
Jena et al. Journal of Inequalities and Applications         (2023) 2023:18 
https://doi.org/10.1186/s13660-023-02927-z

R E S E A R C H Open Access

On the degree of approximation of Fourier
series based on a certain class of product
deferred summability means
Bidu Bhusan Jena1, Susanta Kumar Paikray1 and M. Mursaleen2,3*

*Correspondence:
mursaleenm@gmail.com
2Department of Medical Research,
China Medical University Hospital,
China Medical University (Taiwan),
Taichung, Taiwan
3Department of Mathematics,
Aligarh Muslim University, Aligarh,
India
Full list of author information is
available at the end of the article

Abstract
In this article, we first introduce and study the basic concepts of deferred Euler and
deferred Nörlund product summability means of Fourier series of arbitrary periodic
functions. We then estimate the degree of approximation of Fourier series of an
arbitrary periodic function in the generalized Zygmund class based upon our
proposed product deferred summability means. Moreover, we discuss some
important concluding remarks in connection with our findings. Finally, we suggest a
direction for future studies on this subject, which are based upon the basic notion of
statistical product deferred summability means of Fourier series of arbitrary periodic
functions in the generalized Zygmund class.
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1 Introduction, preliminaries, and motivation
The approximation of Fourier series of arbitrary periodic functions is very useful and has
substantial importance in various fields of applied mathematics as well as engineering sci-
ences, and in particular in the study of numerical functional analysis. Also, it has been
conveying a new direction having wide applications in signal analysis, image processing,
and system design in modern telecommunications (see [14] and [15]). Recently, many re-
searchers are working on the degree of approximation of Fourier series and conjugate se-
ries of 2π-periodic functions belonging to different kinds of functional sequence spaces
such as Lipschitz, Hölder, Besov, and Zygmund spaces via various summability techniques
(see, [1–5, 8], and [10]). In fact, here we estimate the degree of approximation of Fourier
series of arbitrary periodic functions belonging to the generalized Zygmund class based
on a certain class of product deferred summability means.
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Let sk(g; x) be the nth partial sum of a Fourier series of an arbitrary periodic function g
with period 2L such that

sk(g; x) = a0 +
n∑

k=1

(
ak cos

kπ

L
x + bk sin

kπ

L
x
)

(1.1)

=
1
L

∫ L

–L
g(λ + x)Dn(λ) dλ, (1.2)

where

a0 =
1

2L

∫ L

–L
g(μ) dμ,

ak =
1
L

∫ L

–L
g(μ) cos

kπμ

L
dμ (k = 1, 2, . . .),

bk =
1
L

∫ L

–L
g(μ) sin

kπμ

L
dμ (k = 1, 2, . . .),

and

Dn(λ) =
sin[ (n+1/2)λπ

L ]
2 sin( πλ

2L )
(∵ λ = μ – x)

is Dirichlet’s kernel.
We now recall the Zygmund modulus of continuity of g(x) as follows (see [18]):

ω(g, t) = sup
0�η�t,x∈R

∣∣g(x + η) + h(x – η) – 2g(x)
∣∣. (1.3)

Let C2L be the Banach space of all 2L-periodic continuous functions defined on [0, 2L]
under the supremum norm.

For 0 < υ � 1, the function space

Z(υ) =
{

g ∈C2L :
∣∣g(x + η) + g(x – η) – 2g(x)

∣∣ = O
(|η|υ)}

is a Banach space under the norm ‖ · ‖(υ) defined by

‖g‖(υ) = sup
0�x�2L

∣∣g(x)
∣∣ + sup

x,η �=0

|g(x + η) + g(x – η) – 2g(x)|
|η|υ .

Let g ∈Lα[0, 2L]. Then,

Lα[0, 2L] =
{

g : [0, 2L] →R and
∫ 2L

0

∣∣g(x)
∣∣α dx < ∞

}
(α � 1).

