariance operator Q ∈ L2(K;H). Let K0 = Q 1

2 K and L
0
2(K0;H) endowed with

the norm ‖ · ‖
L

0
2
. In addition, let BC(R; Lp(P,H)) be the set of all stochastic bounded and

continuous processes X: R → Lp(P,H), and �: (–∞, 0] → [0, +∞) be a continuous func-
tion such that �∗ :=

∫ 0
–∞ �(s) ds < +∞. Define

B� :=
{
σ : (–∞, 0] → Lp(P,H)

∣∣
∣ for any s < 0,‖σ‖Lp is bounded measurable

on [s, 0] such that
∫ 0

–∞
�(s)

∫ t+1

t
sup

s≤θ≤0
E

∥
∥σ (θ )

∥
∥p du ds < +∞

}
,

which is a Banach space endowed with the norm

‖σ‖� =
(∫ 0

–∞
�(s)

∫ t+1

t
sup

s≤θ≤0
E

∥∥σ (θ )
∥∥p du ds

) 1
p

< +∞,

it is not difficult to deduce that ‖xt‖� = �∗‖x‖Sp , where xt(s) = x(t + s) for any t ∈ R and
s ∈ (–∞, 0].

2.1 Stepanov-like doubly weighted pseudo almost automorphic stochastic
process

The Bochner transform xb(t, s) for any t ∈ R and s ∈ [0, 1] of a stochastic process x is
denoted by xb(t, s) = x(t + s). Based on the Definitions 7–10 in [24], by replacing the Banach
space Lp

G(�) with Lp(P,H), we present the next concepts.

Definition 2.1 A continuous stochastic process Z : R → Lp(P,H) is called p-mean almost
automorphic if for every sequence of real numbers {τ ′

n}n∈N, there exists {τn}n∈N ⊆ {τ ′
n}n∈N

and a stochastic process Y : R → Lp(P,H) such that limn→+∞(E‖Z(t + τn) – Y (t)‖p)
1
p = 0

and limn→+∞(E‖Y (t – τn) – Z(t)‖p)
1
p = 0 for each t ∈R.
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Denote by AA(R; Lp(P,H)) the set of all such stochastic processes; this is a Banach space
endowed with the norm ‖Z‖∞ = supt∈R(E‖Z(t)‖p)

1
p .

Remark 2.1 The set of all Stepanov-like bounded stochastic processes is denoted by
BSp(R; Lp(P,H)), which includes all stochastic processes Z: R → Lp(P,H) satisfying Zb ∈
L∞(R; Lp(0, 1; Lp(P,H))). This is a Banach space equipped with the norm

‖Z‖Sp = sup
t∈R

(∫ 1

0
E

∥
∥Z(t + s)

∥
∥p ds

) 1
p

= sup
t∈R

(∫ t+1

t
E

∥∥Z(s)
∥∥p ds

) 1
p

:= sup
t∈R

∥∥Zb(t, ·)∥∥p.

Definition 2.2 A stochastic process Z ∈ BSp(R; Lp(P,H)) is said to be Stepanov-like al-
most automorphic if Zb ∈ AA(R; Lp(0, 1; Lp(P,H))).

The collection of such functions is defined by SpAA(R; Lp(P,H)); it is a Banach space
under the norm ‖ · ‖Sp .

Let U be the set of all locally integrable positive ρ on R. For given ρ ∈ U and r > 0,
assume Qr(ρ) =

∫ r
–r ρ(t) dt. Further, denote U∞ and Ub by

U∞ =
{
ρ ∈ U : lim

r→+∞ Qr(ρ) = +∞
}

, Ub =
{
ρ ∈ U∞ : ρ is bounded, inf

t∈R
ρ(t) > 0

}
.

Obviously, Ub ⊂ U∞ ⊂ U .

Remark 2.2 A stochastic processes Z ∈ BSp(R; Lp(P,H)) is called Stepanov-like doubly
weighted ergodic in t ∈R, if hb ∈ PAA0(R; Lp(0, 1; Lp(P,H)),ρ, q), i.e.,

lim
r→+∞

1
Qr(ρ)

∫ r

–r

∫ t+1

t
E

∥
∥h(s)

∥
∥p dsq(t) dt = 0,

the set of all such functions will be labeled by SpPAA0(R; Lp(P,H),ρ, q).

Definition 2.3 Let ρ , q ∈ U∞. A stochastic process f ∈ BSp(R; Lp(P,H)) is said to be
Stepanov-like doubly weighted pseudo almost automorphic provided f = g + h, where
g ∈ SpAA(R; Lp(P,H)) and h ∈ SpPAA0(R; Lp(P,H),ρ, q).

The family of all such processes will be denoted by SpWPAA(R; Lp(P,H),ρ, q), which is
a Banach space with the norm ‖ · ‖Sp .

Similarly, SpWPAA(R × Lp(P,H); Lp(P,H),ρ, q) can be defined, that is, for any f ∈
SpWPAA(R× Lp(P,H); Lp(P,H),ρ, q), then f = g + h with

g ∈ SpAA
(
R× Lp(P,H); Lp(P,H)

)

:=
{

g(t, z) ∈ SpAA
(
R; Lp(P,H)

)
: for any z ∈ Lp(P,H)

}

and

h ∈ SpPAA0
(
R× Lp(P,H); Lp(P,H),ρ, q

)

:=
{

h(t, z) ∈ SpPAA0
(
R; Lp(P,H),ρ, q

)
: for any z ∈ Lp(P,H)

}
.
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Remark 2.3 If ρ is equivalent to q (i.e., ρ ∼ q), it follows that SpWPAA(R; Lp(P,H),ρ, q) =
SpWPAA(R; Lp(P,H),ρ) = SpWPAA(R; Lp(P,H), q). For the particular case of p = 2, one
can refer to Definition 2.6 in [19] for more details.

This paper aims at studying the case of p ≥ 2, ρ and q are nonequivalent for the
Stepanov-like doubly weighted pseudo almost automorphic stochastic processes that ad-
mits more complex dynamics than the classical square-mean Stepanov-like weighted
pseudo almost automorphic stochastic processes established in related papers.

Next, we introduce an indispensable Krasnoselskii fixed-point theorem used in Sect. 4.

Lemma 2.1 ([21]) Let B be a bounded closed and convex subset of a Banach space X, J1, J2

be two maps of B into X such that J1x + J2y ∈ B for x, y ∈ B. If J1 is a contraction and J2 is
completely continuous, then there exists a x ∈ B that satisfies J1x + J2x = x.

2.2 Caputo derivative and fractional powers of sectorial operators
We recall the fractional integral of order κ for a function f defined as

Iκ f (t) :=
1

	(κ)

∫ t

a
(t – s)κ–1f (s) ds, κ > 0,

where 	 is the Gamma function, that is 	(κ) :=
∫ +∞

0 tκ–1e–t dt.
For 0 < κ < 1, the fractional Caputo’s derivative of the function f with order κ is

c
aDκ

t f (t) :=
1

	(1 – κ)

∫ t

a

f ′(s)
(t – s)κ

ds.

Next, we recall some knowledge of fractional powers of sectorial operators.

Definition 2.4 ([25]) Let X be a Banach space, a densely defined and closed linear oper-
ator A: D(A) ⊆ X → X is said to be sectorial if there exist constants ζ ∈ R, θ ∈ (0, π

2 ), and
M > 0 that satisfy

(I) ρ(A) ⊇ Sθ ,ζ := {λ ∈C : λ �= ζ , | arg(λ – ζ )| > θ};
(II) ‖R(λ, A)‖L(X) ≤ M

|λ–ζ | for each λ ∈ Sθ ,ζ , where ρ(A) and R(λ, A) stand for the
resolvent subset and the resolvent operator of A, respectively.

