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1 Introduction

Studies on numerical integration and error bounds in mathematics have an important
place in the literature. Research on inequalities tries to find error bounds for various func-
tion classes such as those of bounded functions, Lipschitz functions, functions of bounded
variation, etc. In addition, researchers obtained error bounds for differentiable, twice dif-
ferentiable, or n-times differentiable mappings. Moreover, many authors have also ob-
tained new bounds by utilizing the concepts of fractional calculus. Nowadays, authors
have focused on inequalities of the trapezoid, midpoint, and Simpson type. Many authors
have contributed to the extension and generalization of these integral inequalities. For in-
stance, Dragomir and Agarwal presented some error estimates for the trapezoidal formula
in [9]. Cerone and Dragomir considered trapezoidal-type rules and established explicit
bounds through the modern theory of inequalities in [4, p. 93]. The authors examined
both Riemann—Stieltjes and Riemann integrals for different states of the boundary. Alo-
mari discussed Lipschitz functions in the context of the generalized trapezoidal inequality
[2]. Dragomir studied functions of bounded variation in the context of the trapezoid for-
mula [8]. Sarikaya and Aktan obtained some new inequalities of Simpson and trapezoid
type for functions whose second derivative in absolute value is convex [27]. In the arti-
cles [28, 32], researchers considered fractional trapezoid-type inequalities. Kirmac1 estab-
lished midpoint-type inequalities for differentiable convex functions [19]. Dragomir pre-
sented obtained results for functions of bounded variation in [7]. Sarikaya et al. obtained
several new inequalities for twice differentiable functions in [29]. Fractional analogues of
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these results [16, 33] have also been discussed. Several mathematicians also established
Simpson-type inequalities for differentiable convex mappings [10], s-convex functions
[30], extended (s, m)-convex mappings [12], bounded functions [6], twice differentiable
convex functions [15, 24, 31], and fractional integrals [5, 14, 17, 20, 22, 23, 25, 26, 34].

A formal definition of a convex function may be stated as follows:

Definition 1 ([11]) Let I be a convex set on R. The function § : I — R is called convex on

I if it satisfies the following inequality:

FOv+(1-9)y) <0FW)+ (1 -9)F(y) (1.1)

for all (v,y) € I and ¥ € [0, 1]. The mapping F is concave on [ if the inequality (1.1) holds
in reversed direction for all # € [0,1] and v, y € I.

In terms of Newton—Cotes formulas, Milne’s formula, which is of open type, is parallel
to the Simpson’s formula, which is of closed type, since they hold under the same condi-
tions. Suppose that § : [k1,k3] — R is a four-times continuously differentiable mapping
on (k1,k3), and let |§® || = SUD e (102) I3 (v)| < 0c. Then, one has the inequality [3]

‘%[2%1) —3("1 ;”2> ; 23(@] -—/ 12 3(v)dv

) (1.2)
- 7(ky — K1)

(4)

In this paper we will obtain a fractional version of the left-hand side of (1.2) and will
consider several new bounds by using different mapping classes.

The well-known Riemann-Liouville fractional integrals are given as follows:

Definition 2 Let § € L;[k1,k3]. The Riemann—Liouville fractional integrals TJ‘;‘I .5 and
35273 of order « > 0 are defined by

%50 1 [ lv(u C0eF@)ds, v,
and
%50 -1 | Y00 E A, v <o,

respectively. Here, I'(r) is the Gamma function and 3% §(v) = 32273(1)) =F ().

K1+

For more information about Riemann-Liouville fractional integrals, please refer to [13,
18, 21].