The Lα[0, 2L] norm of a function g(x) is defined by

‖g‖α =

⎧
⎨

⎩
( 1

2L
∫ 2L

0 |g(x)|α dx) 1
α (1 � α < ∞),

ess sup0<x�2L |g(x)| (α = ∞).
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For g ∈Lα[0, 2L] (α � 1), the integral Zygmund modulus of continuity is defined by

ωα(g, t) = sup
0<η�t;x∈R

{
1

2L

∫ 2L

0

∣∣g(x + η) + g(x – η) – 2g(x)
∣∣α dx

} 1
α

,

and for g ∈C2L and α = ∞, we have

ω∞(g, t) = sup
0<η�t;x∈R

max
x

∣∣g(x + η) + g(x – η) – 2g(x)
∣∣.

Note that

ωα(g, t) → 0 as α → 0.

We now define

Z(υ),α =
{

g ∈Lα[0, 2L] :
(∫ 2L

0

∣∣g(x + η) + g(x – η) – 2g(x)
∣∣α dx

) 1
α

= O
(|η|υ)}

.

The space Z(υ),α (α � 1, 0 < υ � 1) is a Banach space under the norm ‖ · ‖(υ),α defined by

‖g‖(υ),α = ‖g‖α + sup
η �=0

‖g(· + η) + g(· – η) – 2g(·)‖α

|η|υ .

The class Z(ω) is defined by

Z(ω) =
{

g ∈C2L :
∣∣g(x + η) + g(x – η) – 2g(x)

∣∣ = O
(
ω(η)

)}
,

where ω is already mentioned in (1.3). Also, ω is positive, nondecreasing, and a continuous
function with the properties:

(i) ω(0) = 0; and
(ii) ω(η1 + η2) � ω(η1) + ω(η2).
Let ω : [0, 2L] → R be an arbitrary function with ω(η) > 0 (0 � η < 2L) and let

lim
η→0+

ω(η) = ω(0) = 0.

For 1 � α < ∞, we define

Z(ω)
α =

{
g ∈Lα[0, 2L] : sup

η �=0

‖g(· + η) + g(· – η) – 2g(·)‖α

ω(η)
< ∞

}

and

‖g‖(ω)
α = ‖g‖α + sup

η �=0

‖g(· + η) + g(· – η) – 2g(·)‖α

ω(η)
(α � 1),

where ‖ · ‖(ω)
α is a norm on Z(ω)

α .
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Remark 1 We know that the completeness of Lα[0, 2L] (α � 1) implies the completeness
of Z(ω)

α . Thus, Z(ω)
α is a Banach space under the norm ‖ · ‖(ω)

α .

Let ( ω(η)
v(η) ) be positive and nondecreasing. Then,

‖g‖(υ)
α � max

(
1,

ω(2L)
υ(2L)

)
‖g‖(ω)

α � ∞.

Therefore,

Z(ω)
α ⊆ Z(v)

α ⊆Lα[0, 2L] (α � 1).

Note that,
(i) if α → ∞, then the class Z(ω)

α reduces to the class Z(ω);
(ii) if ω(η) = ηυ , then the class Z(ω)

α reduces to the class Z(υ),α ;
(iii) if ω(η) = ηυ , then the class Z(ω) reduces to the class Z(υ).
In the above scenario, the generalized Zygmund class Z (ω)

α (α � 1) is a generalization of
Z(υ), Z(υ),α , and Z (ω) classes, which were earlier investigated by Leindler [7], Moricz [11],
and Moricz and Nemeth [12]. In 2013, Lal and Shireen [6] proved the best approximation
of Fourier series of a 2π-periodic function belonging to the generalized Zygmund class
via matrix-Euler summability means and subsequently, Singh et al. [16] established the
approximation of functions in the generalized Zygmund class via Hausdörff summability
means. Recently, Das et al. [2] demonstrated the Euler–Hausdorff product summability
means of a Fourier series of 2π-periodic functions for approximation of signals (functions)
in the weighted Zygmund class.

Motivated by the above-mentioned investigations and developments, we first intro-
duce and study the concepts of deferred Euler and deferred Nörlund product summability
means of Fourier series of arbitrary periodic functions. We then estimate the degree of
approximation of Fourier series of an arbitrary periodic function belonging to the gen-
eralized Zygmund class based upon our proposed product deferred summability means.
Moreover, we highlight some important remarks in connection with our findings in the
conclusion section. We also suggest a direction for future studies on this subject that are
based upon the basic notion of statistical product deferred summability means of Fourier
series of arbitrary periodic functions in the generalized Zygmund class.