Let {S(t)}t∈R be an analytic semigroup with infinitesimal generator –A that satisfies
‖S(t)‖L(X) ≤ Me–δt for M ≥ 1 and δ ≥ 0, where A is a linear sectorial operator with 0 ∈ ρ(A),
then the fractional powers of A is defined as

A–κ :=
1

	(κ)

∫ +∞

0
tκ–1S(t) ds, κ > 0,

clearly, {A–κ} is an operator semigroup and the next result holds.

Lemma 2.2 ([25]) Let 0 < α ≤ κ , then
(i) The operator A–κ is one-to-one and denotes its inverse operator by Aκ . Moreover, the

closed operator Aκ is also the fractional powers of linear operator A with range
Xκ := D(Aκ ) = R(A–κ );

(ii) Xκ is a Banach space equipped with the norm ‖x‖κ := ‖Aκ‖X for x ∈ Xκ , and the
injection Xκ ↪→ Xα is continuous;
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(iii) There exists Mκ > 0 such that ‖AκS(t)‖L(X) ≤ Mκ t–κe–ηt , where t > 0;
(iv) For any 0 < κ ≤ 1, there exists Nκ > 0 such that ‖S(t)x – x‖X ≤ Nκ tκ‖Aκx‖X with

t > 0 and x ∈ Xκ .

3 Equivalence and translation invariance
For any set D ⊆R, denote its complementary set by Dc, then the following results hold.

Theorem 3.1 Let ρi, qi ∈ U∞ for i = 1, 2. Assume that there exist a measurable set A0 ⊆R

and constants mi, Mj > 0 (j = 1, 2, 3) that satisfy

m1 ≤ ρ1(t)
ρ2(t)

≤ M1, m2 ≤ q1(t)
q2(t)

≤ M2, t /∈ A0,

max
t∈A0

{
ρ1(t)
q1(t)

,
ρ2(t)
q2(t)

}
≤ M3, lim

r→+∞
1

Qr(ρi)

∫

[–r,r]∩A0

qi(t) dt = 0,

then SpWPAA(R; Lp(P,H),ρ1, q1) = SpWPAA(R; Lp(P,H),ρ2, q2).

Proof Based on the measurable set A0 and its complementary set Ac
0 in R, we have

Qr(ρ1)
Qr(ρ2)

=
1

Qr(ρ2)

∫

[–r,r]∩A0

ρ1(t) dt +
1

Qr(ρ2)

∫

[–r,r]∩Ac
0

ρ1(t) dt

≤ Qr(ρ1)
Qr(ρ2)

sup
t∈A0

ρ1(t)
q1(t)

1
Qr(ρ1)

∫

[–r,r]∩A0

q1(t) dt

+ sup
t /∈A0

ρ1(t)
ρ2(t)

1
Qr(ρ2)

∫

[–r,r]∩Ac
0

ρ2(t) dt.

Further, from supt∈A0
ρ1(t)
q1(t) ≤ M3 and supt /∈A0

ρ1(t)
ρ2(t) ≤ M1, it follows that

Qr(ρ1)
Qr(ρ2)

[
1 –

M3

Qr(ρ1)

∫

[–r,r]∩A0

q1(t) dt
]

≤ M1

Qr(ρ2)

∫

[–r,r]∩Ac
0

ρ2(t) dt ≤ M1.

Since limr→+∞ 1
Qr(ρ1)

∫
[–r,r]∩A0

q1(t) dt = 0, it follows that

lim sup
r→+∞

Qr(ρ1)
Qr(ρ2)

< +∞. (2)

For any f b ∈ PAA0(R; Lp(0, 1; Lp(P,H)),ρ1, q1), based on m2 ≤ q1(t)
q2(t) , t /∈ A0, we have

1
Qr(ρ2)

∫ r

–r

∫ t+1

t
E

∥
∥f (s)

∥
∥p dsq2(t) dt

=
1

Qr(ρ2)

∫

[–r,r]∩A0

∫ t+1

t
E

∥
∥f (s)

∥
∥p dsq2(t) dt

+
1

Qr(ρ2)

∫

[–r,r]∩Ac
0

∫ t+1

t
E

∥∥f (s)
∥∥p dsq2(t) dt

≤ 1
m2

Qr(ρ1)
Qr(ρ2)

1
Qr(ρ1)

∫ r

–r

∫ t+1

t
E

∥∥f (s)
∥∥p dsq1(t) dt +

‖f ‖Sp

Qr(ρ2)

∫

[–r,r]∩A0

q2(t) dt.
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Combined with (2) and limr→+∞ 1
Qr(ρ2)

∫
[–r,r]∩A0

q2(t) dt = 0, we conclude that f b ∈ PAA0(R;
Lp(0, 1; Lp(P,H)),ρ2, q2); moreover, SpPAA0(R; Lp(P,H),ρ1, q1) ⊆ SpPAA0(R; Lp(P,H),
ρ2, q2). Using a similar method as above, it follows that SpPAA0(R; Lp(P,H),ρ2, q2) ⊆
SpPAA0(R; Lp(P,H),ρ1, q1). From Definition 2.3, this yields SpWPAA(R; Lp(P,H),ρ1, q1) =
SpWPAA(R; Lp(P,H),ρ2, q2). �

Theorem 3.2 Let ρi, qi ∈ U∞ for i = 1, 2. Assume that there exists a constant 0 < α < 1 and
measurable set A0 ⊆R such that

lim sup
r→+∞

Qαr(ρi)
Qr(ρi)

< 1,

lim
r→+∞

∫
Ar∩A0

qi(t) dt
Qr(ρi)

= 0, where Ar =
{

t ∈R : αr ≤ |t – t0| ≤ r
}

,

lim
r→+∞ max

[
sup
t∈R

ρ1(t)
ρ2(t)

sup
t∈Ar∩Ac

0

q2(t)
q1(t)

, sup
t∈R

ρ2(t)
ρ1(t)

sup
t∈Ar∩Ac

0

q1(t)
q2(t)

]
< +∞,

then SpWPAA(R; Lp(P,H),ρ1, q1) = SpWPAA(R; Lp(P,H),ρ2, q2).

Proof For any hb ∈ PAA0(R; Lp(0, 1; Lp(P,H)),ρ1, q1), define

H(r) =
1

Qr(ρ2)

∫ r

–r

∫ t+1

t
E

∥∥h(s)
∥∥p dsq2(t) dt,

then

H(r) =
Qαr(ρ2)
Qr(ρ2)

H(αr) +
1

Qr(ρ2)

∫

Ar

∫ t+1

t
E

∥∥h(s)
∥∥p dsq2(t) dt. (3)

Further, one obtains

1
Qr(ρ2)

∫

Ar

∫ t+1

t
E

∥
∥h(s)

∥
∥p dsq2(t) dt

≤ sup
t∈R

ρ1(t)
ρ2(t)

sup
t∈Ar∩Ac

0

q2(t)
q1(t)

1
Qr(ρ1)

∫

Ar∩Ac
0

∫ t+1

t
E

∥∥h(s)
∥∥p dsq1(t) dt

+
‖h‖Sp

Qr(ρ2)

∫

Ar∩A0

q2(t) dt.

