ZhuJournal of Inequalities and Applications  (2023) 2023:47 Journal of Inequalities and Applications
https://doi.org/10.1186/s13660-023-02946-w

. _ ®
Stepanov-like doubly weighted pseudo

almost automorphic mild solutions for
fractional stochastic neutral functional
differential equations

Ping Zhd"

“Correspondence:

zhupingmath@163.com Abstract

1Department of Mathematics, . « . . . . . .

LuoSang Normal University This paper “rst investigates the equivalence of the space and translation invariance of
Luoyang, China Stepanov-like doubly weighted pseudo almost automorphic stochastic processes for

nonequivalent weight functions; secondly, based on semigroup theory, fractional
calculations, and the Krasnoselskii “xed-point theorem, we obtain the existence and
uniqueness of Stepanov-like doubly weighted pseudo almost automorphic mild
solutions for a class of nonlinear fractional stochastic neutral functional di erentia
equations under non-Lipschitz conditions. These results enrich the complex dyngmics
of Stepanov-like doubly weighted pseudo almost automorphic stochastic processes.

Keywords: Stepanov-like doubly weighted pseudo almost automorphic stochast
process; Translation invariance; Existence; Uniqueness

o

1 Introduction
Historically, a great many mathematical models for dynamic processes in the “elds of en-
gineering, biological, and physical sciences are elucidated by stochastic di erential equa-
tions. Under the background of dynamical systems, functional di erential equations have
become an important focus of attention of investigation and research, in view of the ubiqg-
uity and persistence of time delays, se#| land [2] for details. In [3], the author presented
a comprehensive study of functional di erential equations endowed with in“nite delay.
Since uncertainties and random factors are commonly encountered in di erential equa-
tions, which are the key factors causing system instability, in recent years, the theory of
stochastic functional di erential equations has attracted the attention of more and more
researchers, such as the related stability, ergodicity, ett.T].

With the development of di erential equations, the qualitative properties of fractional
di erential equations both with and without delays have long been an active topic in the
interest of researchers. In particular, the Mittag...Le er stability and asymptotic stability
of solutions have been widely studied due to their importance in applications in the areas
of engineering and applied sciences. For more detailed information on this subject, see
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[8..10]. As a combination of stochastic functional di erential equations and fractional dif-
ferential equations, the fractional stochastic neutral functional di erential equation made
its entrance into the hot topic [L1..13]. Most importantly, noninteger-order stochastic dif-
ferential equations possess the capability of describing the memory e ects and real behav-
ior that play a crucial role in mathematical models. Hence, it is signi“cant and necessary
to further explore this kind of equations.

In the course of studying the qualitative behavior of solutions to stochastic di erential
equations, the changes in the environment are not precisely periodic, therefore, the in-
vestigation of almost periodic solutions occupies an important position in the aspect of
the qualitative theory of stochastic di erential equations. As an extension of an almost
periodic stochastic process, the almost autarphic stochastic process and other gener-
alizations have developed rapidly and have been widely investigated in many publications
due to its applications and signi“cance in physics, mathematical biology, and mechanics
[14..20], which constitute a signi“cant part of mild solutions. In addition, while the au-
thors in these papers studied the existence and uniqueness of solutions, the classical Ba-
nach “xed-point theorem is indispensable, but whether the properties of the solution will
still hold if we replace the Banach “xed-point theorem with the more general Krasnosel-
skii “xed-point theorem under non-Lipschitz conditions R1] is an important question
that needs to be studied.

It is worth mentioning that Chen and Lin introduced the concept of a weighted pseudo
almost automorphic stochastic process and studied its translation invariance and com-
position theorem [22]. Further, Tang and Chang proposed the Stepanov-like weighted
pseudo almost automorphic stochastic process that included the former as a special case,
and investigated the existence and uniqueness of Stepanov-like weighted pseudo almost
automorphic mild solutions in a real separable Hilbert space to a class of stochastic di er-
ential equations under global Lipschitz conditions3]. Very recently, Yang and Zhu intro-
duced the Stepanov-like doubly weighted pseudo almost automorphic stochastic process
for nonequivalent weight functions, and explored its properties, such as the completeness,
convolution invariance, etc.; further, the authors proved the existence and uniqueness for
the stochastic di erential equations driven by G-Brownian motion by using the Banach
“xed-point theorem [24]. However, up to now, there are very few research results about
Stepanov-like doubly weighted pseudo almost automorphic stochastic processes and still
many properties have not been explored, let alone its applications to fractional stochastic
functional di erential equation, so it is necessary to further study this area.

