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Abstract
In this paper, we establish the a priori C2 estimates for solutions of a class of obstacle
problem for Hessian equations on Riemannian manifolds. Some applications are also
discussed. The main contribution of this paper is the boundary estimates for
second-order derivatives.
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1 Introduction
Let (M, g) be a compact manifold with smooth boundary ∂M. In this paper, we are con-
cerned with the obstacle problem

max
{

u – φ, –
(
f
(
λ
(∇2u + χ

))
– ψ(x, u,∇u)

)}
= 0 in M (1.1)

with the boundary condition

u = ϕ on ∂M, (1.2)

where f is a smooth, symmetric function defined in an open convex cone � ⊂ R
n with a

vertex at the origin and

�n =
{
λ = (λ1, . . . ,λn) ∈R

n : each λi > 0
} ⊆ � �= R

n,

∇2u denotes the Hessian of u, χ is a (0, 2)-tensor field, λ(h) denotes the eigenvalues of a
(0, 2)-tensor field h with respect to the metric g and ϕ ∈ C4(∂M). In this work, we assume
the obstacle function φ ∈ C3(M) satisfies φ = ϕ on ∂M.

We shall use a penalization technique to establish the a priori C2 estimates for a singular
perturbation problem (see (2.1)). A similar problem was studied in [14] and [1], where the
obstacle function φ is assumed to satisfy φ > ϕ on ∂M so that near the boundary ∂M, the
solution of (2.1) satisfies the Hessian-type equation

f
(
λ
(∇2u + χ

))
= ψ(x, u,∇u) (1.3)
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and the second-order boundary estimates follow from studies on Hessian-type equations
(see [6], [9], and [10] for examples). In the current paper the obstacle function φ is allowed
to equal ϕ on the boundary so that the main difficulty is from the boundary estimates for
second-order derivatives.

As in [3], we suppose the function f ∈ C2(�) ∩ C0(�) satisfies the structure conditions:

fi = fλi ≡ ∂f
∂λi

> 0 in �, 1 ≤ i ≤ n, (1.4)

f is concave in �, (1.5)

and
⎧
⎨

⎩
f > 0 in �,

f = 0 on ∂�.
(1.6)

In addition, f is also assumed to satisfy that for any positive constants μ1,μ2 with 0 < μ1 <
μ2 < sup� f there exists a positive constant c0 depending on μ1 and μ2 such that

(
f1(λ) · · · · · fn(λ)

)1/n ≥ c0 (1.7)

for any λ ∈ �μ1,μ2 := {λ ∈ � : μ1 ≤ f (λ) ≤ μ2} and

fi(λ) ≥ c1

(
1 +

∑

j

fj

)
for any λ ∈ � with λi < 0. (1.8)

Furthermore, f is supposed to satisfy that for any A > 0 and any compact set K ⊂ �, there
exists R = R(A, K) > 0 such that

f (λ1, . . . ,λn–1,λn + R) ≥ A, for all λ ∈ K (1.9)

and

f (Rλ) ≥ A, for all λ ∈ K . (1.10)

Following [3], we assume that there exists a large number R > 0 such that at each x ∈ ∂M,

(
κ1(x), . . . ,κn–1(x), R

) ∈ �, (1.11)

where (κ1(x), . . . ,κn–1(x)) are the principal curvatures of ∂M at x (relative to the interior
normal). Since the function ψ may depend on ∇u, we assume there exists an admissible
subsolution u ∈ C2(M) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

f (λ(∇2u + χ )) ≥ ψ(x, u,∇u) in M,

u = ϕ on ∂M,

u ≤ φ in M.

(1.12)
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As in [6], the function ψ(x, z, p) ∈ C2(T∗M ×R) > 0 satisfies

ψ(x, z, p) is convex in p, (1.13)

sup
(x,z,p)∈T∗M×R

–ψz(x, z, p)
ψ(x, z, p)

< ∞ (1.14)

and the growth condition

p · ∇pψ(x, z, p) ≤ ψ̄(x, z)
(
1 + |p|γ1

)
,

p · ∇xψ(x, z, p) + |p|2ψz(x, z, p) ≥ ψ̄(x, z)
(
1 + |p|γ2

)
,

(1.15)

when |p| is sufficiently large, where γ1 < 2, γ2 < 4 are positive constants and ψ̄ is a positive-
continuous function of (x, z) ∈ � ×R.