By using limr→+∞ supt∈R
ρ1(t)
ρ2(t) supt∈Ar∩Ac

0
q2(t)
q1(t) < +∞, limr→+∞

∫
Ar∩A0

q2(t) dt
Qr(ρ2) = 0 and hb ∈

PAA0(R; Lp(0, 1; Lp(P,H)),ρ1, q1), it follows that

lim
r→+∞

1
Qr(ρ2)

∫

Ar

∫ t+1

t
E

∥∥h(s)
∥∥p dsq2(t) dt = 0. (4)

According to (3) and (4), one has

lim sup
r→+∞

H(r) ≤ lim sup
r→+∞

Qαr(ρ2)
Qr(ρ2)

lim sup
r→+∞

H(αr).
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Since lim supr→+∞ H(r) = lim supr→+∞ H(αr) < +∞ and lim supr→+∞
Qαr(ρ2)
Qr(ρ2) < 1, therefore

lim sup
r→+∞

H(r) = lim sup
r→+∞

H(αr) = 0;

further, limr→+∞ H(r) = 0, which indicates that hb ∈ PAA0(R; Lp(0, 1; Lp(P,H)),ρ2, q2) and

SpPAA0
(
R; Lp(P,H),ρ1, q1

) ⊆ SpPAA0
(
R; Lp(P,H),ρ2, q2

)
.

Similarly, it follows that SpPAA0(R; Lp(P,H),ρ2, q2) ⊆ SpPAA0(R; Lp(P,H),ρ1, q1). Based
on Definition 2.3, this completes the proof. �

Corollary 3.1 Let ρi, qi ∈ U∞ for i = 1, 2. Assume that there exist a constant α > 1 and
measurable set A0 ⊆R such that

lim sup
r→+∞

Qr(ρi)
Qαr(ρi)

< 1,

lim
r→+∞

∫
Ar∩A0

qi(t) dt
Qαr(ρi)

= 0, where Ar =
{

t ∈R : r ≤ |t| ≤ αr
}

,

lim
r→+∞ max

[
sup
t∈R

ρ1(t)
ρ2(t)

sup
t∈Ar∩Ac

0

q2(t)
q1(t)

, sup
t∈R

ρ2(t)
ρ1(t)

sup
t∈Ar∩Ac

0

q1(t)
q2(t)

]
< +∞,

then, SpWPAA(R; Lp(P,H),ρ1, q1) = SpWPAA(R; Lp(P,H),ρ2, q2).

Next, we present the conclusion on the translation invariance.

Theorem 3.3 Let ρ , q ∈ U∞, and H be a measurable set, if

lim sup
|t|→+∞

ρ(t + τ )
ρ(t)

< +∞, (5)

sup
t∈R

max

{
q(t)
ρ(t)

,
q(t – τ )

q(t)

}
< +∞, (6)

lim
r→+∞

1
Qr(t0,ρ)

∫

Ar,τ
m ∩Hc

q(t) dt = 0, where Ar,τ
m =

{
t ∈R : m ≤ |t| ≤ r + |τ |}, (7)

then SpWPAA(R; Lp(P,H),ρ, q) is translation invariant.

Proof For any f b ∈ PAA0(R; Lp(0, 1; Lp(P,H)),ρ, q), denote by fτ (·) = f (· + τ ) for any τ ∈R,
it follows that

∫ r

–r

∫ t+1

t
E

∥∥fτ (s)
∥∥p dsq(t) dt

≤
∫ r+|τ |

–r–|τ |

∫ t+1

t
E

∥∥f (s)
∥∥p dsq(t – τ ) dt

≤ ‖f ‖Sp

∫ m

–m
q(t – τ ) dt +

∫

Ar,τ
m ∩H

∫ t+1

t
E

∥
∥f (s)

∥
∥p dsq(t – τ ) dt

+ ‖f ‖Sp

∫

Ar,τ
m ∩Hc

q(t – τ ) dt,
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therefore

1
Qr(ρ)

∫ r

–r

∫ t+1

t
E

∥
∥fτ (s)

∥
∥p dsq(t) dt

≤ Qr+|τ |(ρ)
Qr(ρ)

sup
t∈R

q(t)
ρ(t)

‖f ‖Sp

Qr+|τ |(ρ)

∫ m+|τ |

–m–|τ |
ρ(t) dt

+ sup
t∈R

q(t – τ )
q(t)

‖f ‖Sp

Qr(ρ)

∫

Ar,τ
m ∩Hc

q(t) dt

+ sup
t∈R

q(t – τ )
q(t)

Qr+|τ |(ρ)
Qr(ρ)

1
Qr+|τ |(ρ)

∫ r+|τ |

–r–|τ |

∫ t+1

t
E

∥
∥f (s)

∥
∥p dsq(t) dt.

It is not difficult to show that (5) implies

lim sup
r→+∞

Qr+τ (ρ)
Qr(ρ)

< +∞, (8)

which, together with (6)–(8) and f b ∈ PAA0(R; Lp(0, 1; Lp(P,H)),ρ, q), yields

lim
r→+∞

1
Qr(ρ)

∫ r

–r

∫ t+1

t
E

∥
∥fτ (s)

∥
∥p dsq(t) dt = 0,

that is, SpPAA0(R; Lp(P,H),ρ, q) is translation invariant. Moreover, the space of
SpWPAA(R; Lp(P,H),ρ, q) is translation invariant in view of the translation invariance
of SpAA(R; Lp(P,H)).

Denote by U0 := {ρ ∈ U∞ : ρ ∼ ρτ } for any τ ∈R and ρτ (t) = ρ(t – τ ), then the next result
holds. �

Theorem 3.4 Let ρ , q ∈ U0, then SpWPAA(R; Lp(P,H),ρ, q) is translation invariant.

Proof For any f b ∈ PAA0(R; Lp(0, 1; Lp(P,H)),ρ, q), denote by fτ (·) = f (· + τ ) for any τ ∈R,
it follows that

1
Qr(ρ)

∫ r

–r

∫ t+1

t
E

∥∥fτ (s)
∥∥p dsq(t) dt

≤ Qr+|τ |(ρτ )
Qr(ρ)

1
Qr+|τ |(ρτ )

∫ r+|τ |

–r–|τ |

∫ t+1

t
E

∥∥f (s)
∥∥p dsqτ (t) dt.

From ρ ∈ U0, then ρ ∼ ρ2τ , therefore

Qr+τ

(
ρτ

)
=

∫ r+τ

–r–τ

ρ(t – τ ) dt

≤
∫ –r+2τ

–r
ρ2τ (t) dt +

∫ r

–r
ρ(t) dt ≤ (m + 1)Qr(ρ).

According to f b ∈ PAA0(R; Lp(0, 1; Lp(P,H)),ρ, q), it is not difficult to prove f b ∈ PAA0(R;
Lp(0, 1; Lp(P,H)),ρτ , qτ ), which implies f b

τ ∈ PAA0(R; Lp(0, 1; Lp(P,H)),ρ, q). Further,
SpWPAA(R; Lp(P,H),ρ, q) is translation invariant. �
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Remark 3.1 For simplicity, denote

G∗
∞ :=

{
ρ | ρ ∈ U∞ such that SpPAA0

(
R; Lp(P,H),ρ, q

)
is translation invariant

}
.

4 Existence and uniqueness
Definition 4.1 A {Ft}t∈R progressively measurable process {x(t)}t∈R is called a mild so-
lution of Eq. (1) if x(t) satisfies

x(t) = Sκ (t – s)
[
x(s) – h(s, xs)

]
+

∫ t

s
(t – u)κ–1AAκ (t – u)h(u, xu) du

+ h(t, xt) +
∫ t

s
(t – u)κ–1Aκ (t – u)f1(u, xu) du

+
∫ t

s
(t – u)κ–1Aκ (t – u)f2(u, xu) dw(u),

for all t ≥ s and for each s ∈R, where

Sκ (t) =
∫ +∞

0
ζκ (θ )S

(
tκθ

)
dθ , Aκ (t) = κ

∫ +∞

0
θζκ (θ )S

(
tκθ

)
dθ ,

ζκ (θ ) =
1
κ

θ–1– 1
κ �

(
θ– 1

κ
) ≥ 0, �κ (θ ) =

1
π

∞∑

n=1

(–1)n–1

θκn+1
	(κn + 1)

n!
sin(nκπ )

and ζκ is a probability density function defined on (0,∞) satisfying
∫ +∞

0 θζκ (θ ) dθ = 1
	(1+κ) .