Motivated by the above-mentioned works, the goal of our work is to investigate the the-
ory for the p-mean Stepanov-like doubly weighted pseudo almost automorphic stochastic
process and its applications to a class of nonlinear fractional stochastic neutral functional
di erential equation as follows:

dw(t) - 0

DS [x(t) .. h(t,x0) | = Ax(£) + fult, %) + folt,xe) et t>

where ¢Df is the Caputo fractional derivative of ordek e (%, 1); A is a sectorial linear
operator and .A is the in“nitesimal generator of an analytic semigroup on Hilbert space
[25]; f1, f2, and /& are suitable functions andv(t) is a two-sided cylindrical Wiener process,
which will be speci“ed in Sect2.
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The structure of this paper is as follows. Sectio preliminarily introduces several
de“nitions and related lemmas. Sectiol investigates the equivalence of the space and
translation invariance of Stepanov-like doubly weighted pseudo almost automorphic
stochastic processes for nonequivalent weight functions, which enrich the dynamics
of Stepanov-like doubly weighted pseudo almost automorphic stochastic processes. In
Sect.4, based on semigroup theory and the famous Krasnoselskii “xed-point theorem,
by using analytical skills of the Lebesgue dominated convergence theorem, Fubini theo-
rem, Burkholder...Davis...Gundy inequality, etc., we obtain the existence and uniqueness of
p-mean Stepanov-like doubly weighted pseudo almost automorphic mild solutions for a
class of nonlinear fractional stochastic neutral functional di erential equation under non-
Lipschitz conditions. Moreover, an example is investigated to illustrate our conclusions.

2 Preliminaries

Let (©2,.#,P) stand for a complete probability space with the “Itration{.%,};-¢ satisfying
the usual conditions, andHl and K are real separable Hilbert spaces. The family of all
mean integrableH-valued random variables is denoted b4 (P, H) for p > 2, which is a
Banach space equipped with the norrii- ||» = (E|| - ||P)z% < oo for the expectationE. De-
note by L, (K;H) the space of all Hilbert...Schmidt operators frof to H equipped with
the Hilbert...Schmidt norm|| - ||2. We assumew(t)};cr is aK-valued Q-Wiener process
with the covariance operatorQ € Ly(K; H). Let Ko = Q%K and LI(Ko; H) endowed with
the norm || - ||Lg. In addition, let BC(R;L?(IP, H)) be the set of all stochastic bounded and
continuous processe¥: R — L#(P,H), ando: (..c0,0] — [0, +oo) be a continuous func-
tion such thato* := f_?oo o(s)ds < +oo. De“ne

B, := {o :(..00,0] — LP(P,H) ‘ for anys <0,||lo ||z is bounded measurable

0 t+1
on [s,0] such that/ Q(S)/ sup E”a(@)”p duds < +oo},
.00 t s<6<0

which is a Banach space endowed with the norm

0 t+1 1%
||a||9:< [ e[ s E||o(9)||pduds) <400,
00 t s<6=<0

it is not di cult to deduce that |lx|l, = o*[lxlls», Wherex,(s) = x(t + s) for any £ € R and
s € (..00,0].

2.1 Stepanov-like doubly weighted pseudo almost automorphic stochastic
process

The Bochner transformx®(t,s) for any ¢ € R and s € [0, 1] of a stochastic process is

denoted byx?(¢,s) = x(¢+s). Based on the De*nitions 7...10 i2f], by replacing the Banach

spacel? () with L7(P, H), we present the next concepts.

Definition 2.1 A continuous stochastic procesg : R — L?(P,H) is calledp-mean almost
automorphic if for every sequence of real numbefs, },cy, there exists{t,},,en € {ry’i}neN

and a stochastic proces¥ : R — L?(P,H) such thatlim,_, +«(E[| Z(t + 7,,) ... Y (£)|I")? =0

andlim, .+ (B[ Y (¢ .. 1) .. Z(£)||IP)? = O for eacht € R.
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Denote byAA(R; L? (P, H)) the set of all such stochastic processes; this is a Banach space
1
endowed with the norm||Z|| = sup,.x (EIIZ(#)[|7)? .

Remark 2.1 The set of all Stepanov-like bounded stochastic processes is denoted by
BS?(R; LP(P,H)), which includes all stochastic processes R — L?(P, H) satisfyingz? e
L>*(R;L7(0, 1;,L7(IP,H))). This is a Banach space equipped with the norm

1 ;
1Zlls = sup(/ IE||Z(t+s)H”ds>
teR \JO

t+1 %,
= sup(/ IEHZ(S)Hy ds) = sup”Zb(t, -)||p.
teR t teR

Definition 2.2 A stochastic process € BS?(R;L?(P,H)) is said to be Stepanov-like al-
most automorphic if Z? € AA(R; L7(0, 1;L7 (P, H))).

The collection of such functions is de“ned bys?AA(R;L?(P,H)); it is a Banach space
under the norm || - ||s.

Let % be the set of all locally integrable positive on R. For givenp € Z andr >0,
assumeQ,(p) = [ p(¢) dt. Further, denote?, and %, by

U = {,0 e : lim Qp) :+oo}, Uy = {p €U pis bounded,}gﬂg,o(t)>0}.

Obviously, %, C U C % .

Remark 2.2 A stochastic processeg € BS?(R;L?(PP,H)) is called Stepanov-like doubly
weighted ergodic int € R, if #* € PAAo(R;L7(0, 1,L7(P,H)), p,q), i.€.,

1 r t+1 »
lim —/f E\h(s) | dsq(t)dt =0,
Mg ) ) EOr e
the set of all such functions will be labeled b§ PAA(R; L7 (P, H), p,q).

Definition 2.3 Let p, g € %~ . A stochastic procesg € BS’(R;L?(P,H)) is said to be
Stepanov-like doubly weighted pseudo almost automorphic provid¢d= g + 4, where
g€ SPAAR; L#(P,H)) and h € SPPAAL(R; LP (P, H), p, q).