Definition 1.1 A function u ∈ C2(M) is called admissible if λ(∇2u + χ ) ∈ � in �.

Our main results are stated as follows.

Theorem 1.2 Suppose f satisfies (1.4)–(1.11) and there exists an admissible subsolution
u ∈ C2(M) satisfying (1.12). Assume that ψ > 0 satisfies (1.13)–(1.15), ϕ ∈ C4(∂M), φ is
admissible in M and φ = ϕ on ∂M. Then, there exists an admissible solution u ∈ C1,1(M) of
(1.1) and (1.2).

Furthermore, u ∈ C3,α(E) for any α ∈ (0, 1) and the Hessian equation (1.3) holds in E,
where E := {x ∈ M : u(x) < φ(x)}.

Note that in Theorem 1.2, the function φ is assumed to be admissible. Under the homo-
geneous boundary condition, i.e., ϕ ≡ 0, and that χ ≡ 0, we can remove this assumption.

Theorem 1.3 Assume that χ ≡ 0 in (1.1). Suppose (1.4)–(1.11) and there exists an ad-
missible subsolution u ∈ C2(M) satisfying (1.12) with ϕ ≡ 0. Assume that ψ > 0 satis-
fies (1.13)–(1.15), ϕ ≡ 0 and φ ≡ 0 on ∂M. Then, there exists an admissible solution
u ∈ C1,1(M) of (1.1) and (1.2) and u ∈ C3,α(E) for any α ∈ (0, 1) and satisfies (1.3) in E.

Typical examples are given by f = σ 1/k
k , 1 ≤ k ≤ n, defined on the cone �k = {λ ∈ R

n :
σj(λ) > 0, j = 1, . . . , k}, where σk(λ) are the elementary symmetric functions

σk(λ) =
∑

i1<···<ik

λi1 . . .λik , k = 1, . . . , n. (1.16)

Other interesting examples satisfying (1.4)–(1.11) (see [13]) are

f (λ) = σ 1/k
k (μ1, . . . ,μn), (1.17)

defined on the cone � = {λ ∈R
n : (μ1, . . . ,μn) ∈ �k}, where μi are defined by

μi =
∑

j �=i

λj, i = 1, . . . , n.
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It is an interesting question whether we can establish the a priori second-order estimates
without the condition (1.13). We note that such a condition is necessary in general (see
[11]). It is a longstanding problem of the global C2 estimates for the k-Hessian equation

σk
(
λ
(
D2u

))
= ψ(x, u, Du)

dropping the condition (1.13). The cases k = 2, k = n – 1, and k = n – 2 were resolved
by Guan–Ren–Wang [11], Ren–Wang [20], and Ren–Wang [21], respectively. It is still
open for general k. Chu–Jiao [5] considered the case (1.17) and established the curvature
estimates without the condition (1.13). Jiao–Liu [13] studied the corresponding Dirichlet
problem. It is of interest to ask if the above methods can be applied to the related obstacle
problem (1.1).

Given a function v : � → R, denote Mv := {(x, v(x)) : x ∈ �} to be the graphic hypersur-
face defined by v. Then, the Gauss curvature of Mv is

K(Mv) =
det D2v

(1 + |Dv|2)(n+2)/2 .

A classic problem in differential geometry is to find a convex graphic hypersurface with
prescribed Gauss curvature K that is equivalent to solving a Monge–Ampère equation

det D2u = K(x, u)
(
1 + |Du|2)(n+2)/2. (1.18)

It is also of interest to find hypersurfaces having prescribed Gauss curvature under an
obstacle. Such a problem is also equivalent to an obstacle for Monge–Ampère equations.
Xiong–Bao [25] proved the C1,1 regularity under the condition that the obstacle function
is strictly larger than the boundary data. A similar question can be asked if the Gauss
curvature is replaced with other kinds of curvatures, such as the mean curvature [4]. The
following two theorems can be regarded as applications of Theorem 1.2 and Theorem 1.3.