2 Milne-type inequalities for differentiable convex functions

In this part, we present a few inequalities of Milne-type for differentiable convex map-
pings.
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Lemma 1 Let § : [k1,k2] — R be a differentiable mapping («1,k2) such that § €
Li([k1,k3]). Then, the following equality holds:

% [mm) - 3(“ ; "2> ¥ 2&(&)}

2 e+ 1), K1+K2\ g K1 + Ko
- (k2 = K1)* I:JKﬁS( 2 >+JK2_S( 2 )]
- ! 1 1-9 1+
S (57 (57))
1+9 1-9¢
_3'/(< ; >K1+( ) )Kz):ldﬁ
Proof By utilizing integration by parts, we have
! 1 1+0 1-9
w5 ) (557
2 (g ] 1+9 1-9
(o550 (7))
1
- /ﬁ“13(<1+ﬁ)x1+(1_§>xz)dﬁ
Ky — kK1 Jo 2 2
_ 2 )%<K1+K2>_ 8 ) @.1)

a+l ;’( a-1
+( 2 ) Ol/ [<K1+K2—U> %(U)]dv
Ky — K1 K1 2

.2 )3("”"2) 8 )

3k — k1)

2 arl K1 + K2
+ Mo +1)7¢ .
<'<2—K1) @+ Klj( 2 )

Similarly, we obtain

[ D5 (52

_ 2 K1+ K2 8
B _3(/(2 _Kl)g( 2 ) " 3(ky —KI)S(KZ) (2.2)

2 arl K1 + Ko
- r 1)7¢ .
(Kz—Kl) (1) KZ_g( 2 )

From equations (2.1) and (2.2), the following result is obtained:

”2;”1 [h-1] = %[23(/@ —s(“ ;"2) ¥ 2@(@}

2 e+ 1), K1+ Ko N K1 + Ko
(k- [JK”S( 2 )+j”2_%< 2 ﬂ

The proof of Lemma 1 is completed. d

1
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Theorem 1 Assume that the assumptions of Lemma 1 hold. Let |§'| be a convex function

on [k1,k2]. Then, we get the following inequality:

‘%[2%) - 3("1 ;”2> " 23(@]

2 e+, Ki+Kk2\ oy K1+ Ko
e (57 (5] e

< '“21;2”1(“ +4)(|s’(m)| +[§ ))-

a+1

Proof By taking the absolute value in Lemma 1 and utilizing the convexity of |§’|, we get
‘ [2%1) 3( 1”2>+23<K2)}
2% 1Mo + 1) 3 K1+ k2 +/c2 /<1+/<2
(kg —scr)* [ TS
Ko —K
S ARE (( )m( )2)
(55 (5]
S ) Ko +
1
Ko — K1 1 1+0
0+ =
=, ( +3)[ [§l+
1+19 v i|

—afl 1 , )
e (— - a+1>(|3(/<1)| + |3 (2)])

+

1-
5 I8 te2)]| +

4 3

- 4 / /
:%(‘“ >(|3<x1>|+|s<xz>|)

a+1

which gives inequality (2.3). O

Example 1 Let [k1,k5] = [0,1] and define the function §: [0,1] — R as §(?) = % so that
F () = 9% and |§'| is convex on [0, 1].

Under these assumptions, we have

[mq) s( ! ”2) ¥ 2&(@] -2

By definition of Riemann-Liouville fractional integrals, we obtain

1 a—1 o3
K1+ K2 1 1 2(1 ) 1
7.5 ——)=055)==— —_9) —dy=—
”*g< 2 ) 05(2) F(a)/o (2 ) 3 202 (o + 4)
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and

%j(m ;m> =ﬁm(%>
1 a-1
:L/ (ﬁ_l) LA
') 1 2 3

_ 40® + 18a% + 200 + 3
T 3T (o + 4)20+3

Thus we have

2 M@+, K1+ K2 N K1+ Ko
(kg — Kk1)* |:JK1+S( 2 )+3K2_§( 2 ):|

1 40 + 18a% + 200 + 3
+
202 (o + 4) 30« +4)29+3

=21 (a + 1)[

~ 20 + 9% + 10 + 3
T 12(e + (e + 2)(a + 3)

As aresult, the left-hand side of inequality (2.3) reduces to

1 2N +1
3|20 -5( 9572 ) w2t | - TR 0t 50 g 500

(k2 — K1)” p

5 20% + 9% + 10« + 3

"1 Das )@ deiy S

and

o +4

=— = RHS.
12(x + 1)

k(11 : '
- 4K1 (§ Yot 1>(K2 —se)(|§ )] + |3 (2)])

The results of Example 1 are shown in Fig. 1.