Moreover, the next lemma holds.

Lemma 4.1 Sκ (t) and Aκ (t) are strongly continuous for t ≥ 0 such that
(1) ‖Sκ (t)‖ ≤ M, ‖Aκ (t)‖ ≤ κM

	(1+κ) ;
(2) For any t > 0, Sκ (t) and Aκ (t) are compact operators if S(t) is compact;
(3) For any 0 < α < 1 and 0 < β ≤ 1, x ∈Hα := D((–A)α), one has

–AAκ (t)x = (–A)1–αAκ (t)(–A)αx, t ≥ 0,

∥
∥(–A)βAκ (t)

∥
∥

L(H) ≤ κMβ	(2 – β)
tκβ	(1 + κ(1 – β))

e–ηt , t > 0.

Based on this lemma, the next conclusions hold.

Lemma 4.2 Let λ1 ∈ SpAA(R; Lp(P,H)), then

C1(t) :=
∫ t

–∞
(t – u)κ–1Aκ (t – u)λ1(u) dw(u) ∈ SpAA

(
R; Lp(P,H)

)

for t ∈R.

Proof Since λ1 ∈ SpAA(R; Lp(P,H)), for any real sequence {τn}n∈N, there exists {τ ′
n}n∈N ⊆

{τn}n∈N ⊆R and stochastic processes λ̃1: R → Lp(P,H) such that

lim
n→+∞

(∫ 1

0
E

∥
∥λ1

(
t + s + τ ′

n
)

– λ̃1(t + s)
∥
∥p ds

) 1
p

= 0. (9)
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Consider

C ∗
1 (t) :=

∫ t

–∞
(t – u)κ–1Aκ (t – u)̃λ1(u) dw(u)

and denote by w̃(t) = w(t + τ ′
n) – w(τ ′

n) for t ∈ R, then w̃ is also a Brownian motion with
the same distribution as w, therefore, from the Burkholder–Davis–Gundy inequality, we
obtain

E
∥
∥C1

(
t + τ ′

n
)

– C ∗
1 (t)

∥
∥2

≤ E

(
sup
s≤t

∥
∥∥
∥

∫ s

–∞
(s – u)κ–1(–A)α–1(–A)1–αAκ (s – u)

· [λ1
(
u + τ ′

n
)

– λ̃1(u)
]

dw̃(u)
∥∥
∥∥

2)

≤ 4M2
0

∫ t

–∞
(t – u)2(κα–1)e–2η(t–u)

E
∥∥λ1

(
u + τ ′

n
)

– λ̃1(u)
∥∥2
L

0
2

du

and for p > 2 that

E
∥
∥C1

(
t + τ ′

n
)

– C ∗
1 (t)

∥
∥p

≤ E

(
sup
s≤t

∥∥
∥∥

∫ s

–∞
(s – u)κ–1(–A)α–1(–A)1–αAκ (s – u)

· [λ1
(
u + τ ′

n
)

– λ̃1(u)
]

dw̃(u)
∥∥
∥∥

p)

≤ CpMp
0E

(∫ t

–∞
(t – u)2(κα–1)e–2η(t–u)∥∥λ1

(
u + τ ′

n
)

– λ̃1(u)
∥
∥2
L

0
2

du
) p

2

≤ CpM1

∫ t

–∞
(t – u)2(κα–1)e–2η(t–u)

E
∥∥λ1

(
u + τ ′

n
)

– λ̃1(u)
∥∥p du,

where Cp = [pp+1/2(p – 1)p–1]p/2 and

M0 =
κM1–α	(1 + α)‖(–A)α–1‖L

	(1 + κα)
, M1 = Mp

0

[
	(2κα – 1)
(2η)2κα–1

] p–2
2

.

Denote by C∗
p = Cp for p > 2 and C∗

p = 4 for p = 2, which yields

E
∥∥C1

(
t + τ ′

n
)

– C ∗
1 (t)

∥∥p

≤ C∗
pM1

∫ +∞

0
m2(κα–1)e–2ηm

E
∥
∥λ1

(
t – m + τ ′

n
)

– λ̃1(t – m)
∥
∥p dm.

From the famous Fubini theorem, we obtain
∫ 1

0
E

∥∥C1
(
t + s + τ ′

n
)

– C ∗
1 (t + s)

∥∥p ds

≤ C∗
pM1

∫ +∞

0
m2(κα–1)e–2ηm

∫ 1

0
E

∥
∥λ1

(
t + s – m + τ ′

n
)

– λ̃1(t + s – m)
∥∥p ds dm.
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Based on the translation invariance of SpAA(R; Lp(P,H)), (9) and the Lebesgue dominated
convergence theorem, it follows that

(∫ 1

0
E

∥
∥C1

(
t + s + τ ′

n
)

– C ∗
1 (t + s)

∥
∥p ds

) 1
p

→ 0 as n → ∞.

Similarly, it follows that limn→∞(
∫ 1

0 E‖C ∗
1 (t + s – τ ′

n) – C1(t + s)‖p ds)
1
p = 0. �

Lemma 4.3 Let λ2 ∈ SpAA(R; Lp(P,Hα)), then

C2(t) :=
∫ t

–∞
(t – u)κ–1AAκ (t – u)λ2(u) du ∈ SpAA

(
R; Lp(P,H)

)
for t ∈R.

Proof Since λ2 ∈ SpAA(R; Lp(P,H)), for any real sequence {τn}n∈N, there exists {τ ′
n}n∈N ⊆

{τn}n∈N ⊆R and stochastic processes λ̃2: R → Lp(P,H) such that

lim
n→+∞

(∫ 1

0
E

∥
∥(–A)αλ2

(
t + s + τ ′

n
)

– (–A)αλ̃2(t + s)
∥
∥p ds

) 1
p

= 0. (10)

Assume

C ∗
2 (t) :=

∫ t

–∞
(t – u)κ–1AAκ (t – u)̃λ2(u) du,

further, it follows that

E
∥∥C2

(
t + τ ′

n
)

– C ∗
2 (t)

∥∥p

≤ E

∥∥
∥∥

∫ s

–∞
(s – u)κ–1(–A)1–αAκ (s – u)

[
(–A)αλ2

(
u + τ ′

n
)

– (–A)αλ̃2(u)
]

du
∥∥
∥∥

p

≤ Mp
0

‖(–A)α–1‖p E

(∫ t

–∞
(t – u)κα–1

eη(t–u)

∥∥(–A)αλ2
(
u + τ ′

n
)

– (–A)αλ̃2(u)
∥∥du

)p

≤ Mp
0

‖(–A)α–1‖p

[
	(κα)
ηκα

]p–1 ∫ t

–∞
(t – u)κα–1e–η(t–u)

·E∥
∥(–A)αλ2

(
u + τ ′

n
)

– (–A)αλ̃2(u)
∥
∥p du

≤ M2

∫ +∞

0
mκα–1e–ηm

E
∥∥(–A)αλ2

(
t – m + τ ′

n
)

– (–A)αλ̃2(t – m)
∥∥p dm,

where M2 = [ M0
‖(–A)α–1‖L ]p[ 	(κα)

ηκα ]p–1. From the famous Fubini theorem, we obtain

∫ 1

0
E

∥
∥C2

(
t + s + τ ′

n
)

– C ∗
2 (t + s)

∥
∥p ds

≤ M2

∫ +∞

0
mκα–1e–ηm

∫ 1

0
E

∥∥(–A)αλ2
(
t + s – m + τ ′

n
)

– (–A)αλ̃2(t + s – m)
∥
∥p ds dm.
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Based on the translation invariance of SpAA(R; Lp(P,Hα)), (10), and the Lebesgue domi-
nated convergence theorem, it follows that

(∫ 1

0
E

∥
∥C2

(
t + s + τ ′

n
)

– C ∗
2 (t + s)

∥
∥p ds

) 1
p

→ 0 as n → ∞.