The family of all such processes will be denoted I8y WPAA(R; L7 (P, H), p,q), which is
a Banach space with the nornj - ||s».

Similarly, S’ WPAA(R x L?(P,H);L*(P,H),p,q) can be de“ned, that is, for anyf €
SPWPAAR x L#(P,H); L7 (P,H), p,q), thenf = g + h with

g€ SPAA(R x I7(P,H); L7 (P, H))
= {g(t,2) € SPAA(R; L7 (P, H)) : for anyz € I7(P, H))

and

h € SPPAA(R x LP(P,H);L*(P,H), p,q)

= {h(t,z) € SPPAA(R; L* (P, H), p,q) : for anyz € L7 (P, H)}.



Zhu Journal of Inequalities and Applications  (2023) 2023:47 Page 5 of 21

Remark 2.3 If p is equivalent tog (i.e.,p ~ q), it follows that S» WPAA(R; L? (P, H), p,q) =
SPWPAA(R; L? (P, H), p) = SPWPAA(R; L? (P, H),q). For the particular case op = 2, one
can refer to De"nition 2.6 in [19] for more details.

This paper aims at studying the case ¢f > 2, p and g are nonequivalent for the
Stepanov-like doubly weighted pseudo almost automorphic stochastic processes that ad-
mits more complex dynamics than the classical square-mean Stepanov-like weighted
pseudo almost automorphic stochastic processes established in related papers.

Next, we introduce an indispensable Krasnoselskii “xed-point theorem used in Sekt.

Lemma 2.1 ([21]) Let B be a bounded closed and convex subset of a Banach space X, J1,
be two maps of B into X such that J1x + Joy € B for x,y € B. If ]1 is a contraction and J is
completely continuous, then there exists a x € B that satisfies J1x + Jox = x.

2.2 Caputo derivative and fractional powers of sectorial operators
We recall the fractional integral of ordei for a function f de“ned as

I’(f(t)::%/ (t..s)F(s)ds, «k>0,

+00

whereT is the Gamma function, that is" (k) := J, £t dt.
For 0 <« <1, the fractional Caputoes derivative of the functighwith order « is

1 [,
rd.x) ), (.5

Dif (@)=
Next, we recall some knowledge of fractional powers of sectorial operators.

Definition 2.4 ([25]) Let X be a Banach space, a densely de“ned and closed linear oper-
ator A: D(A) € X — X is said to be sectorial if there exist constantse R, 6 € (0,%), and
M > 0 that satisfy
(D) p(A) 2 Spe :={r eC:AFE, |arg(h..2) >0}
(I IR Al < ‘;‘4—“ for each A € Sy, where p(A) and R(),A) stand for the
resolvent subset and the resolvent operator of A, respectively.

Let {S(t)}:cr be an analytic semigroup with in“nitesimal generator A.that satis“es

I1S@)llzx) < Me** for M > 1 ands > 0, whereA is alinear sectorial operator with G= p(A),

then the fractional powers ofd is de“ned as
1 +00
A~ ::—/ St ds, k>0,
I'(x) Jo

clearly,{A-*} is an operator semigroup and the next result holds.

Lemma 2.2 ([25]) Let O<a <«, then
(i) The operator A-* is one-to-one and denotes its inverse operator by A. Moreover, the
closed operator A* is also the fractional powers of linear operator A with range
X, :=D(A*) = R(A™);
(i) X, is a Banach space equipped with the norm ||x| = ||A¥||x for x € X,., and the
injection X, < X, is continuous;
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(iii) There exists M, > Osuch that |A*S(8) |l < Met*e ", where t > 0;
(iv) Forany 0 <k <1, there exists N, > Qsuch that ||S(£)x .. x| x < N t*||A%x| x with
t>0andx e X,.

3 Equivalence and translation invariance
For any setD C R, denote its complementary set bf©, then the following results hold.

Theorem 3.1 Let p;, q; € U for i = 1,2.Assume that there exist a measurable set Ao C R
and constants m;, M; >0 (j= 1,2, 3)that satisfy
t t
Pl()_ iy 611()§M2' té A,
pa(t) 92(t)

max{pl(t) Pz(t)} g lim
tedo | q1(8) " q2(2) ’ r>+00 Q(0:) JI..r N4

qi(t) dt = 0,

then S WPAA(R; L (P, H), p1,q1) = S? WPAA(R; L7 (P, H), p2, q2).

Proof Based on the measurable sdp and its complementary sefi§ in R, we have

Qr(p1) 1 1
Q(p2)  Q(p2) [..r,rlonpl(t) t+Qr(p2) [./1045 o0

Qr(pl) 1(8)
< Qr(,Oz) te}; q1(t) Qr(/ol) /[””]MO q1(t) dt

sup 249 pi(t) 1
sedg P2() Qr(02) Ji.rs1nag

pa(t) dt.

Further, from sup,, ”18 <Mz andsup,, ”18 < My, it follows that
M,

02(8) dt < M;.
Qr(02) Ji..s1nag 2 !