Let
∑

uτ be an infinite series with the sequence of partial sum {sτ }, and let {p	} be a
sequence of nonnegative integers such that p0 > 0, and

Pτ =
yτ∑

	=xτ+1

p	 → ∞ (τ → ∞),

where (xτ ) and (yτ ) are sequences of nonnegative integers.
Let the sequence-to-sequence transformation

ζ N
τ =

1
Pτ

yτ∑

	=xτ +1

p	s	 (τ = 0, 1, 2, . . .), (1.4)
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define the deferred Nörlund (DN , pτ ) mean of {sτ } generated by {p	}. The series
∑

uτ is
deferred Nörlund (DN , pτ )-summable to s if

lim
τ→∞ ζ DN

τ = s,

which is regular (see [9]).
Next, the sequence-to-sequence transformation

DEθ
τ =

1
(1 + θ )yτ

yτ∑

	=xτ +1

(
yτ

	

)
θ yτ –	s	 (1.5)

defines the deferred Euler (DE, θ ) mean of the sequence {sτ }. The series
∑

uτ is summable
to s with respect to deferred Euler (DE, θ )-mean if

lim
τ→∞ DEθ

τ = s,

which is regular (see [13]).
We now define a new transformation

ζ DEDN
τ =

1
(1 + θ )yτ

yτ∑

	=xτ +1

(
yτ

	

)
θ yτ –	

{
1

P	

yτ∑

u=xτ +1

pusu

}
, (1.6)

which defines the product of deferred Euler and deferred Nörlund [(DE, θ )(DN , pτ )] means
of the sequence {sτ }. The series

∑
uτ is summable to s under the product deferred

[(DE, θ )(DN , pτ )] mean if

lim
τ→∞ ζ DEDN

τ = s.

Note that (DN , pτ )- and (DE, θ )-means are regular, so the product deferred [(DE, θ )
(DN , pτ )] mean is also regular.

Remark 2 If we substitute (xτ ) = 0 and (yτ ) = τ in (1.6), then it yields the usual Euler–
Norlund product (or [(E, θ )(N , pτ )]) mean of the form

ζ EN
τ =

1
(1 + θ )τ

τ∑

	=1

(
τ

	

)
θτ–	

{
1

P	

τ∑

u=1

pusu

}
. (1.7)

We use the following notations throughout this paper:

φ(x,η) = g(x + η) + g(x – η) – 2g(x)

and

KDEDN
τ (η) =

1
2L(1 + θ )yτ +1

yτ∑

	=xτ +1

(
yτ

	

)
θ yτ –	

{
1

P	

yτ∑

u=xτ +1

pu
sin[ (u+1/2)πη

L ]
2 sin( πη

2L )

}
.
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2 Auxiliary lemmas
In order to prove our main results (below), we need to establish first the following Lemmas.

Lemma 1 |KDEDN
τ (η)| = O(yτ + 1) (0 � η � 1

yτ +1 ).

Proof For 0 � η � 1
yτ +1 , sin η

2 � η

L and sin yτ η � yτ η, we have

∣∣KDEDN
τ (η)

∣∣� 1
2L(1 + θ )yτ +1

∣∣∣∣∣

yτ∑

	=xτ +1

(
yτ

	

)
θ yτ –	

{
1

P	

yτ∑

u=xτ +1

pu
sin[ (u+1/2)πη

L ]
2 sin( πη

2L )

}∣∣∣∣∣

=
1

4L(1 + θ )yτ +1

∣∣∣∣∣

yτ∑

	=xτ +1

(
yτ

	

)
θ yτ –	

{
(	 + 1/2)πη

L
· L2

πη

1
P	

yτ∑

u=xτ +1

pu

}∣∣∣∣∣

=
yτ + 1/2

4(1 + θ )yτ +1

∣∣∣∣∣

yτ∑

	=xτ +1

(
yτ

	

)
θ yτ –	

∣∣∣∣∣

=
2yτ + 1

8

[
∴ (1 + θ )yτ +1 =

yτ∑

	=xτ +1

(
yτ

	

)
θ yτ –	

]

= O(yτ ). (2.1)
�

Lemma 2 |KDEDN
τ (η)| = O( 1

yτ
) ( 1

yτ +1 � η � L).