Similarly, it follows that limn→∞(
∫ 1

0 E‖C ∗
2 (t + s – τ ′

n) – C2(t + s)‖p ds)
1
p = 0. �

Corollary 4.1 Let λ3 ∈ SpAA(R; Lp(P,Hα)), then

C2(t) =
∫ t

–∞
(t – u)κ–1Aκ (t – u)λ3(u) du ∈ SpAA

(
R; Lp(P,H)

)

for t ∈R.

Based on Lemmas 4.2 and 4.3, to establish the existence and uniqueness of a Stepanov-
like doubly weighted pseudo almost automorphic mild solution of Eq. (1), the following
hypotheses are necessary.

(H1) Assume ρ , q ∈ G∗∞, and fi = φi + ψi ∈ SpWPAA(R × B�; Lp(P,H),ρ, q), where
φi ∈ SpAA(R× B�; Lp(P,H)) and ψb

i ∈ PAA0(R; Lp(0, 1; Lp(P,H)),ρ, q), there exists
a positive constant L that satisfies

(∫ t+1

t
E

∥
∥φi(s, xs) – φi(s, ys)

∥
∥p ds

) 1
p

≤ L‖xt – yt‖�, t ∈R, i = 1, 2 (11)

for any x, y ∈ B� . Furthermore, there exist γ ∈ SpPAA0(R;R+) and a nondecreasing
function ϕ: R+ →R

+ that satisfies for all x ∈ Lp(P,B�) with ‖x‖∞ ≤ δ, which yields

∫ t+1

t
E

∥∥ψi(s, xs)
∥∥p ds ≤ ϕp(δ)

∫ t+1

t
E

∥∥γ (s)
∥∥p ds and lim inf

δ→+∞
ϕ(δ)
δ

= b. (12)

(H2) Let ρ , q ∈ G∗∞ and h = h1 + h2 ∈ SpWPAA(R × B�; Lp(P,Hα),ρ, q), where h1 ∈
SpAA(R × B�; Lp(P,Hα)) and hb

2 ∈ PAA0(R; Lp(0, 1; Lp(P,H)),ρ, q), there exists a
positive constant L that satisfies

(∫ t+1

t
E

∥∥(–A)αh1(s, xs) – (–A)αh1(s, ys)
∥∥p ds

) 1
p

≤ L‖xt – yt‖�, t ∈R (13)

for any x, y ∈ B� . Furthermore, there exist γ ∈ SpPAA0(R;R+) and a nondecreas-
ing function ϕ: R+ → R

+ that satisfies for all x ∈ Lp(P,Bν) with ‖x‖∞ ≤ δ, which
satisfies

∫ t+1

t
E

∥
∥(–A)αh2(s, xs)

∥
∥p ds ≤ ϕp(δ)

∫ t+1

t
E

∥
∥γ (s)

∥
∥p ds and

lim inf
δ→+∞

ϕ(δ)
δ

= b.
(14)

Denote a = ‖γ ‖Sp , thus the next result holds.
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Theorem 4.1 Assume (H1) and (H2) hold and

�∗(ab + L)
[
M3

(
1 +

∥
∥(–A)α–1∥∥)

+ M4 +
∥
∥(–A)–α

∥
∥]

< 1, (15)

where M4 =
p
√

C∗
p M1–α	(α)‖(–A)α–1‖

	(κα) [ 	(2κα–1)
(2η)2κα–1 ] 1

2 , M3 = M1–α	(α)
ηκα , then Eq. (1) admits a unique

Stepanov-like doubly weighted pseudo almost automorphic mild solution.

Proof According to (15), there exists a constant d > 0 that satisfies

�∗[aϕ
(
d + ‖ω‖�

)
+ Ld

][
M3

(
1 +

∥∥(–A)α–1∥∥)
+ M4 +

∥∥(–A)–α
∥∥] ≤ d. (16)

To finish the proof, we will complete it in several steps.
Step 1. For above d > 0, let

�d :=
{
ξ ∈ SpPAA0

(
R; Lp(P,H),ρ, q

)
: ‖ξt‖� ≤ d

}
,

obviously, �d is a bounded closed and convex subset of SpPAA0(R; Lp(P,H),ρ, q). For any
ω ∈ SpAA(R; Lp(P,H)), ξ ∈ �d , assume the operator (Bξ )(t) =

∑6
i=1(Biξ )(t), where

(B1ξ )(t) = h2(t,ωt + ξt) +
∫ t

–∞
(t – u)κ–1AAκ (t – u)h2(u,ωu + ξu) du,

(B2ξ )(t) =
[
h1(t,ωt + ξt) – h1(t,ωt)

]

+
∫ t

–∞
(t – u)κ–1AAκ (t – u)

[
h1(u,ωu + ξu) – h1(u,ωu)

]
du,

(B3ξ )(t) =
∫ t

–∞
(t – u)κ–1Aκ (t – u)ψ1(u,ωu + ξu) du,

(B4ξ )(t) =
∫ t

–∞
(t – u)κ–1Aκ (t – u)

[
φ1(u,ωu + ξu) – φ1(u,ωu)

]
du,

(B5ξ )(t) =
∫ t

–∞
(t – u)κ–1Aκ (t – u)ψ2(u,ωu + ξu) dw(u),

(B6ξ )(t) =
∫ t

–∞
(t – u)κ–1Aκ (t – u)

[
φ2(u,ωu + ξu) – φ2(u,ωu)

]
dw(u).

By applying (11)–(14), we deduce that

(∫ t+1

t
E

∥∥(–A)αh1(u,ωu + ξu) – (–A)αh1(u,ωu)
∥∥p du

) 1
p

≤ L‖ξt‖� , (17)

∫ t+1

t
E

∥
∥(–A)αh2(u,ωu + ξu)

∥
∥p du ≤ ϕp(d + ‖ω‖�

)∫ t+1

t
E

∥
∥γ (s)

∥
∥p ds, (18)

and

(∫ t+1

t
E

∥
∥φi(u,ωu + ξu) – φi(u,ωu)

∥
∥p du

) 1
p

≤ L‖ξt‖�, (19)

∫ t+1

t
E

∥∥ψi(u,ωu + ξu)
∥∥p du ≤ ϕp(d + ‖ω‖�

)∫ t+1

t
E

∥∥γ (s)
∥∥p ds, (20)
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which indicates based on γ ∈ SpPAA0(R;R+) and ξ ∈ SpPAA0(R; Lp(P,H),ρ, q) that
(–A)αh1(u,ωu + ξu) – (–A)αh1(u,ωu) ∈ SpPAA0(R; Lp(P,H),ρ, q), ψi(u,ωu + ξu) ∈
SpPAA0(R; Lp(P,H),ρ, q), (–A)αh2(u,ωu + ξu) ∈ SpPAA0(R; Lp(P,H),ρ, q), and φi(u,ωu +
ξu) – φi(u,ωu) ∈ SpPAA0(R; Lp(P,H),ρ, q).