Q(p1) [1 M3

Q(p2) L Qr(p1) Jirrinao ql(t)dt]

Sincelim, o0 555 . rrjna, 41(6) dt = 0, it follows that

Qr(pl)
11rT+c>o Qr(pZ) oo (2)

For anyf? € PAAo(R;L?(0, 1;,L7 (P, H)), p1,41), based o, < ’“8, t € Ag, we have

r pttl
ﬁ / f E|f()|7 dsqa() dt

1 t+1 )
" Q02 /[ ol /t E|f(s)|” dsqa(t) dt

t+1
p
" ) /..”mc/t E|f(s)[" dsqa(2) dt
<2 : Il
mz Q,(p2) Qr(pl) / / Bl @I dsaste)de+ Qr(02) J1..e11040 a2(t) s
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Combined with (2) andlim,_ ++, ﬁ Ji.en1n, 92(8) dt = 0, we conclude that” € PAAo(R;
17(0,1;L7(P,H)), p2,q2); moreover, SPPAAo(R;L?(P,H), p1,q1) S SPPAAo(R;LP(P,H),
p2,q2). Using a similar method as above, it follows thaf? PAAy(R; L7 (P, H), p2,q2) <
SPPAAO(R; L7 (P, H), p1,41). From De“nition 2.3 this yieldsS? WPAA(R; L? (P, H), p1,q1) =
SPWPAA(R; LF (P, H), p2,q2). O

Theorem 3.2 Let p;, q; € Uo for i = 1,2.Assume that there exists a constant 0 <a < land
measurable set Ag C R such that

fim sup Qur(0:) <1,
r—>+oo Qr(p:)
q:(t) dt
lim fmmo— =0, whereA,={teR ar<|t..fo| <r},
F—+00 Qr(pi)
lim max [Sup p1(2) sup q2() “w p2(2) sup qa(t )}
r—>+00 tek P2(t) tea, nAg ql(t) ter 01(2) teA,NAG q2(2) ,

then SP WPAA(R; LP (P, H), p1,q1) = SP WPAA(R; L7 (P, H), p2,4>2)-

Proof For anyh® € PAA(&; L7(0, LI (B, H)), pr.q1), de‘ne
_ 1 r pttl »
HO= 5o / , /t E|(s) | dsqz() dt,

then

) = Qar(pZ) , ; t+1 )
HO= 50 " Qo) /A /t E||h(s)|” dsqz(t) dt. 3)

Further, one obtains

t+1
o [ [ e e

p1(t) g2(t) )
ieﬂlg ,02(t) teiurI\)AC 6]1(t) Qr(pl) /A MB/IJ E”h(s)“ dsql(t) dt
L Inlls wol0)d.

Q(p2) ArNAg

Japnag 28)dt

By using lim,_, +o0 SUP,cR Z;—ggsupt%ms Zi—gg < 400, limy 100 =55, 7— = 0 and W oe
PAAW(R;L#(0, 1;,L7(P,H)), p1,41), it follows that
1 t+1 »
lim / / E|h(s)|” dsqa(t)dt = 0. 4)
r=%00 Qu(p2) Ja, Je " dsq

According to (3) and @), one has

limsup H(r) < limsup Qur(p2) lim sup H(ar).

r—+00 r—+00 r(102) r—+00
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Sincelimsup,_, ,, H(r) =limsup,_, , ., H(ar) <+oo andlimsup,_, , % <1, therefore

limsup H(r) = limsup H(«r) = 0;

r—+o00o r—+oo
further, lim,_, +», H(r) = 0, which indicates that"’ € PAAo(R;L?(0, 1,L*(P,H)), p2,q2) and
SPPAAo(R; LF (P, H), p1,q1) C SPPAAo(R; L” (P, H), p2,42)-

Similarly, it follows that S? PAA(R; L? (P, H), p2,q2) € SPPAA(R;LP(P,H), p1,41). Based
on De“nition 2.3 this completes the proof. O

Corollary 3.1 Let p;, q; € U for i = 1,2. Assume that there exist a constant o > 1 and
measurable set Ag C R such that

limsup Qr(pi) < l,
r—+o00 Qur(0:)
qi(t)dt
lim Jagrng 1) =0, whereA,={teR:r<|t| <ar),
r—>+00 Qar(pi)
i [ p1(t) q2(t)  p2(t) ql(t)]
1m max| sup sup — -, sup——~ sup —— | <+oo,
r—>+o0 ter P2(t) teANAG q1(t) ter p1(t) teA,NAG q2(t)

then, S WPAA(R; LP (P, H), p1,q1) = S* WPAA(R; L? (P, H), p2,42).
Next, we present the conclusion on the translation invariance.

Theorem 3.3 Let p, q € Ux, and H be a measurable set, if

Ty < v

40) qlt .7)
e FORron R ©
q(t)dt=0, where Ajf ={teR:m<|t| <r+|t|}, (7

lim
r=>+00 Q,(to, p) Jay e

then SP WPAA(R; L? (P, H), p, q) is translation invariant.