Theorem 1.4 Let � be a uniformly convex bounded domain in R
n. Given a function

K(x, z) ∈ C2(� ×R) > 0 satisfying that there exists a positive constant A such that

Kz(x, z) ≥ –AK(x, z), for all (x, z) ∈ � ×R (1.19)

and a piece of uniformly convex graphic hypersurface Mφ , suppose there exists a uniformly
convex graphic hypersurface Mu under Mφ satisfying the Gauss curvature of Mu,

K(Mu)
(
x, u(x)

) ≥ K
(
x, u(x)

)
for x ∈ � (1.20)

and u = φ on ∂�. Then, there exists a C1,1 graphic hypersurface Mu under Mφ with the same
boundary such that K(Mu) ≥ K(x, u) in � and K(Mu) = K(x, u) in E := {x ∈ � : u(x) < φ(x)}.

Theorem 1.5 Suppose K(x, z) ∈ C2(�×R) > 0 satisfying (1.19). The graphic hypersurface
Mφ is of constant boundary, suppose there exist a uniformly convex graphic hypersurface
Mu under Mφ satisfying (1.20) and u = φ on ∂�. Then, there exists a C1,1 graphic hyper-
surface Mu under Mφ with the same constant boundary such that K(Mu) ≥ K(x, u) in �

and K(Mu) = K(x, u) in E.
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Other applications of the obstacle problem for Hessian equations can be found in [2],
[4], [15], [19], [22], and so on. The reader is referred to [1] for more applications and back-
ground of (1.1).

Similar problems were studied in [14], [1], and [12] under various conditions. In this
work, we are mainly concerned with the boundary estimates for second-order estimates.
The main difficulty is from the existence of a disturbance term βε in (2.1). It is also why
the conditions (1.9)–(1.11) are needed.

The obstacle problem for Monge–Ampère equations (when f = σ 1/n
n ) was studied exten-

sively, see [2], [16], [17], [22], and [25] for examples. For the obstacle problem of Hessian
equations on Riemannian manifolds, the reader is referred to [1], [12], and [14]. We re-
fer the reader to [6], [8], [10], [18], and [24] for the study of Hessian-type equations on
Riemannian manifolds.

In Sect. 2, we provide the general idea to prove Theorems 1.2 and 1.3 for which we in-
troduce an approximating problem using a penalization technique. Section 3 is devoted to
the boundary estimates for second-order estimates for the solution of the approximating
problem.

2 Preliminaries
As in [14] and [25], we consider the singular perturbation problem

⎧
⎨

⎩
f (λ(∇2u + χ ) = ψ(x, u,∇u) + βε(u – φ) in M,

u = ϕ on ∂M,
(2.1)

where the penalty function βε is defined by

βε(z) =

⎧
⎨

⎩
0, z ≤ 0,

z3/ε, z > 0,

for ε ∈ (0, 1). Obviously, βε ∈ C2(R) satisfies

βε ,β ′
ε ,β ′′

ε ≥ 0;

βε(z) → ∞ as ε → 0+, whenever z > 0;

βε(z) = 0, whenever z ≤ 0.

(2.2)

Since u ≤ φ, u is also a subsolution to (2.1). Let uε ∈ C3(M) ∩ C4(M) be an admissible
solution of (2.1) with uε ≥ u. We shall show that there exists a constant C independent of
ε such that

‖uε‖C2(M) ≤ C (2.3)

for small ε.
The C0 estimates can be easily derived from the fact that � ⊂ �1 and u ≥ u. The follow-

ing lemma is crucial for our estimates, and its proof can be found in [1] (see [25] for the
case of the Monge–Ampère equation). For completeness, we provide a proof here.
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Lemma 2.1 There exists a positive constant c2 independent of ε such that

0 ≤ βε(uε – φ) ≤ c2 on M. (2.4)

Proof We consider the maximal value of uε – φ on M. We may assume it is achieved at an
interior point x0 ∈ M since uε – φ = ϕ – φ = 0 on ∂M. We have, at x0,

∇(uε – φ) = 0 (2.5)

and

∇2uε ≤ ∇2φ. (2.6)

It follows that, at x0,

0 ≤ βε(uε – φ) = f
(
λ
(∇2uε + χ

))
– ψ(x, u,∇φ)

≤ f
(
λ
(∇2φ + χ

))
– ψ(x, u,∇φ) ≤ c2

for some positive constant c2 depending only on ‖φ‖C2(M) and (2.4) holds. �

After establishing the estimate (2.3), we can find a subsequence uεk and a function u ∈
C1,1(�) such that

uεk → u in C1,α(M̄),∀α ∈ (0, 1), as εk → 0.

