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Abstract
In this paper, we derive some upper bounds for the dominant eigenvalue of a matrix
with some negative entries, which possess the Perron–Frobenius property. Numerical
examples are given to illustrate the effectiveness of our new upper bounds.
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1 Introduction
Let R be the set of all real numbers and R

n×n be the set of n × n square matrices. If
A ∈ R

n×n is positive, Perron proved that A has a simple eigenvalue equal to its spectral
radius (called the dominant eigenvalue) and that its corresponding eigenvector is also pos-
itive [1]. This famous result was extended to nonnegative irreducible matrices by Frobe-
nius in [2]. Based on Geršhgorin’s theorem [3–7], the following classical upper bound for
the dominant eigenvalue ρ(A) of a nonnegative matrix A = (aij) ∈ R

n×n was presented as
follows [1]:

ρ(A) ≤ max
i∈N

Ri(A),

where N = {1, 2, . . . , n}, Ri(A) =
∑

j∈N aij. Based on Brauer’s theorem [3, 4, 7], the authors
derived the following improved upper bound [8]:

ρ(A) ≤ 1
2

max
i,j∈N ,j �=i

(
aii + ajj +

√
(aii – ajj)2 + 4R′

i(A)R′
j(A)

)
,

where R′
i(A) = Ri(A) – aii.

Consider the dynamics associated with the linear differential system

ẋ(t) = Ax(t), A ∈R
n×n, x(0) = x0 ∈R

n, t ≥ 0,
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where the coefficient matrix A is essentially nonnegative, i.e., it has nonnegative offdiago-
nal entries. Such systems arise frequently in applications in engineering and mathematical
biology among others [9]. In 2006, Noutsos extended the Perron–Frobenius theory of non-
negative matrices to the class of matrices with some negative entries, which possess the
Perron–Frobenius property, the relationships between eventually positive matrices and
the class of matrices with the Perron–Frobenius property are also discussed [10]. First, we
give the definition of PF matrices [10].

Definition 1 A matrix A = (aij) ∈ R
n×n is called a PF matrix, if its dominant eigenvalue

ρ(A) is positive and the corresponding eigenvector x is nonnegative.

The author also presented the following upper bound for the dominant eigenvalue ρ(A)
of a matrix with the Perron–Frobenius property [10].

Theorem 1 If A = (aij) ∈R
n×n is a PF matrix, then

ρ(A) ≤ ω = max
i∈N

Ri
(
AT)

.

There exists an extensive literature on bounds for the dominant eigenvalue ρ(A) of a
nonnegative matrix, we refer to [1, 8, 11–13] and the references therein. In this paper, we
obtain some sharper new upper bounds for the dominant eigenvalue ρ(A) of a PF matrix
with some negative entries, these bounds are only dependent on the entries of a tensor,
which are easy to check. Two numerical examples are given to show the efficiency of the
proposed results in Sect. 3.

2 Main results
For any i ∈ N , we let

r+
i (A) =

∑

i∈N ,j �=i

[aij]+,

r–
i (A) =

∑

i∈N ,j �=i

[aij]–,

where [aij]+ is the set of nonnegative entries in the ith row, [aij]– is the set of negative
entries in the ith row, obviously, R′

i(A) = r+
i (A) + r–

i (A). We give the main results as fol-
lows.

Theorem 2 If A = (aij) ∈R
n×n possesses the Perron–Frobenius property, then

ρ(A) ≤ ω1 = max
i∈N

(
aii + r+

i (A)
)
.

Proof Let ρ(A) be the dominant eigenvalue of A with the corresponding eigenvector x,
then, 0 ≤ x �= 0. Let |xp| = maxi∈N |xi|, then, the pth equation of

Ax = ρ(A)x
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is

ρ(A)xp = appxp +
∑

p∈N ,j �=p

apjxj

= appxp +
∑

p∈N ,j �=p

[apj]+xj +
∑

p∈N ,j �=p

[apj]–xj

≤ appxp +
∑

p∈N ,j �=p

[apj]+xj

≤ appxp +
∑

p∈N ,j �=p

[apj]+xp,

which implies that

ρ(A) ≤ app + r+
p (A). �

Theorem 3 If A = (aij) ∈R
n×n possesses the Perron–Frobenius property, then

ρ(A) ≤ ω2 =
1
2

max
i,j∈N ,j �=i

(
aii + ajj +

√
(aii – ajj)2 + 4r+

i (A)r+
j (A)

)
.