Proof For 1
yτ +1 � η � L and sin yτ η � yτ sinη, we have

∣∣KDEDN
τ (η)

∣∣ =
1

2L(1 + θ )yτ +1

∣∣∣∣∣

yτ∑

	=xτ +1

(
yτ

	

)
θ yτ –	

{
1

P	

yτ∑

u=xτ +1

pu
sin[ (u+1/2)πη

L ]
2 sin( πη

2L )

}∣∣∣∣∣

� 1
2η(1 + θ )yτ +1

∣∣∣∣∣

yτ∑

	=xτ +1

(
yτ

	

)
θ yτ –	

{
1

P	

yτ∑

u=xτ +1

pu
(2u + 1) sin( πη

2L )
2 sin( πη

2L )

}∣∣∣∣∣

� 1
2η(1 + θ )yτ +1

∣∣∣∣∣

yτ∑

	=xτ +1

(
yτ

	

)
θ yτ –	

{
2	 + 1

P	

yτ∑

u=xτ +1

pu

}∣∣∣∣∣

� 2yτ + 1
2η(1 + θ )yτ +1

∣∣∣∣∣

yτ∑

	=xτ +1

(
yτ

	

)
θ yτ –	

∣∣∣∣∣

= O
(

1
yτ

)
. (2.2)

�

Lemma 3 (see [6]) Let g ∈ Z(ω)
α . Then, for 0 < η � L,

(i) ‖φ(·,η)‖μ = O(ω(η));

(ii) ‖φ(· + t,η) + φ(· – t,η) – 2φ(·,η)‖α =

{
O(ω(η)),
O(ω(t));

(iii) If ω and v are Zygmund moduli of continuity, then

∥∥φ(· + t,η) + φ(· – t,η) – 2φ(·,η)
∥∥

α
= O

(
u(t)

ω(η)
u(η)

)
,
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where

φ(x,η) = g(x + η) + g(x – η) – 2g(x).

3 Main results
In this section, we state and prove two theorems (that is, Theorem 1 and Theorem 2)
via our proposed product deferred (Euler–Nörlund) summability means and accordingly
estimate the degree of approximation of g belonging to the generalized Zygmund class.

Theorem 1 Let (xτ ) and (yτ ) ∈ Z0+, and let g ∈ Z(ω)
α (α � 1) be a real-valued 2L-periodic

Lebesgue integrable function. Then, the degree of approximation of g via the product de-
ferred [(DE, θ )(DN , pτ )]-summability mean of Fourier series (1.1) is

Eτ (g) = inf
ζDEDN
τ

∥∥ζ DEDN
τ – g

∥∥u
α

= O
(∫ L

1
yτ +1

ω(η)
ηu(η)

)
, (3.1)

where ω(η) and u(η) are the same as in (1.3) with ω(η)
u(η) positive and increasing.

Theorem 2 Let (xτ ) and (yτ ) ∈ Z0+, and let g ∈ Z(ω)
α (α � 1) be a real-valued 2L-periodic

Lebesgue integrable function. Then, the degree of approximation of g via the product de-
ferred [(DE, θ )(DN , pτ )]-summability mean of Fourier series (1.1) is

Eτ (g) = inf
ζDEDN
τ

∥∥ζ DEDN
τ – g

∥∥u
α

= O
(

ω( 1
yτ +1 )

(yτ + 1)2u( 1
yτ +1 )

(
L(yτ + 1) – 1

))
, (3.2)

where w(η) and u(η) are the same as in (1.3) with w(η)
ηu(η) positive and decreasing.