Then, we see u is an admissible solution of (1.1) and (1.2) as in [25]. The fact that u ∈
C3,α(E) and satisfies (1.3) in E follows from the Evans–Krylov theory.

The C1 bound under conditions (1.8) and (1.15) was derived in [14]. It was also shown
in [14] how to establish the estimates for second-order derivatives from their bound on
the boundary. This paper will focus on the estimates for second-order estimates on the
boundary.

Let u ∈ C4(M) be an admissible function. For simplicity we shall use the notation U =
χ + ∇2u and, under an orthonormal local frame e1, . . . , en,

Uij ≡ U(ei, ej) = χij + ∇iju,

∇kUij ≡ ∇U(ei, ej, ek) = ∇kχij + ∇kiju. (2.7)

Let F be the function defined by

F(h) = f
(
λ(h)

)

for a (0, 2)-tensor h on M. Equation (2.1) is therefore written in the form

F(U) = ψ(x, u,∇u) + βε(u – φ). (2.8)
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Following the literature we denote throughout this paper

Fij =
∂F
∂hij

(U), Fij,kl =
∂2F

∂hij∂hkl
(U)

under an orthonormal local frame e1, . . . , en. The matrix {Fij} has eigenvalues f1, . . . , fn and
is positive-definite by assumption (1.4), while (1.5) implies that F is a concave function of
Uij (see [3]). Moreover, when Uij is diagonal so is {Fij}. We can derive from (1.4)–(1.6) that

∑

i

fi(λ)λi ≥ 0 for any λ ∈ �. (2.9)

We need the following lemmas that were proved in [7].

Lemma 2.2 Let A = {Aij} ∈ Sn×n with λ(A) = (λ1, . . . ,λn) ∈ � and Fij = ∂F(A)
∂Aij

with eigenval-
ues f1, . . . , fn, where Sn×n is the space of all symmetric matrices. There exists an index r such
that

∑

β≤n–1

FijAiβAβj ≥ 1
2

∑

i�=r

fiλ
2
i . (2.10)

Lemma 2.3 For any index r and ε > 0, there exists a positive constant C depending only
on n such that

∑
fi|λi| ≤ ε

∑

i�=r

fiλ
2
i +

C
ε

∑
fi + Q(r), (2.11)

where Q(r) = f (λ) – f (1, . . . , 1) if λr ≥ 0 and Q(r) = 0 if λr < 0.

In the following section, we will drop the subscript ε for convenience.

3 Estimates for second-order derivatives on the boundary
In this section, we establish the boundary estimates for second-order derivatives of the
solution of (2.1). Fix an arbitrary point x0 ∈ ∂M. We choose smooth orthonormal local
frames e1, . . . , en around x0 such that when restricted to ∂M, en is normal to ∂M.

Let ρ(x) denote the distance from x to x0,

ρ(x) ≡ distMn (x, x0),

and Mδ = {x ∈ M : ρ(x) < δ}. Since ∂M is smooth we may assume the distance function to
∂M

d(x) ≡ dist(x, ∂M)

is smooth in Mδ0 for fixed δ0 > 0 sufficiently small (depending only on the curvature of M
and the principal curvatures of ∂M). Since ∇ijρ

2(x0) = 2δij, we may assume ρ is smooth in
Mδ0 and

{δij} ≤ {∇ijρ
2} ≤ 3{δij} in Mδ0 . (3.1)



Liu and Wang Journal of Inequalities and Applications         (2023) 2023:17 Page 8 of 13