Proof For anyf? e PAAo(R;L7(0, 1;L7(P,H)), p,q), denote byf,(-) =f(- + t) forany r € R,
it follows that

roopt+l
f / E|[f. ()| dsq()de

r|z|

< /Hl]E”f(s)”p dsq(t..T)dt

Lrot|

m t+1
Wty [ ae.ovars [ [EO e x)ar

flls / gt ..x)d,
ApFOHE
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therefore

r t+1
ﬁ / f E|, (5)|? dsq(e) dt
<Qr+|r\(p)sup@ IIflsp mrl
- Qr(p) teR p(t)QrHrl(p) L.t

q(t..7) |Iflls
d
PP TD Q) Do 1O

q(t T) Qr+|r|()0) 1 e et p
+ile'lHI{) q(t) Qr(p) Qr+\r\(p) ..r..lrl/t ]EHf(S)H dsq(t)dt.

o(t) dt

It is not di cult to show that ( 5) implies

Qr+r(p) < 400 (8)

lim sup

r—+00 Qr(p)

which, together with ©)...8) andf* € PAAo(R; L7 (0, 1,L7(P,H)), p,q), yields

1 r t+1
lim ——— E|£(s)||” dsq(2) de =0,
im oo ], BRI daoa

that is, SPPAAN(R;LP(P,H),p,q) is translation invariant. Moreover, the space of
SPWPAA(R; L? (P, H), p,q) is translation invariant in view of the translation invariance
of SPAA(R; L7 (P, H)).

Denote bylly :={p e U, : p ~ p*} foranyt e R and p*(¢) = p(¢ ..z), then the next result
holds. O

Theorem 3.4 Let p, g € Uy, then S WPAA(R;L?(P,H), p,q) is translation invariant.

Proof Foranyf? e PAAo(R;L7(0, 1,L?(P,H)), p,q), denote byf, (-) =f(- + 7) forany r e R,
it follows that

r pt+l
ﬁ/ /t E|[ﬁ(s)||pdsq(t)dt

471 (07 1 rlT] pt+l )
= Qer(/(S )Qr*‘rl(pr) ..r..Lr/t EIV(S)”pdSq (t)dt'

From p € Uy, then p ~ p?*, therefore

r+t

Qrec(p7) :/ p(t..7)dt

LELT

.27 r
< [ F0des [ p@de=en+ 1Q.0)
According to % € PAAo(R;L?(0, 1;,L7(P,H)), p,q), it is not di cult to prove f? € PAAo(R,;
17(0, L,LP(P,H)), p7,q%), which implies f € PAA(R;L?(0, 1;L7(P,H)),p,q). Further,
SPWPAA(R; L? (P, H), p,q) is translation invariant. d
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Remark 3.1 For simplicity, denote
Gz, ={p | p € Uy such thatS” PAAq(R; L# (P, H), p,q) is translation invarian.
4 Existence and uniqueness

Definition 4.1 A {%,},cr progressively measurable proce&s(t)};cr is called a mild so-
lution of Eq. (1) if x(¢) satis“es

x(6)= St . 5)[x(s) - s, m5)] + / (s M ) 0)
+ It %) + /st(t )Y (1) ()
, /st(t 1) ), 00) (i),
for all £ > s and for eachs € R, where

x(t):/o oogk(e)s(ﬂe)de, m(t):xfo ooegk(e)s(tke)de,

(. (kn+1)

kn+l n!

AOE %9-"1%w(9“%) >0, @, (0) = % ; sin(nk )

and¢, is a probability density function de“ned on (Ogpo) satisfyingf(;rOo 0¢,.(0)do = ﬁ
Moreover, the next lemma holds.

Lemma 4.1 .%,(t) and <, (t) are strongly continuous for t > 0 such that
W) 14O <M, 14Ol < s
(2) Foranyt>0, % (t) and <, (t) are compact operators if S(t) is compact;

(8) ForanyO<a<land0<p <1,xe€H, :=D((..A)*), one has

LA (Ox= (LA @) A x, >0,

kM2 .. B)
tBT(L+r(L..8))

|4 )y < e, >0

Based on this lemma, the next conclusions hold.
Lemma 4.2 Let 1 € SPAA(R; LP(P,H)), then
ACES / t (t .. ) e (t .. u)ha(u) dw(u) € SPAA(R; L7 (P, H))
.00
forteR.

Proof Sincex; € SPAA(R; L (P, H)), for any real sequencér,},en, there exists{z; },en S
{z.}uen € R and stochastic process@NQ: R — LP(P,H) such that

1 1
lim </ E|rs(t+s+7T)) ..Xl(t+s)||pds>p =0. 9)
0

n—+oo
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Consider
t ~
%f(t)::f (t .. ) (¢ .. u)ha(ua) dw(ua)
and denote byw(z) = w(t + 7,) ...w(z,) for ¢ € R, thenw is also a Brownian motion with
the same distribution asv, therefore, from the Burkholder...Davis...Gundy inequality, we

obtain

E|6(t+1) .. 60|

S

<E (sup

s<t

/S (s .. u) X A A2 (s ..
)

t
<4Mj / (t .. a)?C AR | 0 (1 + 7, ..Xl(u)||fLg du
.00

)

ra(u+ 1) . Ka(w)] A

and for p > 2 that
E|%i(t+1,) .67 0]

)