Proof Let ρ(A) be the dominant eigenvalue of A with the corresponding eigenvector x,
then, 0 ≤ x �= 0. Let |xp| = maxi∈N |xi|, |xq| = maxi∈N ,i�=p |xi|. Then, by the pth equation of

Ax = ρ(A)x,

we have

ρ(A)xp – appxp =
∑

p∈N ,j �=p

apjxj

=
∑

p∈N ,j �=p

[apj]+xj +
∑

p∈N ,j �=p

[apj]–xj

≤
∑

p∈N ,j �=p

[apj]+xj

≤
∑

p∈N ,j �=p

[apj]+xq,

which implies that

(
ρ(A) – app

)
xp ≤ r+

p (A)xq. (1)

Consider the qth equation of Ax = ρ(A)x, we have

ρ(A)xq – aqqxq =
∑

q∈N ,j �=q

aqjxj

=
∑

q∈N ,j �=q

[aqj]+xj +
∑

q∈N ,j �=q

[aqj]–xj
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≤
∑

q∈N ,j �=q

[aqj]+xj

≤
∑

q∈N ,j �=q

[aqj]+xp,

which implies that

(
ρ(A) – aqq

)
xq ≤ r+

q (A)xp. (2)

If ρ(A) – aqq ≤ 0 and ρ(A) – app ≤ 0, then,

ρ(A) ≤ aqq, ρ(A) ≤ app.

Otherwise, multiplying inequalities (1) with (2), we obtain

(
ρ(A) – app

)(
ρ(A) – aqq

) ≤ r+
p (A)r+

q (A), (3)

therefore,

ρ(A) ≤ 1
2

(
app + aqq +

√
(app – aqq)2 + 4r+

p (A)r+
q (A)

)
.

Furthermore,

aqq – app ≤
√

(app – aqq)2 + 4r+
p (A)r+

q (A),

app – aqq ≤
√

(app – aqq)2 + 4r+
p (A)r+

q (A).

Then, we have

aqq ≤ 1
2

(
app + aqq +

√
(app – aqq)2 + 4r+

p (A)r+
q (A)

)

and

app ≤ 1
2

(
app + aqq +

√
(app – aqq)2 + 4r+

p (A)r+
q (A)

)
,

which means that

ρ(A) ≤ 1
2

(
app + aqq +

√
(app – aqq)2 + 4r+

p (A)r+
q (A)

)

always holds. �

By breaking N into disjoint subsets S and S̄, where S̄ is the complement of S in N , and
let rS+

i (A) =
∑

j∈S\{i}[aij]+, rS̄+
i (A) =

∑
j∈S̄\{i}[aij]+, we give a new S-type upper bound for the

dominant eigenvalue ρ(A) of a matrix with the Perron–Frobenius property.
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Theorem 4 If A = (aij) ∈R
n×n possesses the Perron–Frobenius property, then

ρ(A) ≤ ω3 =
1
2

min
S⊆N

max
i∈S,j∈S̄

(
aii + rS+

i (A) + ajj + rS̄+
j (A) +

√
ε
)
,

where ε = (aii + rS+
i (A) – ajj – rS̄+

j (A))2 + 4rS̄+
i (A)rS+

j (A).

Proof Let ρ(A) be the dominant eigenvalue of A with the corresponding eigenvector x,
then, 0 ≤ x �= 0. Let |xp| = maxi∈S |xi|, |xq| = maxi∈S̄ |xi|. Then, by the pth equation of

Ax = ρ(A)x,

we have

ρ(A)xp – appxp

=
∑

j∈S,j �=p

apjxj +
∑

j∈S̄

apjxj

≤
∑

j∈S,j �=p

[apj]+xj +
∑

j∈S̄

[apj]+xj

≤
∑

j∈S,j �=p

[apj]+xp +
∑

j∈S̄

[apj]+xq,

which implies that

(
ρ(A) – app – rS+

p (A)
)
xp ≤ rS̄+

p (A)xq. (4)

Consider the qth equation of Ax = ρ(A)x, similar to the proof of Theorem 3, we have

(
ρ(A) – aqq – rS̄+

q (A)
)
xq ≤ rS+

q (A)xp. (5)

If ρ(A) – app – rS+
p (A) ≤ 0 and ρ(A) – aqq – rS̄+

q (A) ≤ 0, then

ρ(A) ≤ app + rS+
p (A),ρ(A) ≤ aqq + rS̄+

q (A).