Since u – u = 0 on ∂M we have

∇αβ (u – u) = –∇n(u – u)Π (eα , eβ ), ∀1 ≤ α,β < n on ∂M, (3.2)

where Π denotes the second fundamental form of ∂M. Therefore,

∣∣∇αβu(x0)
∣∣ ≤ C, for 1 ≤ α,β ≤ n – 1. (3.3)

Next, we establish the estimate

∣∣∇αnu(x0)
∣∣ ≤ C for α ≤ n – 1. (3.4)

Define the linear operator L by

Lw := Fij∇ijw – ψpk ∇kw – β ′
ε(u – φ)w, for w ∈ C2(M).

We first need to construct a barrier as Lemma 6.2 of [6].

Lemma 3.1 Let

v := u – u + td – Nd2.

Then, there exist positive constants t, δ sufficiently small and N sufficiently large such that

Lv ≤ –ε0

(
1 +

∑

i

Fii
)

(3.5)

and

v ≥ 0 (3.6)

in Mδ for some uniform constat ε0 > 0.

Proof First, there exists a positive constant θ0 such that u –θ0ρ
2 is also admissible. By (2.4)

and the concavity of F , we have

Fij∇ij(u – u) ≤ –θ0
∑

i

Fii – F
(∇2u – θ0g + χ

)
+ F

(∇2u + χ
)

= –θ0
∑

i

Fii – F
(∇2u – θ0g + χ

)
+ ψ + βε

≤ –θ0
∑

i

Fii + C,

where the constant C depends on ‖u‖C1(M) and the constant c2 in (2.4). Recall that fi =
∂f
∂λi

, where λ = λ(∇2u + χ ) for i = 1, . . . , n. Without loss of generality, we may assume fn =
mini{fi}. Next, since ∇d ≡ 1 on the boundary, we have

Fij∇ij
(
d2) ≥ fn + 2dFij∇ijd ≥ fn – Cδ

∑

i

Fii in Mδ ,
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for δ sufficiently small. It follows that

Lv + βεv ≤ –θ0
∑

i

Fii – Nfn + C(δN + t)
(

1 +
∑

i

Fii
)

in Mδ . By (1.7), we have

θ0

4
∑

i

Fii + Nfn ≥ nθ0

4
(Nf1 · · · · · fn)1/n ≥ nc0θ0N1/n

4
.

Thus, we can choose N sufficiently large and t, δ sufficiently small such that

Lv + βεv ≤ –
θ0

2
∑

i

Fii – c3N1/n.

We may further make δ sufficiently small such that v ≥ 0 in Mδ . Since β ′
ε ≥ 0 we obtain

(3.5). �

From formula (4.7) in [7] and differentiating the equation (2.1), we have

∣∣L∇k(u – φ)
∣∣ ≤ C

(
1 +

∑

i

Fii +
∑

i

fi|λi|
)

, for 1 ≤ k ≤ n, (3.7)

where C is a positive constant depending only on ‖u‖C1(M), ‖φ‖C3(M) and ‖ψ‖C1 . Similar
to formula (4.9) in [7], by Lemma 2.2, we find that

L
( ∑

β≤n–1

(∇β (u – φ)
)2

)
≥

∑

β≤n–1

FijUβiUβj – C
(

1 +
∑

i

Fii +
∑

i

fi|λi|
)

+ β ′
ε

∑

β≤n–1

(∇β (u – φ)
)2

≥ 1
2

∑

i�=r

fiλ
2
i – C

(
1 +

∑

i

Fii +
∑

i

fi|λi|
)

(3.8)

for some index 1 ≤ r ≤ n. Let

Ψ = A1v + A2ρ
2 – A3

∑

β≤n–1

∣∣∇β (u – φ)
∣∣2 (3.9)

as in [7]. Combining (2.11), (3.7), and (3.8), we can choose A1 � A2 � A3 � 1 such that

L
(
Ψ ± ∇α(u – φ)

) ≤ 0 in Mδ

and

Ψ ± ∇α(u – φ) ≥ 0 on ∂Mδ

for any index 1 ≤ α ≤ n – 1. Then, by the maximum principle, we have

Ψ ± ∇α(u – φ) ≥ 0 on Mδ .
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Since