0.35 T

= RHS
0.3 ]

0.1 1 J

0.05

0 I I I I I
0 5 10 15 20 25 30

Figure 1 Graph for the Example 1 examined and calculated in MATLAB program
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Remark 1 If we choose o =1 in Theorem 1, then we have

‘ [mq) s( ””2>+2;§<x2)}—# / zw)dﬁ‘
K2 =K1 Jig

< u(mm 1§ 6e2)).

Theorem 2 Suppose that the assumptions of Lemma 1 hold. Suppose also that the mapping
I§'19, q > 1, is convex on [k1, k3]. Then, the following inequality holds:

‘ [z&(m s( ! +”2> + 23(@]
227 (a+ D[, K1+K2\ oy K1+ K2
T (- k) [JKI*S( 2 ) ’ JKZ%( 2 )]’

<o ([ (s 1) ) [ (A B s

. (mm)w + 3|3’(K2)|q>31}

4

_ 1 1\? 1%
<2 4K1 (4f0 (19“ + g) dﬁ) (18] +[8'(k2)

whenever L + 1 =1.
rq

)

Proof If the absolute value in Lemma 1 is taken, we get
‘ [2%1) 3( L "2> . 23(@]
271N + 1) K1+ K2 K1+ K2
- |7 J2
e Les(57) (252
1
Ko — K1 o 1 , 1+0 1-9
=L E ) () (550))
! 1 1-9 1+9
(50 (57|
With the help of Holder inequality in (2.6) and by utilizing the convexity of |§'|7, we get
! 1
/ 1 +0 . 1-9 .
A ) K1 B 2
1
p _ q 7
(! ( l) dﬁ‘)( (5 )0 (57)e) )
3 2 2
(2.7)
1 1\ 1+9 - i
< < (z?“ + —) dﬂ) |: < I3/ ()" + !S’(K2)|q> dz?]
0 3 2
1 p (k1) |9 q
( <190( + %) dl?) (3|g K1 | + |3 (K2)| > )
0

(2.6)

dad

dad
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Similarly, the following inequality is obtained:
[R5 ) (57))
o 3 2 2
o 1Y NP (I8 )l + 33 )|
=([(res) o) ( )
o 3 4

If (2.7) and (2.8) are substituted into (2.6), we have

‘%[2{%1) _ s(”l ;“2> . 2@(@]

20“1[‘(0[ + 1) K1+ Ky K1+ Kg
- ¢
(k2 = k1)® [ K”&( 2 ) T ( 2 )]

e l(m D) [ (A |@'<K2>|q>5
=72 \J, 3 4

. <|&/(m)|@ ¥ smxz)wﬂ
- .

dad

(2.8)

The first inequality of (2.5) is proved. For the proof of the second inequality, let x1; =
3I8" (k1)1 ko1 = IF (k2)|, k12 = |§' (k1) 17, and K2y = 3[F'(k2)|. Using the facts that

n n n
D k) <Y ket > Ky 0=s<l,
k=1 k=1 k=1

and 1 + 3$ <4, the required result can be established directly. The proof of Theorem 2 is
finished. 0

Corollary 1 If Theorem 2 is written with o = 1, we get

E[mm —s(“ +”2> . 2%)] — / N sw)dﬁ‘

2 kg — K1
el (4P+1 - 1)é [<3|3’(K1)|q + |3/(K2)|’1>411 . <|S’(K1)|q +3|3/(K2)|q>é]
_ 4r+2 _ [l’
=5 (5ry) (5wl 5