Let �(t) = φ2(t,ωt + ξt) – φ2(t,ωt), then �b(·) ∈ PAA0(R; Lp(0, 1; Lp(P,H)),ρ, q), further

lim
r→+∞

1
Q(r,ρ)

∫ r

–r

∫ t+1

t
E

∥∥(B6ξ )(s)
∥∥p dsq(t) dt

≤ lim
r→+∞

1
Q(r,ρ)

∫ r

–r

∫ t+1

t
E

(
sup
m≤s

∥
∥∥∥

∫ m

–∞
(m – u)κ–1(–A)α–1(–A)1–α

· Aκ (m – u)�(u) dw(u)
∥∥
∥∥

p)
dmq(t) dt

≤ C∗
pM1 lim

r→+∞
1

Q(r,ρ)

∫ r

–r

∫ t+1

t

∫ s

–∞
(s – u)2(κα–1)

e2η(s–u) E
∥∥�(u)

∥∥p du dsq(t) dt

≤ C∗
pM1

∫ +∞

0

m2(κα–1)

e2ηm lim
r→+∞

1
Q(r,ρ)

∫ r

–r

∫ 1

0
E

∥∥�(t + τ – m)
∥∥p dτq(t) dt dm,

where C∗
p , M1 defined as in Lemma 4.3. Combining the Lebesgue dominated convergence

theorem with �b(·) ∈ PAA0(R; Lp(0, 1; Lp(P,H)),ρ, q), we deduce

lim
r→+∞

1
Q(r,ρ)

∫ r

–r

∫ t+1

t
E

∥
∥(B6ξ )(s)

∥
∥p dsq(t) dt = 0,

that is, (B6ξ )(·) ∈ SpPAA0(R; Lp(P,H),ρ, q). Taking a similar argument, we obtain that
(Biξ )(·) ∈ SpPAA0(R; Lp(P,H),ρ, q) for i = 1, . . . , 5.

Let (�1ξ )(t) = (B1ξ )(t) + (B3ξ )(t) + (B5ξ )(t), (�2ξ )(t) = (B2ξ )(t) + (B4ξ )(t) + (B6ξ )(t)
for t ∈R, obviously, this gives (�iξ )(·) ∈ SpPAA0(R; Lp(P,H),ρ, q) for i = 1, 2, based on the
Burkholder–Davis–Gundy inequality, we obtain

∥
∥(B2ξ )b(t, m)

∥
∥

p

≤ ∥∥(–A)–α
∥∥
[∫ t+1

t
E

∥∥(–A)αh1(m,ωm + ξm) – (–A)αh1(m,ωm)
∥∥p dm

] 1
p

+
[

M2

∫ +∞

0
rκα–1e–ηr

∫ t+1

t
E

∥
∥(–A)αh1(m – r,ωm–r + ξm–r)

– (–A)αh1(m – r,ωm–r)
∥∥p dm dr

] 1
p

≤ Ld
∥
∥(–A)–α

∥
∥ + Ld

[
M2

∫ +∞

0
rκα–1e–ηr dr

] 1
p

≤ Ld
(∥∥(–A)–α

∥∥ + M3
)
,

∥∥(B4ξ )b(t, m)
∥∥

p +
∥∥(B6ξ )b(t, m)

∥∥
p

≤ ∥
∥(–A)α–1∥∥

[
M2

∫ +∞

0
rκα–1e–ηr

∫ t+1

t
E

∥
∥ψ∗

1 (m – r,ωm–r , ξm–r)
∥
∥p dm dr

] 1
p
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+
[

C∗
pM1

∫ +∞

0
r2(κα–1)e–2ηr

∫ t+1

t
E

∥∥ψ∗
2 (m – r,ωm–r , ξm–r)

∥∥p dm dr
] 1

p

≤ Ld
∥∥(–A)α–1∥∥

[
M2

∫ +∞

0
rκα–1e–ηr dr

] 1
p

+ Ld
[

C∗
pM1

∫ +∞

0
r2(κα–1)e–2ηr dr

] 1
p

≤ Ld
[
M3

∥∥(–A)α–1∥∥ + M4
]
,

where ψ∗
i (m – r,ωm–r , ξm–r) = ψi(m – r,ωm–r + ξm–r) – ψi(m – r,ωm–r) for i = 1, 2, M4 =

p
√

C∗
p M1–α	(α)‖(–A)α–1‖

	(κα) [ 	(2κα–1)
(2η)2κα–1 ] 1

2 , M3 = M1–α	(α)
ηκα . Therefore,

∥
∥(�2ξ )(m)

∥
∥

Sp ≤ Ld
[
M3

(
1 +

∥
∥(–A)α–1∥∥)

+ M4 +
∥
∥(–A)–α

∥
∥]

.

Analogously, this gives

∥
∥(�1ξ )(m)

∥
∥

Sp ≤ aϕ
(
d + ‖ω‖�

)[
M3

(
1 +

∥
∥(–A)α–1∥∥)

+ M4 +
∥
∥(–A)–α

∥
∥]

.

From (16), it follows that ‖�iξ‖� ≤ d, furthermore, �i maps �d into �d for i = 1, 2.
Step 2. �2 is a contraction mapping and �1 is completely continuous on �d .
For any ξ̂ , ξ̃ ∈ �d , we obtain

∥
∥(�2̃ξ )(t) – (�2ξ )(t)

∥
∥

p

≤ ∥∥(B2̃ξ )(t) – (B2ξ )(t)
∥∥

p +
∥∥(B4ξ̃ )(t) – (B4ξ )(t)

∥∥
p +

∥∥(B6ξ̃ )(t) – (B6ξ )(t)
∥∥

p

≤ ∥∥(–A)–α
∥∥
[∫ t+1

t
E

∥∥(–A)αh1(m,ωm + ξ̃m) – (–A)αh1(m,ωm + ξm)
∥∥p dm

] 1
p

+
[

M2

∫ +∞

0
rκα–1e–ηr

∫ t+1

t
E

∥∥(–A)αh1(m – r,ωm–r + ξ̃m–r)

– (–A)αh1(m – r,ωm–r + ξm–r)
∥
∥p dm dr

] 1
p

+
∥∥(–A)α–1∥∥

[
M2

∫ +∞

0
rκα–1e–ηr

∫ t+1

t
E

∥∥ψ1(m – r,ωm–r + ξ̃m–r)

– ψ1(m – r,ωm–r + ξm–r)
∥
∥p dm dr

] 1
p

+
[

C∗
pM1

∫ +∞

0
r2(κα–1)e–2ηr

∫ t+1

t
E

∥∥ψ2(m – r,ωm–r + ξ̃m–r)

– ψ2(m – r,ωm–r + ξm–r)
∥
∥p dm dr

] 1
p

≤ L�∗∥∥(–A)–α
∥
∥‖̃ξ – ξ‖Sp

+ L
(
1 +

∥
∥(–A)α–1∥∥)[

M2

∫ +∞

0
rκα–1e–ηr‖̃ξm–r – ξm–r‖p

� dr
] 1

p
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+ L
[

C∗
pM1

∫ +∞

0
r2(κα–1)e–2ηr‖̃ξm–r – ξm–r‖p

� dr
] 1

p

≤ L�∗[M3
(
1 +

∥
∥(–A)α–1∥∥)

+ M4 +
∥
∥(–A)–α

∥
∥]‖̃ξ – ξ‖Sp ,

and based on (15), we have

∥∥(�2̃ξ )(t) – (�2ξ )(t)
∥∥

Sp

≤ L�∗[M3
(
1 +

∥∥(–A)α–1∥∥)
+ M4 +

∥∥(–A)–α
∥∥]‖̃ξ – ξ‖Sp < ‖̃ξ – ξ‖Sp .

Since for any ξ0 ∈ �d , this yields ‖(�1ξ )‖� ≤ d, therefore, �1 is uniformly bounded. Based
on the Arzela–Ascoli theorem, it is not difficult to derive that �1 is compact, further, �1

is completely continuous on �d .
Step 3. Let H on SpAA(R; Lp(P,H)) satisfy

(H ω)(t) =
∫ t

–∞
(t – u)κ–1AAκ (t – u)h1(u,ωu) du

+
∫ t

–∞
(t – u)κ–1Aκ (t – u)φ1(u,ωu) du

+
∫ t

–∞
(t – u)κ–1Aκ (t – u)φ2(u,ωu) dw(u) + h1(t,ωt).