S

<E (sup

s<t

/;(s Lu) XA AN (s
. p)

t - 2
< C,,M’S]E( / (t ..y 1A 5 (w4 7)) L K (u) Hig du)
.00

(ra(u+)) Il(u)] dw(u)

t
< C,M; / (t .. )2 ACDE| 3y (u+ 7)) . 3a (@) | du,
OO

whereC, = [p**1/2(p ... 32 and

_ kM oT'(1+a)]|(-A) YL

.2
o ...1 k2
Mo —_—
'l +«ka)

. Mi=Mj
' 0[ (@)

Denote byC, = C, for p>2 andC; = 4 for p = 2, which yields
E|6i(t+,) .40

+00
< C;le mz(’(“"'lb"'z’”E}|kl(t .m+ r,’,) ..Xl(t ..m) Hp dm.
0
From the famous Fubini theorem, we obtain
1
/ E|Gu(t+s+1) .. CF(t+3)|" ds
0

+oo 1
< C;le mz("“"'lé"'a’”/ E|r(t+s..m+1)
0 0

Lt +s ..m)”pdsdm.
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Based on the translation invariance &P AA(R; L? (P, H)), (9) and the Lebesgue dominated
convergence theorem, it follows that

1 ,
(/ E|€u(t+s+1)) ...‘Kl*(t+s)||pds) — 0 asn— oo.
0

Similarly, it follows thatlim,, ... (f* EI€; (¢ +5 ..1)) .. it +5) [P ds)? =0, 0

Lemma 4.3 Let A, € SPAA(R;LP(P,H,)), then

©o(t) := /t (t..u) U (t .. u)ho(u) du € SPAA(R;L”(]P’,H)) forteR.

.00

Proof Sincei; € SPAA(R; L#(P,H)), for any real sequencér,} ., there exists{z,},en C
{z.}uen € R and stochastic processgsg: R — LP(P,H) such that

1

lim (fluz” (LAY Ro(t+5+7T) oo (A) Dt +5)|” ds) . 0. (10)
0

n—+oo

Assume
t ~
E5 () :=/ (¢ ..u)“"'%m(t .. u)A2(u) du,
.00
further, it follows that

E|C(t+,) G0

) p
= ]EH/ (s a) XA (s )| (A Ao (u+T)) ... (A R2(U)] du

4 t MKO{...l _ p
5ot ([ S lear et 5) . (41Tt

<

I A) e
[ p...1 pat

= ||(.1.i\;[‘3]ﬂ19 [F,Sff)} ”Oo(t ..u)K“---Je--n(t..u)

E[ (A Ra(u+ 1) o (A Row) | du

+o0
< M2/ m”“"']e"”mIE|‘(.A)“A2(t .+ ry’,) o (A) ot ..m)”pdm,
0

where M, = [Mﬁ]l’[r;ﬁg)]l’---% From the famous Fubini theorem, we obtain

1
/ E|€(t+s+1,) .. C5(t+5)|" ds
0

o (Aot +s ..m)||Pdsdm.
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Based on the translation invariance &#AA(R; L?(P,H,)), (10), and the Lebesgue domi-
nated convergence theorem, it follows that

1 :
(/ E|€(t +s+1,) ...%;(t+s)”lgds) — 0 asn— oo.
0

Similarly, it follows thatlim,Hoo(fol E|65(t+s..1)) ..ot +5)|IP ds)l% =0. O

Corollary 4.1 Let A3 € SPAA(R;LP(P,H,)), then
t
b,(2) :/ (t..u) A (t .. u)Aa(u) du € SPAA(R; L7 (P, H))

forteR.

Based on Lemmad.2and4.3 to establish the existence and uniqueness of a Stepanov-
like doubly weighted pseudo almost automorphic mild solution of Eql), the following
hypotheses are necessary.

(H1) Assume p, q € G%, and f; = ¢; + ¥; € SSWPAAR x B,;L7(P,H), p,q), where

¢; € SPAAR x B,; LP(P,H)) and wib € PAAo(R; L?(0, 1;L7(P,H)), p,q), there exists

a positive constant L that satisfies

t+1 »
(f ]E”(t)i(S,xs)..¢i(S,ys)||ﬂdS) SL”xt ":yt”Ql te}R!i:l!z (11)
t

for any x, y € B,. Furthermore, there exist y € SP’PAAo(R;R*) and a nondecreasing
function ¢: R* — R* that satisfies for all x € L*(P,B,) with ||#| s < 3, which yields

/ RG] ds < 00) / “Ely©Pds and iimin ? =5 (12)

(H2) Let p, g € G and h = h1 + hp € S’WPAAR x B,; L7 (P,Hy,), p,q), where h €
SPAA(R x B,;LP(P,H,)) and /5 € PAAo(R;L?(0, 1;L?(P,H)), p,q), there exists a

positive constant L that satisfies

t+1 3
</ E||(.A)ah1(s,xs)...(A)“hl(s,ys)”pds) <Llx ..y:ll,, teR (13)

for any «x, y € B,. Furthermore, there exist y € S’PAA((R;R") and a nondecreas-
ing function ¢: R* — R* that satisfies for all x € LP(P,B,) with ||x]« < 8, which

satisfies

t+1 t+1
/ E||(.A)“h2(s,xs)||pds§ go”((S)/ E”y(s)”pds and
9(9) _

liminf —=
§—+00 o)

(14)