Ψ ± ∇α(u – φ) = 0 at x0

we obtain (3.4).
Since �u + tr(χ ) > 0 in M, it suffices to establish the upper bound

∇nnu(x0) ≤ C. (3.10)

We first suppose φ is admissible in M. As in [7], following an idea of Trudinger [23] we
prove that there are uniform constants c0, R0 such that for all R > R0, (λ′[{Uαβ(x0)}], R) ∈ �

and

f
(
λ′[{Uαβ (x0)

}]
, R

) ≥ ψ[u](x0) + βε(x0) + c0, (3.11)

which implies (3.10) by Lemma 1.2 in [3], where λ′[{Uαβ}] = (λ′
1, . . . ,λ′

n–1) denote the eigen-
values of the (n – 1) × (n – 1) matrix {Uαβ} (1 ≤ α,β ≤ n – 1). Denote

m̃R := min
x∈∂M

f
(
λ′[{Uαβ (x)

}]
, R

)
.

Suppose m̃R is achieved at a point x0 ∈ ∂M. Choose local orthonormal frames e1, e2, . . . , en

around x0 as before and assume ∇nnu(x0) ≥ ∇nnφ(x0). Let �ij := ∇ijφ + χij and

c̃R := min
x∈Mδ0

f
(
λ′[{�αβ (x)

}]
, R

)

for δ0 sufficiently small such that e1, . . . , en are well defined in Mδ0 . By (1.9) and the fact
that φ is admissible, we see that

lim
R→+∞ c̃R = +∞. (3.12)

We wish to show m̃R → +∞ as R → +∞. Without loss of generality we assume m̃R < c̃R/2
(otherwise we are done by (3.12)).

For a symmetric (n – 1) × (n – 1) matrix {rαβ} such that (λ′[{rαβ}], R) ∈ �, define

F̃[rαβ ] := f
(
λ′[{rαβ}], R

)
.

Note that F̃ is concave by (1.5). Let

F̃αβ
0 =

∂F̃
∂rαβ

[
Uαβ (x0)

]
.

We find

F̃αβ
0 Uαβ – F̃αβ

0 Uαβ (x0) ≥ F̃[Uαβ ] – m̃R ≥ 0 on ∂M near x0. (3.13)
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By (3.2) we have on ∂M near x0,

Uαβ = �αβ – ∇n(u – φ)σαβ , (3.14)

where σαβ = 〈∇αeβ , en〉; note that σαβ = Π (eα , eβ ) on ∂M. Define

Q = –η∇n(u – φ) + F̃αβ
0 �αβ – F̃αβ

0 Uαβ (x0),

where η = F̃αβ
0 σαβ . From (3.13) and (3.14) we see that Q(x0) = 0 and Q ≥ 0 on ∂M near x0.

Furthermore, we have

Q ≥ –η∇n(u – φ) + F̃[�αβ ] – F̃
[
Uαβ (x0)

]

≥ –η∇n(u – φ) + c̃R – m̃R

≥ –η∇n(u – φ) +
c̃R

2
in Mδ0 .

(3.15)

By (3.7) and (3.15), we have

LQ ≤ CF
(

1 +
∑

Fii +
∑

fi|λi|
)

–
c̃R

2
β ′

ε

≤ CF
(

1 +
∑

Fii +
∑

fi|λi|
)

,
(3.16)

where

F :=
∑

α≤n–1

F̃αα
0 .

Recall that � is defined in (3.9). Choosing A1 � A2 � A3 � 1 as before, we derive
⎧
⎨

⎩
L(FΨ + Q) ≤ 0 in Mδ ,

FΨ + Q ≥ 0 on ∂Mδ .
(3.17)

By the maximum principle, FΨ + Q ≥ 0 in Mδ . Thus,

∇nQ(x0) ≥ –F∇nΨ (x0) ≥ –CF . (3.18)

By (1.11), we see, at x0, (λ′(σαβ),
√

R0) ∈ � for some R0 sufficiently large. Thus, there exists
a uniform constant ε0 > 0 such that (λ′(σαβ – ε0δαβ ),