4 Proof of Theorem 1
Let s	(g; x) denote the 	th partial sum and following [17], we have

s	(g; x) – g(x) =
1

2L

∫ L

0
φ(x;η)

sin[ (	+1/2)πη

L ]
2 sin( πη

2L )
dη. (4.1)

Therefore, under (1.4), the (DN , pτ ) transform of s	(g; x) is given by

1
Pτ

yτ∑

	=xτ +1

p	

[
s	(g; x) – g(x)

]
=

1
2L

∫ L

0
φ(x;η)

1
Pτ

yτ∑

	=xτ +1

p	

sin[ (	+1/2)πη

L ]
2 sin( πη

2L )
dη. (4.2)

Furthermore, for the product Euler–Norlund (or [(DE, θ )(DN , pτ )]) transform of s	(g; x),
we obtain

ζ DEDN
τ – g(x)

=
1

π (1 + θ )yτ +1

yτ∑

	=xτ +1

∫ L

0
φ(x;η)

(
yτ

	

)
θ yτ –	

{
1

P	

yτ∑

u=xτ +1

pu
sin[ (u+1/2)πη

L ]
2 sin( πη

2L )

}
dη, (4.3)
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which implies that

Lyτ (x) = ζ DEDN
τ – g(x)

=
∫ L

0
φ(x;η)KDEDN

τ (η) dη. (4.4)

Then,

Lyτ (x + t) + Lyτ (x – t) – 2Lyτ (x)

=
∫ L

0

[
φ(x + t;η) + φ(x – t;η) – 2φ(x;η)

]
KDEDN

τ (η) dη. (4.5)

By using the generalized Minkowski’s inequality to equation (4.5), we obtain

∥∥Lyτ (· + t) + Lyτ (· – t) – 2Lyτ (·)∥∥
α

=
{

1
2L

∫ 2L

0

∣∣Lyτ (x + t) + Lyτ (x – t) – 2Lyτ (x)
∣∣α dx

}1/α

=
{

1
2L

∫ 2L

0

∣∣∣∣
∫ L

0

[
φ(x + t;η) + φ(x – t;η) – 2φ(x;η)

]
KDEDN

τ (η) dη

∣∣∣∣
α

dη

}1/α

=
∫ L

0

{
1

2L

∫ 2L

0

∣∣[φ(x + t;η) + φ(x – t;η) – 2φ(x;η)
]
KDEDN

τ (η) dη
∣∣α

}1/α

dη

=
∫ L

0

(∣∣KDEDN
τ (η)

∣∣)1/α

×
{

1
2L

∫ 2L

0

∣∣[φ(x + t;η) + φ(x – t;η) – 2φ(x;η)
]
KDEDN

τ (η)
∣∣α dη

}1/α

dη

=
∫ L

0

∥∥φ(· + t;η) + φ(· – t;η) – 2φ(·;η)
∥∥

α

∣∣KDEDN
τ (η)

∣∣dη

=
∫ 1

yτ +1

0

∥∥φ(· + t;η) + φ(· – t;η) – 2φ(·;η)
∥∥

α

∣∣KDEDN
τ (η)

∣∣dη

+
∫ L

1
yτ +1

∥∥φ(· + t;η) + φ(· – t;η) – 2φ(·;η)
∥∥

α

∣∣KDEDN
τ (η)

∣∣dη.

= I1 + I2 (say). (4.6)

Clearly, by Lemma 1, Lemma 3, and the monotonicity of (ω(η)/u(η)) with respect to η,
it yields

I1 =
∫ 1

yτ +1

0

∥∥φ(· + t;η) + φ(· – t;η) – 2φ(·;η)
∥∥

α

∣∣KDEDN
τ (η)

∣∣dη

=
∫ 1

yτ +1

0
O

(
u(t)

ω(η)
u(η)

)
O(yτ ) dη

� O
(

τu(t)
∫ 1

yτ +1

0

ω(η)
u(η)

dη

)
,
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and by using the 2nd mean-value theorem of integral, we have

I1 � O
(

yτ u(t)
ω( 1

yτ +1 )

u( 1
yτ +1 )

∫ 1
yτ +1

0
dη

)

= O
(

yτ

yτ + 1
u(t)

ω( 1
yτ +1 )

u( 1
yτ +1 )

)

= O
(

u(t)
ω( 1

yτ +1 )

u( 1
yτ +1 )

)[
∵ yτ

yτ + 1
= O(1)

]
. (4.7)