Denotea = ||y |lse, thus the next result holds.
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Theorem 4.1 Assume (Hi) and (H2) hold and
0" (ab+L)[Ma(1+]|(-.4)*Y) + Ma+ | (.4)“|] <1, (15)

YCMLaT@ICA Y roeg 1y1 My T(@) , ,
ea) [(zn)ﬁa---ﬂz’ Mz = 1T"a then Eq. (1) admits a unique

Stepanov-like doubly weighted pseudo almost automorphic mild solution.

where My =

Proof According to (15), there exists a constant > O that satis“es
o*[ap(d+ llwll,) + Ld][M3(1 + | (..A)*Y) + Ma+ | (..A)“|] <d. (16)

To “nish the proof, we will complete it in several steps.
Step 1. For above >0, let

Ja:={& € SPPAAN(R; LF(P,H), p,q) : &I, < d},

obviously,3, is a bounded closed and convex subset$PAAy(R; L7 (P, H), p,q). For any
w € SPAAR; L? (P, H)), & € J,4, assume the operator®Bé)(t) = Z?:l(«%’ié)(t), where

(BLE)E) = holt o0 + ) + / ;(t 2t M (8 sty 0 + ) sy
(526)(t) = [a(t, 0, + &) .. (8, )]

. /;(r Ut 1) [P+ ) o, 0,)] s
#:6)0= [ ;(t KAt ot 0+ 6 it
FO= [ a3l ) i)
(#=E)(t) = /;(t ) ()P, w0y, + E) dw(u),
(e )(t) = /__;(t ) ()P, 0+ E) - 2(u,0,) ] dW(us).

By applying (1)...14), we deduce that

1

t+1 p
( / E[|(-.A)* hy(u,w, + &) ... (A)“hl(u,wu)npdu) <LI&ll,, (17)
+1 t+1
/ E|(..A) ho(u, w, + &) |* du < ¢? (d + o) / E|y )| ds, (18)
and
t+1 1%
+1 1
/ E|| Yo + £)| due < 0 (d + ol f E|y(s)|” ds. (20)
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which indicates based ony € SPPAA((R;R*) and & € SPPAA(R;LP(P,H), p,q) that
(Ao, + &) ... (A)M(u,0,) € SPPAAR;LP(P,H),p,q9), Vi(u,wu + &) €
SPPAA(R; LP (P, H), p,q), (-A)*ho(u, w, + &) € SPPAAN(R; LP(P,H), p,q), and ¢:(u, w, +
&u) . pi(u, w,) € SPPAA(R; LP(P,H), p,q).

Let W(t) = ga(t,w; + &) .. do(t, ), then WP() € PAAG(R;L7(0, 1;L7 (P, H)), p,q), further

) 1 r pt+l »
tim o [ [ Bl dod

1 r t+1
< lim —/ / (su
o Q) o) TR

- e (m .. u)V (1) dw(u)

/ (m ) Ay LAY

) dmq(t) dt

t+1 (S u)Z(Koz 1) »
=GM; lim Q(r P / f — e ]E||\If(u)|| dudsq(t) dt

2(ke...1)
* : p
SClefo Wrgl-}]oo Q(r,,o) [r/() E|w(+t..m)|" drq(t)dtdm,

whereCy, M; de“ned as in Lemma4.3 Combining the Lebesgue dominated convergence
theorem with W4(-) € PAAo(R;L?(0, 1;L7(P,H)), p,q), we deduce

r pttl
. p _
rkanoo 00r.0) /r/t EH(%GS)(S)” dsq(t)dt =0,

that is, (Be€)(-) € SPPAAN(R;L?(P,H), p,q). Taking a similar argument, we obtain that
(BiE)() € SPPAAN(R; L#(P,H), p,q) fori=1,...,5.

Let (A18)(¢) = (B18)(t) + (A3E)(1) + (Bs6)(2), (A28)(2) = (B2E)(2) + (Ba§)(2) + (H6)()
for t € R, obviously, this gives4 ;£)(-) € SPPAAW(R; L# (P, H), p,q) for i = 1,2, based on the
Burkholder...Davis...Gundy inequality, we obtain

|(26)"(.m)],

t+1 p
= Jearei] [ Bl A O 5 - (APim ol dn]

+00 t+1
+ [M2/ res "’/ E[(-A) h(m ..r, 0+ Em )
0 t

1

(A (v )| dmdr:|p

ELd“(.A)a “ +Ld|:M2A+OO rKDl ..... l]rdr:|1_7

<Ld(|(..A)“| +Ms),

[(#a) )], + || (Hes) ),



Zhu Journal of Inequalities and Applications  (2023) 2023:47 Page 16 of 21

+00 t+1 %
+ [c;Ml / pRleec Ty 3r / E|| 3 (m ..r,a)m,_x,ém..r)||pdmdri|
0 t

+

1
o 1
+Ld[c;M1/ rz(K“"'l)e"'zrdr}p < Ld[ M| (..A)* Y + Ma],
0

where ) (m ..r,om 1 &m.x) = Vil .., 0 x + &) im0 ) TOr i = 1,2, My =

YCMLaT@ICA" Y ro

1
T(ca) [(zn)zfa.i.lﬂ 2,M3= Ml%("‘) Therefore,

[a28)0om) |, = L[Ma(1+ | (.4)" ) + Ma+ [ (-4) =[]