Otherwise, multiplying inequalities (4) with (5), we obtain

(
ρ(A) – app – rS+

p (A)
)(

ρ(A) – aqq – rS̄+
q (A)

) ≤ rS̄+
p (A)rS+

q (A), (6)

therefore, let ε = (app + rS+
p (A) – aqq – rS̄+

q (A))2 + 4rS̄+
p (A)rS+

q (A),

ρ(A) ≤ 1
2
(
app + rS+

p (A) + aqq + rS̄+
q (A) +

√
ε
)
.

Furthermore,

app + rS+
p (A) –

(
aqq + rS̄+

q (A)
) ≤ √

ε,
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aqq + rS̄+
q (A) –

(
app + rS+

p (A)
) ≤ √

ε.

Then, we have

app + rS+
p (A) ≤ 1

2
(
app + rS+

p (A) + aqq + rS̄+
q (A) +

√
ε
)

and

aqq + rS̄+
q (A) ≤ 1

2
(
app + rS+

p (A) + aqq + rS̄+
q (A) +

√
ε
)
,

which means that

ρ(A) ≤ 1
2
(
app + rS+

p (A) + aqq + rS̄+
q (A) +

√
ε
)

always holds. Then, the proof is completed by the arbitrary of S. �

The relationships between ω1, ω2, and ω3 are discussed as follows.

Theorem 5 If A = (aij) ∈R
n×n possesses the Perron–Frobenius property, then

ω3 ≤ ω2 ≤ ω1.

Proof First, we prove ω2 ≤ ω1. If ρ(A) ≤ ω2, from the proof of Theorem 3, we have

(
ρ(A) – app

)(
ρ(A) – aqq

) ≤ r+
p (A)r+

q (A).

If r+
p (A)r+

q (A) = 0, we obtain

ρ(A) ≤ max{app, aqq} ≤ max
i∈N

{
aii + r+

i (A)
}

,

which implies ρ(A) ≤ ω1. If r+
p (A)r+

q (A) > 0, we obtain

ρ(A) – app

r+
p (A)

ρ(A) – aqq

r+
q (A)

≤ 1,

then,

ρ(A) – app

r+
p (A)

≤ 1,

or

ρ(A) – aqq

r+
q (A)

≤ 1,

which implies ρ(A) ≤ ω1.
Next, we prove ω3 ≤ ω2. If ρ(A) ≤ ω3, from the proof of Theorem 4, we have

(
ρ(A) – app – rS+

p (A)
)(

ρ(A) – aqq – rS̄+
q (A)

) ≤ rS̄+
p (A)rS+

q (A),
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without loss of generality, we assume that xp ≥ xq, from (4), we have

ρ(A) – app ≤ r+
p (A). (7)

Letting S = {p}, we obtain

(
ρ(A) – app

)(
ρ(A) – aqq – rS̄+

q (A)
) ≤ r+

p (A)rS+
q (A),

therefore,

(
ρ(A) – app

)(
ρ(A) – aqq

) ≤ (
ρ(A) – app

)
rS̄+

q (A) + r+
p (A)rS+

q (A)

≤ r+
p (A)rS̄+

q (A) + r+
p (A)rS+

q (A)

= r+
p (A)r+

q (A),

which implies ρ(A) ≤ ω2. �

3 Numerical examples
In this section, in order to show the efficiency of our results, we give some numerical
examples.

Example 3.1 Consider the Example 2.2 in [10]:

A1 =

⎡

⎢
⎣

1 –4 8
1 1 5

–3 1 8

⎤

⎥
⎦ .

Then, A1 possesses the Perron–Frobenius property with the dominant eigenvalue ρ(A1) =
6.868.

Example 3.2 Consider the Example 2.3 in [10]:

A2 =

⎡

⎢
⎣

1 –0.4 0.3
20 1 5
20 1 8

⎤

⎥
⎦ .

Then, A2 possesses the Perron–Frobenius property with the dominant eigenvalue ρ(A2) =
8.753.

The numerical comparison between our results and the result in [10] is given in Table 1.
From Table 1, we reveal that our bounds are tighter than the bound in [10].

Table 1 Numerical comparison

ρ ω ω1 ω2 ω3

A1 6.868 21 9 9 9
A2 8.753 41 29 27.6787 26.6347
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