From ω ∈ SpAA(R; Lp(P,H)) and h1 ∈ SpAA(R × B�; Lp(P,H)), we can extract a real se-
quence {τn}n∈N such that stochastic processes ω̃: R → Lp(P,H) and h̃1: R×B� → Lp(P,H)
such that

lim
n→+∞

(∫ 1

0
E

∥
∥ω(t + s + τn) – ω̃(t + s)

∥
∥p ds

) 1
p

= 0 (21)

and

lim
n→+∞

(∫ 1

0
E

∥
∥h1(t + s + τn, x) – h̃1(t + s, x)

∥
∥p ds

) 1
p

= 0, (22)

where x ∈ B� , therefore

∥∥(–A)αhb
1(u + τn,ωu+τn ) – (–A)αh̃1

b(u, ω̃u)
∥∥

p

≤ ∥
∥(–A)αhb

1(u + τn,ωu+τn ) – (–A)αhb
1(u + τn, ω̃u)

∥
∥

p

+
∥
∥(–A)αhb

1(u + τn, ω̃u) – (–A)αh̃1
b(u, ω̃u)

∥
∥

p

≤ L�∗‖ωt+τn – ω̃t‖Sp +
∥∥(–A)αh1(u + τn, ω̃u) – (–A)αh̃1(u, ω̃u)

∥∥
p = 0,

which indicates from (21) and (22) that

lim
n→+∞

∥∥(–A)αh1(u + τn,ωu+τn ) – (–A)αh̃1(u, ω̃u)
∥∥

p = 0.

Further, we have h1(t,ωt) ∈ SpAA(R; Lp(P,Hα)) for t ∈R. Analogously, this gives φi(t,ωt) ∈
SpAA(R; Lp(P,H)) for i = 1, 2. Denote by λ1(·) = φ2(·,ω·), λ2(·) = h1(·,ω·), λ3(·) = φ1(·,ω·),
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based on Lemmas 4.2 and 4.3 and Corollary 4.1, we deduce that H maps SpAA(R;
Lp(P,H)) into itself.

Next, we prove H is a contraction mapping on SpAA(R; Lp(P,H)). For any ω̃, ω ∈ B� ,
similar to the proof of Step 2, it follows that

∥∥(H ω̃)(t) – (H ω)(t)
∥∥

p

≤ L
(
1 +

∥∥(–A)α–1∥∥)
[

M2

∫ +∞

0
rκα–1e–ηr‖ω̃m–r – ωm–r‖p

� dr
] 1

p

+ L
[

C∗
pM1

∫ +∞

0
r2(κα–1)e–2ηr‖ω̃m–r – ωm–r‖p

� dr
] 1

p

+ L
∥
∥(–A)–α

∥
∥‖ω̃ – ω‖�

≤ L�∗[M3
(
1 +

∥∥(–A)α–1∥∥)
+ M4 +

∥∥(–A)–α
∥∥]‖ω̃ – ω‖Sp ,

and based on (15), we have

∥
∥(H ω̃) – (H ω)

∥
∥

Sp

≤ L�∗[M3
(
1 +

∥∥(–A)α–1∥∥)
+ M4 +

∥∥(–A)–α
∥∥]‖ω̃ – ω‖Sp < ‖ω̃ – ω‖Sp .

From what has been discussed above, based on the results of step 1, step 2, and the Kras-
noselskii fixed-point theorem, there exists a fixed point ξ ∗ ∈ SpPAA0(R; Lp(P,H),ρ, q).
Combining step 3 with the Banach fixed-point theorem, it follows that H admits a unique
fixed point ω∗ in SpAA(R; Lp(P,H)). Consider the coupled system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω∗(t) =
∫ t

–∞(t – u)κ–1AAκ (t – u)h1(u,ω∗
u) du

+
∫ t

–∞(t – u)κ–1Aκ (t – u)φ1(u,ω∗
u) du

+
∫ t

–∞(t – u)κ–1Aκ (t – u)φ2(u,ω∗
u) dw(u) + h1(t,ω∗

t ),

ξ ∗(t) = h2(t,ω∗
t + ξ ∗

t ) +
∫ t

–∞(t – u)κ–1AAκ (t – u)h2(u,ω∗
u + ξ ∗

u ) du

+ [h1(t,ω∗
t + ξ ∗

t ) – h1(t,ω∗
t )]

+
∫ t

–∞(t – u)κ–1AAκ (t – u)[h1(u,ω∗
u + ξ ∗

u ) – h1(u,ω∗
u)] du

+
∫ t

–∞(t – u)κ–1Aκ (t – u)ψ1(u,ω∗
u + ξ ∗

u ) du

+
∫ t

–∞(t – u)κ–1Aκ (t – u)[φ1(u,ω∗
u + ξ ∗

u ) – φ1(u,ω∗
u)] du

+
∫ t

–∞(t – u)κ–1Aκ (t – u)ψ2(u,ω∗
u + ξ ∗

u ) dw(u)

+
∫ t

–∞(t – u)κ–1Aκ (t – u)[φ2(u,ω∗
u + ξ ∗

u ) – φ2(u,ω∗
u)] dw(u);

further, x∗(t) = ω∗(t) + ξ ∗(t) ∈ SpWPAA(R × B�; Lp(P,H),ρ, q), which is a Stepanov-like
doubly weighted pseudo almost automorphic mild solution of (1).

Substituting the assumptions (H1) and (H2) for the following (H∗
1 ) and (H∗

2 ), respectively,
that is
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(H∗
1 ) Assume ρ , q ∈ G∗∞, and fi ∈ SpWPAA(R×B�; Lp(P,H),ρ, q), there exists a positive

constant L that satisfies

(∫ t+1

t
E

∥∥fi(s, xs) – fi(s, ys)
∥∥p ds

) 1
p

≤ L‖xt – yt‖�, t ∈ R, i = 1, 2

for any x, y ∈ B� .
(H∗

2 ) Let ρ , q ∈ G∗∞, and h ∈ SpWPAA(R × B�; Lp(P,Hα),ρ, q), there exists a positive
constant L that satisfies

(∫ t+1

t
E

∥∥(–A)αh(s, xs) – (–A)αh(s, ys)
∥∥p ds

) 1
p

≤ L‖xt – yt‖�, t ∈R,

for any x, y ∈ B� .
Similar to the discussion in Theorem 4.1, by utilizing the Banach fixed-point theorem,

it is not difficult to show the next conclusion holds. �

Corollary 4.2 Let (H∗
1 ) and (H∗

2 ) hold. Then, Eq. (1) admits a unique Stepanov-like doubly
weighted pseudo almost automorphic mild solution provided that

�∗L
[
M3

(
1 +

∥
∥(–A)α–1∥∥)

+ M4 +
∥
∥(–A)–α

∥
∥]

< 1, (23)

where M4 =
p
√

C∗
p M1–α	(α)‖(–A)α–1‖

	(κα) [ 	(2κα–1)
(2η)2κα–1 ] 1

2 , M3 = M1–α	(α)
ηκα .

Remark 4.1 By comparing Theorem 4.1 and Corollary 4.2, it is obvious that the condition
(15) is more accurate than (23), which indicates the discussion and computation in Theo-
rem 4.1 based on the Krasnoselskii fixed-point theorem is more complex and challenging;
therefore, Theorem 4.1 is significant compared to the relevant existence and uniqueness
of the Stepanov-like doubly weighted pseudo almost automorphic mild solution by using
the Banach fixed-point theorem.