Furthermore, by using Lemma 2 and Lemma 3, we obtain

I2 =
∫ L

1
yτ +1

∥∥φ(· + t;η) + φ(· – t;η) – 2φ(·;η)
∥∥

α

∣∣KDEDN
τ (η)

∣∣dη

�
(∫ L

1
yτ +1

u(t)
ω(η)
u(η)

1
η

dη

)

= O
(

u(t)
∫ L

1
yτ +1

ω(η)
ηu(η)

dη

)
. (4.8)

Now, by (4.6), (4.7), and (4.8), we obtain

∥∥Lyτ (· + t) + Lyτ (· – t) – 2Lyτ (·)∥∥
α

= O
(

u(t)
ω( 1

yτ +1 )

u( 1
yτ +1 )

)
+ O

(
u(t)

∫ L

1
yτ +1

ω(η)
ηu(η)

dη

)
. (4.9)

Thus,

sup
t �=0

‖Lyτ (· + t) + Lyτ (· – t) – 2Lyτ (·)‖α

u(t)
= O

(
ω( 1

yτ +1 )

u( 1
yτ +1 )

)
+ O

(∫ L

1
yτ +1

ω(η)
ηu(η)

dη

)
. (4.10)

Clearly,

φ(x,η) =
∣∣g(x + η) + g(x – η) – 2g(x)

∣∣. (4.11)

Now, using Minkowski’s inequality in (4.11), we obtain

∥∥φ(·,η)
∥∥

α
=

∥∥g(x + η) + g(x – η) – 2g(x)
∥∥

α

= O
(
ω(η)

)
. (4.12)

Using Lemma 1, Lemma 2, (4.12), and (4.4), we obtain

∥∥Lyτ (·)∥∥
α
�

(∫ 1
yτ +1

0
+

∫ L

1
yτ +1

)∥∥φ(·,η)
∥∥

α

∣∣KDEDN
yτ

(η)
∣∣dη

= O
(

yτ

∫ 1
yτ +1

0
ω(η) dη

)
+ O

(
1
yτ

∫ L

1
yτ +1

ω(η)
η

dη

)
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= O
(

yτω

(
1

yτ + 1

)∫ 1
yτ +1

0
ω(η) dη

)
+ O

(
1
yτ

∫ π

1
yτ +1

w(η)
η

dη

)

= O
(

yτ

yτ + 1
ω

(
1

yτ + 1

))
+ O

(
1
yτ

∫ L

1
yτ +1

ω(η)
η

dη

)

= O
(

ω

(
1

yτ + 1

))
+ O

(
1
yτ

∫ π

1
yτ +1

ω(η)
η

dη

)
. (4.13)

Next, by using (4.10) and (4.13), we have

∥∥Lyτ (·)∥∥u
α

=
∥∥Lyτ (·)∥∥

α
+ sup

t �=0

‖Lyτ (· + t) + Lyτ (· – t) – 2Lyτ (·)‖α

u(t)

= O
(

ω

(
1

yτ + 1

))
+ O

(
1
yτ

∫ L

1
yτ +1

ω(η)
η

dη

)

+ O
(

ω( 1
yτ +1 )

u( 1
yτ +1 )

)
+ O

(∫ π

1
yτ +1

ω(η)
ηu(η)

dη

)
.

=
4∑

i=1

Ji. (4.14)

We now express J1 in terms of J3 and further J2, J3 in terms of J4, and by using these facts,
we have

ω(η) =
ω(η)
u(η)

.u(η) � u(π )
ω(η)
u(η)

.u(η) = O
(

ω(η)
u(η)

) (
∴ u(η) for 0 < η � L

)
.

Therefore,

J1 = O(J3). (4.15)

Again, by using the monotonicity of u(η), we obtain

J2 =
∫ L

1
yτ +1

ω(η)
η

dη

=
∫ L

1
yτ +1

ω(η)
ηu(η)

u(η) dη

� u(π )
∫ L

1
yτ +1

ω(η)
ηu(η)

dη

= O(J4). (4.16)

Also, using the fact that ω(η)
u(η) is positive and increasing, it yields

J4 =
∫ L

1
yτ +1

ω(η)
ηu(η)

dη =
ω( 1

yτ +1 )

u( 1
yτ +1 )