Analogously, this gives

[(A:8)m) g = ap(d+ o) [Ma(1+ [ (.A) ) + My + [ .A)“[ ]

From (16), it follows that || A;£ |, < d, furthermore, A; mapsS, into I, for i=1,2.
Step 2.A; is a contraction mapping andA; is completely continuous or,;.
For anyé, € € 3, we obtain

|(A28)(@) ... (’\25)@)”1,
< [(#:5)0) ... 82D, + [(BE)D) .. 8O, + [(Z65)0) ... BeE)D)],

1
P

t+1
<¢.ay«| [ / E[[(-.4) by, + &) ... (A)*ha(m, o, + Em)llpdm]

1
p

A1 O +§m..r>||fdmdr]

+00 t+1 -
+ I:C;MI/ rZ(KO(...lé..-ar/ ]E” wz(m o F Wy F sz‘)
0 t

1
p

1502(”;'1 T Oy T gmr)”p dm dr]
<Lo*||(..A)“|IE ..Ells»

1
P

+L(1+ ||(-A)”---’1|)[Mz /O [ Y 14 dr}
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p

+L[C;M1/ oor2<m---1k---2’||§m_r .Em__r||§drj|
0

< Lo*[Ma(L+ | (.A) ) + Ma+ | (.A) <[ ]IE .. Ellsr,
and based on15), we have

1(A28)(@) ... 0:28)®)|
< Lo*[Ms(1+ |(-.A) ) + Ma+ [[(.A) | JIE .. Ells» < IE .. Ells0-
Since for anygg € 3y, this yields||(A1§)ll, < d, therefore,A1 is uniformly bounded. Based
on the Arzela...Ascoli theorem, it is not di cult to derive thatA; is compact, further,A;

is completely continuous org,.
Step 3. LetsZ on SPAA(R; L? (P, H)) satisfy

(%ﬂw)(t):/ (¢ ..0) U (t .. )1 (1, 0,) du
+/t (¢ ) (¢ . ) pa(u, 0,) du

+ /t (¢ ) (. )b, @,) dw(u) + ha(t, ).

From w € SPAA(R; LP(P,H)) and h; € SPAA(R x B,;L?(P,H)), we can extract a real se-
qguence{t, },en such that stochastic processés R — L7 (P, H) andin: R x B, — L?(P,H)

such that
1 ;
lim (/ IE||a)(t+s+rn)..5(t+s)||pds> =0 (21)
n—+oo 0
and
1 - ;
lim (/ IE||h1(t+s+r,,,x)..hl(t+s,x)||pds> =0, (22)
n—+oo 0

wherex € B, therefore

| A R+ T, o (A ()]
< ||(..A)"‘h§(u + Ty, Wytr,) - (A)“h?(u + r,,,cT),,)”p
+ [ AR+ 7,7 ... (A)“;Tl”(u,au)up

< LO"(|@stg, - Billso + | (A) ha(+ 1, @) . (A (@), =0,
which indicates from @1) and 22) that

i (- A)* B+ Ty, @urs,) - (A) T2, 34, = 0.

n—+oo

Further, we havéi (¢, w;) € SPAA(R; LP(P,H,)) for t € R. Analogously, this gives;(, ;) €
SPAA(Rer(P!H)) for i= 1! 2 Denote by)"l() = ¢2('lw-)l )"2() = hl('lw-)l )"3() = ¢l('y(l)-);
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based on Lemmast.2 and 4.3 and Corollary 4.1, we deduce thats# maps SPAA(R;
L? (P, H)) into itself.

Next, we proveZ is a contraction mapping onS?AA(R; L7 (P, H)). For anyw, w € B,,
similar to the proof of Step 2, it follows that

|(Z D)) ... ¢¢w)() Hp

<L(1+ ||<.A>a---ﬂ1|)[M2 [ e e el dr}”
0

+00 %
+L[c;M1 / R S [ R dr}
0

+L|(..A)“|l@ ..o,

<Lo*[Ma(1+ (A" ) + Mo+ (-.A)“[]I@ .. B,
and based on15), we have

|(#&) ... ¢¢w)|

< Lo* [Ma(1+[(-.A) ) + Ma+ | (.A)“|1& .. Blly <13 .. Blsr-

From what has been discussed above, based on the results of step 1, step 2, and the Kras-
noselskii “xed-point theorem, there exists a “xed point* € SPPAA(R; LP(P,H), p,q).
Combining step 3 with the Banach “xed-point theorem, it follows thatZ” admits a unique

“xed point w* in SPAA(R;L? (P, H)). Consider the coupled system

w ()= [' (. u) A (. u)ha(u, ) du
+ [* ) () (u, 07) du
+ [T (e u) Y () po(u, @) dw(u) + ha(t,w]),
EX(t) = holt,w; + )+ ['(t .y U (t .. t)ho(u, ] + EF) du
+[h(t o) + &) .t op)]
+ ' ) A (), 0+ EF) L ha(u,w)] du
+ [ () ()Y, 0+ EF) du
+ [f ) (), @l + ) L pa(u,w)] du
+ ffoo(t cu)< Y (L u)a(u, 0 + EF) dw(u)
[ () Y () o, 0 + ) pou, )] d ()

fu