√
R) ∈ � for all R ≥ R0. From the

concavity of F̃ and (1.10) we find, at x0,

√
RF̃αβ

0 σαβ =
√

RF̃αβ
0 (σαβ – ε0δαβ ) – F̃αβ

0 Uαβ (x0) + F̃αβ
0 Uαβ (x0) +

√
Rε0F

≥ F̃
[√

R(σαβ – ε0δαβ )
]

– F̃
[
Uαβ(x0)

]
+ F̃αβ

0 Uαβ (x0) +
√

Rε0F

≥ f
(√

R
(
λ′(σαβ – ε0δαβ ),

√
R
))

– F̃
[
Uαβ (x0)

]
+

√
Rε0F – CF

≥ f
(√

R
(
λ′(σαβ – ε0δαβ ),

√
R0

))
– m̃R +

√
R

2
ε0F

≥ C(R) – m̃R +
√

R
2

ε0F ,
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provided R is sufficiently large, where limR→+∞ C(R) = +∞. We may assume m̃R ≤ C(R)
for otherwise we are done. It follows that, at x0,

η = F̃αβ
0 σαβ ≥ ε0

2
F . (3.19)

Combining (3.18) and (3.19) we obtain

∇nnu(x0) ≤ C.

We have established an a priori upper bound for all eigenvalues of {Uij(x0)}. Conse-
quently, λ[{Uij(x0)}] is contained in a compact subset of � by (1.6), and therefore

lim
R→+∞ m̃R = +∞

by (1.9). This proves (3.11) and the proof of (3.10) is complete.
We now consider the case χ ≡ 0 and ϕ ≡ 0 on ∂M to prove Theorem 1.3. By [3] we have

�u ≥ δ0 > 0 (3.20)

for some positive constant δ0 depending only on ψ0 = infψ > 0. Let u0 be defined by the
equation

�u0 = δ0 in M

with u0 = 0 on ∂M. By the maximum principle and Hopf ’s lemma, we see u0 < 0 in M and
(u0)ν < 0 on ∂M, where ν is the unit interior normal to ∂M. Since ∂M is compact, there
exists a uniform constant γ1 > 0 such that (u0)ν ≤ –γ1 on ∂M. By (3.20) and the maximum
principle, we find that

u ≤ u0 in M and u = u0 = 0 on ∂M.

It follows that

∇nu(x0) ≤ ∇n(u0)(x0) ≤ –γ1. (3.21)

We find, at x0 ∈ ∂M,

∇αβu = –∇nuΠ (eα , eβ ), for 1 ≤ α,β ≤ n – 1.

Since u = 0, we have, at x0,

∇αβu = –∇nuΠ (eα , eβ ), for 1 ≤ α,β ≤ n – 1.

Therefore,

∇αβu =
∇nu
∇nu

∇αβu.



Liu and Wang Journal of Inequalities and Applications         (2023) 2023:17 Page 13 of 13

By (3.21), we then find the eigenvalues of the (n – 1) × (n – 1) matrix {∇αβu(x0)}α,β≤n–1

λ′{∇αβu(x0)} belong to a compact subset of �′, where �′ denotes the projection of � to
λ′ = (λ1, . . . ,λn–1) of �. By (1.9) and Lemma 1.2 of [3], we can prove (3.10).

Acknowledgements
We thank Associate Professor Heming Jiao for the idea and helpful comments and suggestions.

Funding
No funding.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author contribution
JL conceptualized the idea and wrote the first draft. YW reviewed and edited the manuscript. All authors read and
approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 November 2021 Accepted: 16 January 2023

References
1. Bao, G.J., Dong, W.S., Jiao, H.M.: Regularity for an obstacle problem of Hessian equations on Riemannian manifolds.

J. Differ. Equ. 258, 696–716 (2015)
2. Caffarelli, L.A., McCann, R.: Free boundaries in optimal transport and Monge–Ampère obstacle problems. Ann. Math.