∫ L

1
yτ +1

dη

η
�

ω( 1
yτ +1 )

u( 1
yτ +1 )

(4.17)
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and

J3 = O(J4). (4.18)

Now, combining (4.14) with (4.15) to (4.18), we have

∥∥Lyτ (·)∥∥u
α

= O(J4) = O
(∫ L

1
yτ +1

ω(η)
ηu(η)

)
. (4.19)

Thus,

Eτ (g) = inf
yτ

∥∥Lyτ (·)∥∥u
α

= O
(∫ L

1
yτ +1

ω(η)
ηu(η)

)
. (4.20)

5 Proof of Theorem 2
Following the proof of Theorem 1, it yields

Eτ (g) = inf
yτ

∥∥Lyτ (·)∥∥u
α

= O
(∫ L

1
yτ +1

ω(η)
ηu(η)

dη

)
. (5.1)

In Theorem 2, let us assume ω(η)
ηv(η) is positive and decreasing. Thus, we have

Eτ (g) = inf
yτ

∥∥Lyτ (·)∥∥u
α

= O
(

ω( 1
yτ +1 )

(yτ + 1)v( 1
τ+1 )

∫ L

1
τ+1

dη

)

= O
(

ω( 1
τ+1 )

(yτ + 1)v( 1
yτ +1 )

· [η]L
1

yτ +1

)

= O
(

ω( 1
yτ +1 )

(yτ + 1)2u( 1
yτ +1 )

(
L(yτ + 1) – 1

))
. (5.2)

6 Concluding remarks and observations
In the concluding section of the investigation, we further observe some special cases in
view of our main results, that is, Theorem 1 and Theorem 2.

Remark 3 Let g ∈ Z (ω)
α be a real-valued 2L-periodic Lebesgue integrable function. If we

substitute (xτ ) = 0 and (yτ ) = τ in Theorem 1, then the degree of approximation of g
via the usual product [(E, θ )(N , pτ )]-summability means of Fourier series (1.1) is given
by

Eτ (g) = inf
ζEN
τ

∥∥ζ EN
τ – g

∥∥u
α

= O
(∫ L

1
τ+1

ω(η)
ηu(η)

)
, (6.1)

where ω(η)
u(η) is positive and increasing.

Remark 4 Let g ∈ Z (ω)
α be a real-valued 2L-periodic Lebesgue integrable function. If we

substitute (xτ ) = 0 and (yτ ) = τ in Theorem 2, then the degree of approximation of g
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via the usual product [(E, θ )(N , pτ )]-summability means of Fourier series (1.1) is given
by

Eτ (g) = inf
ζEN
τ

∥∥ζ EN
τ – g

∥∥u
α

= O
(

ω( 1
τ+1 )

(τ + 1)2u( 1
τ+1 )

[
L(τ + 1) – 1

])
, (6.2)

where w(η)
ηu(η) is positive and decreasing.

Remark 5 Motivated by a recently published result by Jena et al. [3], the interested readers’
attention is drawn towards the possibility of investigating the basic notion of statistical
product deferred summability means of Fourier series in the generalized Zygmund class.

Acknowledgements
The first two authors are thankful to NBHM (DAE) (India) for the project grant No. 02011/30/2017/R&D II/12565.

Funding
None.

Availability of data and materials
Not applicable.

Code availability
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author contribution
BBJ proposed the idea and initiated the writing of the manuscript. SKP analyzed all the results, made necessary
improvements, and supervised writing the manuscript. MM followed this with some complementary ideas and
methodologies. All the authors read and approved the final manuscript.

Author details
1Department of Mathematics, Veer Surendra Sai University of Technology, Burla, 768018, Odisha, India. 2Department of
Medical Research, China Medical University Hospital, China Medical University (Taiwan), Taichung, Taiwan. 3Department
of Mathematics, Aligarh Muslim University, Aligarh, India.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 24 March 2022 Accepted: 16 January 2023

References
1. Braha, N.L., Loku, V.: Estimation of the rate of convergence of Fourier series in the generalized Hölder metric by

deferred de la Vallée Poussin mean. J. Inequal. Spec. Funct. 9(4), 122–128 (2018)
2. Das, A.A., Paikray, S.K., Pradhan, T., Dutta, H.: Approximation of signals in the weighted Zygmund class via