Example 4.1 Consider the following special one-dimensional stochastic neutral differen-
tial equation of the form

⎧
⎪⎪⎨

⎪⎪⎩

∂κ
t [x(t, ζ ) – h(t, x(t – τ (t), ζ ))] = ∂2

ζ x(t, ζ ) + f1(t, x(t – τ (t), ζ ))

+ f2(t, x(t – τ (t), ζ )) dw(t)
dt ,

x(t, 0) = x(t, 1) = 0, t ∈R,

(24)

where

h
(
t, x

(
t – τ (t), ζ

))
=

1
100

sin

(
1

1 + cos t + cos
√

2t

)
cos x(t – τ , ζ )

+ e–|t|x(t, ζ ) sin2 x(t, ζ ),

fi
(
t, x

(
t – τ (t), ζ

))
=

1
100

sin

(
1

2 + cos t + cos
√

3t

)
cos x(t – τ , ζ )

+ e–|t|x(t, ζ ) sin2 x(t, ζ ).
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Let H = L2[0, 1] and A: D(A) ⊆ H→ H with (Ax)(ζ ) = x′′(ζ ), A is an infinitesimal generator
of an analytic semigroup {S(t)}t≥0 such that ‖S(t)‖ ≤ e–t and

(–A)
1
2 x =

∞∑

n=0

n〈x, xn〉xn, x ∈ D
(
(–A)

1
2
)

=

{

x ∈ H :
∞∑

n=0

n〈x, xn〉xn ∈H

}

.

Assume

ρ(t) = q(t) =

⎧
⎨

⎩
1, t > 0,

e–t2 , t ≤ 0,

then Eq. (24) can be formulated in abstract form as Eq. (1) and the conditions (H1) and
(H2) hold, where L = 1

100 , ϕ(δ) = δ, b = 1, γ = e–|t|, κ = α = 1
2 , ‖(–A)– 1

2 ‖ = 1, 	( 1
2 ) =

√
π ,

M = η = 1, it follows that (24) admits a unique square-mean Stepanov-like doubly weighted
pseudo almost automorphic mild solution.

Acknowledgements
The author greatly appreciates the valuable comments and suggestions of the editors and reviewers for this manuscript.

Funding
The work is supported by the Research Start-up Fund (No. 180141051218) and the National Cultivating Fund
(No. 2020-PYJJ-012) of Luoyang Normal University.

Abbreviations
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare no competing interests.

Author contributions
The manuscript was written by the author Ping Zhu alone.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 30 March 2022 Accepted: 9 March 2023

References
1. Kuang, Y.: Delay Differential Equations: With Applications in Population Dynamics. Academic Press, Boston (1993)
2. Wu, F.K., Yin, G., Mei, H.W.: Stochastic functional differential equations with infinite delay: existence and uniqueness of

solutions, solution maps, Markov properties, and ergodicity. J. Differ. Equ. 262, 1226–1252 (2017)
3. Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Infinite Delay. Springer, Berlin (1991)
4. Bao, J.H., Yin, G., Yuan, C.G.: Ergodicity for functional stochastic differential equations and applications. Nonlinear Anal.

98, 66–82 (2014)
5. Kolmanovskii, V.B., Nosov, V.R.: Stability of Functional Differential Equations. Academic Press, New York (1986)
6. Ren, Y., Lu, S.P., Xia, N.M.: Remarks on the existence and uniqueness of the solutions to stochastic functional

differential equations with infinite delay. Appl. Math. Comput. 220, 364–372 (2008)
7. Wu, F.K., Hu, S.G.: The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay.

Discrete Contin. Dyn. Syst., Ser. A 32, 1065–1094 (2012)
8. Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence

and Stability. de Gruyter, Berlin (2018)
9. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media.

Higher Education Press, Beijing (2010)
10. Anguraj, A., Kanjanadevi, S.: Existence results for fractional non-instantaneous impulsive integro-differential equations

with nonlocal conditions. Dyn. Contin. Discrete, Ser. A 23, 429–445 (2016)



Zhu Journal of Inequalities and Applications         (2023) 2023:47 Page 21 of 21

11. Sun, X.K., He, P.: Existence of p-mean almost periodic mild solution for fractional stochastic neutral functional
differential equation. Acta Math. Appl. Sin. Engl. Ser. 37, 645–656 (2021)

12. Bao, H.B., Cao, J.D.: Existence of solutions for fractional stochastic impulsive neutral functional differential equations
with infinite delay. Adv. Differ. Equ. 2017, 66 (2017)

13. Sakthivel, R., Revathi, P., Ren, Y.: Existence of solutions for nonlinear fractional stochastic differential equations.
Nonlinear Anal. 81, 70–86 (2013)

14. Liu, Z.X., Sun, K.: Almost automorphic solutions for stochastic differential equations driven by Lévy noise. J. Funct.
Anal. 266, 1115–1149 (2014)

15. Cao, J.F., Yang, Q.G., Huang, Z.T.: Existence and exponential stability of almost automorphic mild solutions for
stochastic functional differential equations. Stoch. Int. J. Probab. Stoch. Process. 83, 259–275 (2011)

16. Diop, M.A., Ezzinbi, K., Mbaye, M.M.: Existence and global attractiveness of a square-mean μ-pseudo almost
automorphic solution for some stochastic evolution equation driven by Lévy noise. Math. Nachr. 290, 1260–1280
(2017)

17. Zhu, P.: Poisson μ-pseudo almost automorphic stochastic processes and its applications to nonlinear Sobolev-type
SDEs with Markov switching. Math. Methods Appl. Sci. 44, 1688–1712 (2021)

18. Gu, Y.F., Ren, Y., Sakthivel, R.: Square-mean pseudo almost automorphic mild solutions for stochastic evolution
equations driven by G-Brownian motion. Stoch. Process. Appl. 34, 528–545 (2016)

19. Yang, Q.G., Zhu, P.: Doubly-weighted pseudo almost automorphic solutions for nonlinear stochastic differential
equations driven by Lévy noise. Stoch. Int. J. Probab. Stoch. Process. 90, 701–719 (2018)

20. Dhama, S., Abbas, S.: Existence and stability of weighted pseudo almost automorphic solution of dynamic
equationon time scales with weighted Stepanov-like (Sp) pseudo almost automorphic coefficients. Qual. Theory Dyn.
Syst. 19, 1–22 (2020)

21. Krasnoselskii, M.A.: Positive Solutions of Operator Equations. Noordhoff, Groningen (1964)
22. Chen, Z., Lin, W.: Square-mean weighted pseudo almost automorphic solutions for non-autonomous stochastic

evolution equations. J. Math. Pures Appl. 100, 476–504 (2013)
23. Tang, C., Chang, Y.K.: Stepanov-like weighted asymptotic behavior of solutions to some stochastic differential

equations in Hilbert spaces. Appl. Anal. 93, 2625–2646 (2014)
24. Yang, Q.G., Zhu, P.: Stepanov-like doubly weighted pseudo almost automorphic processes and its application to

Sobolev-type stochastic differential equations driven by G-Brownian motion. Math. Methods Appl. Sci. 40,
6602–6622 (2017)

25. Haase, M.: The Functional Calculus for Sectorial Operators. Operator Theory: Advances and Applications. Birkhäuser,
Basel (2006)


	Stepanov-like doubly weighted pseudo almost automorphic mild solutions for fractional stochastic neutral functional differential equations
	Abstract
	Keywords

	Introduction
	Preliminaries
	Stepanov-like doubly weighted pseudo almost automorphic stochastic process
	Caputo derivative and fractional powers of sectorial operators

	Equivalence and translation invariance
	Existence and uniqueness
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Declarations
	Competing interests
	Author contributions
	Publisher's Note
	References