171, 673–730 (2010)
3. Caffarelli, L.A., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations III:

functions of eigenvalues of the Hessians. Acta Math. 155, 261–301 (1985)
4. Gerhardt, C.: Hypersurfaces of prescribed mean curvature over obstacles. Math. Z. 133, 169–185 (1973)
5. Chu, J.C., Jiao, H.M.: Curvature estimates for a class of Hessian type equations. Calc. Var. Partial Differ. Equ. 60, 90 (2021)
6. Guan, B.: The Dirichlet problem for Hessian equations on Riemannian manifolds. Calc. Var. Partial Differ. Equ. 8, 45–69

(1999)
7. Guan, B.: Second order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds. Duke

Math. J. 163, 1491–1524 (2014)
8. Guan, B.: The Dirichlet problem for fully nonlinear elliptic equations on Riemannian manifolds. arXiv:1403.2133
9. Guan, B., Jiao, H.M.: Second order estimates for Hessian type fully nonlinear elliptic equations on Riemannian

manifolds. Calc. Var. Partial Differ. Equ. 54(3), 2693–2712 (2015)
10. Guan, B., Jiao, H.M.: The Dirichlet problem for Hessian type elliptic equations on Riemannian manifolds. Discrete

Contin. Dyn. Syst., Ser. A 36, 701–714 (2016)
11. Guan, P.F., Ren, C.Y., Wang, Z.Z.: Global C2 estimates for convex solutions of curvature equations. Commun. Pure Appl.

Math. 68, 1287–1325 (2015)
12. Jiao, H.M.: C1,1 regularity for an obstacle problem of Hessian equations on Riemannian manifolds. Proc. Am. Math.

Soc. 144, 3441–3453 (2016)
13. Jiao, H.M., Liu, J.X.: On a class of Hessian type equations on Riemannian manifolds. Proc. Am. Math. Soc.

arXiv:2202.05067. https://doi.org/10.1090/proc/15508
14. Jiao, H.M., Wang, Y.: The obstacle problem for Hessian equations on Riemannian manifolds. Nonlinear Anal. 95,

543–552 (2014)
15. Kinderlehrer, D.: How a minimal surface leaves an obstacle. Acta Math. 130, 221–242 (1973)
16. Lee, K.: The obstacle problem for Monge–Ampère equation. Commun. Partial Differ. Equ. 26, 33–42 (2001)
17. Lee, K., Lee, T., Park, J.: The obstacle problem for the Monge–Ampère equation with the lower obstacle. Nonlinear

Anal. 210, 112374 (2021)
18. Li, Y.Y.: Some existence results of fully nonlinear elliptic equations of Monge–Ampere type. Commun. Pure Appl.

Math. 43, 233–271 (1990)
19. Liu, J.K., Zhou, B.: An obstacle problem for a class of Monge–Ampère type functionals. J. Differ. Equ. 254, 1306–1325

(2013)
20. Ren, C., Wang, Z.: On the curvature estimates for Hessian equation. Am. J. Math. 141(5), 1281–1315 (2019)
21. Ren, C., Wang, Z.: The global curvature estimate for the n – 2 Hessian equation. arXiv:2002.08702. Preprint
22. Savin, O.: The obstacle problem for Monge Ampere equation. Calc. Var. Partial Differ. Equ. 22, 303–320 (2005)
23. Trudinger, N.S.: On the Dirichlet problem for Hessian equations. Acta Math. 175, 151–164 (1995)
24. Urbas, J.: Hessian equations on compact Riemannian manifolds. In: Nonlinear Problems in Mathematical Physics and

Related Topics II, pp. 367–377. Kluwer/Plenum, New York (2002)
25. Xiong, J.G., Bao, J.G.: The obstacle problem for Monge–Ampère type equations in non-convex domains. Commun.

Pure Appl. Anal. 10(1), 59–68 (2011)

http://arxiv.org/abs/arXiv:1403.2133
http://arxiv.org/abs/arXiv:2202.05067
https://doi.org/10.1090/proc/15508
http://arxiv.org/abs/arXiv:2002.08702

	On a class of obstacle problem for Hessian equations on Riemannian manifolds
	Abstract
	Keywords

	Introduction
	Preliminaries
	Estimates for second-order derivatives on the boundary
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author contribution
	Publisher's Note
	References