Euler–Hausdorff product summability mean of Fourier series. J. Indian Math. Soc. 87, 22–36 (2020)
3. Jena, B.B., Paikray, S.K., Dutta, H.: Approximation of signals via different summability means with effects of Gibbs

phenomenon. In: Singh, J., Dutta, H., Kumar, D., Baleanu, D., Hristov, J. (eds.) Methods of Mathematical Modelling and
Computation for Complex Systems. Springer, Switzerland (2022)

4. Krasniqi, X.Z.: Applications of the deferred de la Vallée Poussin means of Fourier series. Asian-Eur. J. Math. 14(10),
Article ID 2150179 (2021)

5. Lal, S., Mishra, A.: Euler–Hausdörff matrix summability operator and trigonometric approximation of the conjugate of
a function belonging to the generalized Lipschitz class. J. Inequal. Appl. 2013, 1 (2013)

6. Lal, S., Shireen: Best approximation of functions of generalized Zygmund class by Matrix–Euler summability mean of
Fourier series. Bull. Math. Anal. Appl. 5, 1–13 (2013)

7. Leindler, L.: Strong approximation and generalized Zygmund class. Acta Sci. Math. 43, 301–309 (1981)
8. Mishra, L.N., Mishra, V.N., Khatri, K., Deepmala: On the trigonometric approximation of signals belonging to

generalized weighted LipschitzW(Lr ,ξ (t))(r ≥ 1)– class by matrix (C1.Np) operator of conjugate series of its Fourier
series. Appl. Math. Comput. 237, 252–263 (2014)



Jena et al. Journal of Inequalities and Applications         (2023) 2023:18 Page 13 of 13

9. Mishra, L.N., Patro, M., Paikray, S.K., Jena, B.B.: A certain class of statistical deferred weighted A-summability based on
(p,q)-integers and associated approximation theorems. Appl. Appl. Math. 14, 716–740 (2019)

10. Mishra, V.N., Khatri, K., Mishra, L.N., Deepmala: Trigonometric approximation of periodic signals belonging to
generalized weighted LipschitzW ′(Lr ,ξ (t)), (r ≥ 1)– class by Nörlund-Euler (N,pn)(E,q) operator of conjugate series of
its Fourier series. J. Class. Anal. 5, 91–105 (2014)

11. Moricz, F.: Enlarged Lipschitz and Zygmund classes of functions and Fourier transforms. East J. Approx. 16, 259–271
(2010)

12. Moricz, F., Nemeth, J.: Generalized Zygmund classes of functions and strong approximation by Fourier series. Acta Sci.
Math. 73, 637–647 (2007)

13. Patro, M., Paikray, S.K., Dutta, H.: Statistical deferred Euler summability mean and associated Korovokin-type
approximation theorem. Sci. Technol. Asia 23, 1–7 (2018)

14. Proakis, J.G.: Digital Communications. McGraw-Hill, New York (1985)
15. Psarakis, E.Z., Moustakides, G.V.: An L2-based method for the design of 1-D zero phase FIR digital filters. IEEE Trans.

Circuits Syst. I, Fundam. Theory Appl. 44, 591–601 (1997)
16. Singh, M.V., Mittal, M.L., Rhoades, B.E.: Approximation of functions in the generalized Zygmund class using Hausdorff

means. J. Inequal. Appl. 2017, Article ID 101 (2017)
17. Titechmalch, E.C.: The Theory of Functions. Oxford University Press, London (1939)
18. Zygmund, A.: Trigonometric Series, I, vol. 51, 2nd rev. edn. Cambridge University Press, Cambridge (1968)


	On the degree of approximation of Fourier series based on a certain class of product deferred summability means
	Abstract
	MSC
	Keywords

	Introduction, preliminaries, and motivation
	Auxiliary lemmas
	Main results
	Proof of Theorem 1
	Proof of Theorem 2
	Concluding remarks and observations
	Acknowledgements
	Funding
	Availability of data and materials
	Code availability
	Declarations
	Competing interests
	Author contribution
	Author details
	Publisher's Note
	References