Theorem 3 Assume that all the assumptions of Lemma 1 are met. If the mapping |§'|9,
q > 1, is convex on [k1, k3], then we get the following inequality:

’%[mm) - s(“ : “2) + 2&(:«»]

2

271N + 1) K1 + Ko K1 + Ko
-3¢ J¢
(k2 — k1)® K”%( 2 )+ K2_§< 2 >

Ko—kK1 [ a+4 1_% 1 200+ 3 , q
=73 <3(oe+1)> (|:(4_L+2(a+1)(a+2))ig(lq)|

Page 7 of 15
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1 1 L
* (E * 2(a+1)(a+2)>|3("2)| }

1 1 o (1 20 +3 L
+[(E+2(a+1)(a+2)>|3(’“)| +<1+2(a+1)(a+2))|§("2)|] )

Proof With help of the power-mean inequality in (2.6) and considering the convexity of

1+0 1-9
K1 + K
A 2 )
1

|57, we get

[(5)

dad

1 B q %
X(/O <ﬁ“+%)’8"<(1;ﬁ>m+(120)/(2) dﬁ)
AN e (L0 1-9 6\
<(sa:m) L (7 +3) (57l 5o wr) |
a+d \“7 o
- (3(a n 1)) [ )|3 (k)]

1 1 L
¥ (ﬁ * 2o + 1)( +2)>’S ()] ] '

Similarly as in getting (2.9), we have
! 1 1-0 1+
[0 s)m (55 ) (557))
w+d \"a[[ 1 1 o
= (3(a+1)) [(E * 2(a+1)(a+2))|5("1)| (2.10)

1 2a +3 , q
" <E T+ 1)(a+2))|3(’(2)| } :

Substituting (2.9) and (2.10) into (2.6), we get

’%[mm) - 3(”1 ’ “2) + 2@(@]

1 200+ 3
<Z+ﬂa+nm+m

dad

N

2
2 M@+ D[, Ki+K2\ K1+ K2
(k- [JKHS( 2 >+JK2_§( 2 ):H
Ko—kK1 [ a+4 1_5 1 200+ 3 , q
=7 (3(a+1)> ([(Z+2(a+1)(a+2))‘3(’“)‘
1 1 L
¥ (E* 2(a+1)(a+2)>|3(K2)| }

1 1 e (1 20 +3 L
+|:(E+2(oz+l)(a+2)>|g(lq)| +<1+2(a+1)(a+2))|g(@)|i| )

This completes the proof. d
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Remark 2 If we consider o = 1 in Theorem 3, then we obtain

1 K1+ K> 1 2
st(m—s( ; )*23‘”2)]‘@_“ / w)dﬁ‘

< S ([ s mxz)ﬁr e s s )
a 24 5 5 .

3 Milne-type inequality for bounded functions involving fractional integrals
Theorem 4 Assume that the conditions of Lemma 1 hold. If there exist m, M € R such that
m < §'(9) <M for © € [k1,k2], then

‘%[2%1) —3('“ ;”2> ¥ 2&(@]

2a_1F(OI + 1) K1+ Ko K1+ Kg
_ 3@ 5
(12 — )" [ S( 2 )t

Koy —K1 [ +4

= (a+1)(M_m)'

Proof With the help of Lemma 1, we get

; [mm) - s(’“ ; "2) ‘ zsm)}

e ) ()
5 (sl (( e (57)e)
(57 (57)) )

S ()57 o (55 )) - 25"
)T (5 ) (50 e

Taking the absolute value of (3.1), we have

‘ [2%1) 3( ””2>+23<K2)}
2@+ 1), K1+ K2 N K1+ K2
(k- k) [JK“S( 2 ) j”zj< 2 )]‘
1
e A G L (e R e B Rl
0
1 —
o (meg) s () (550))

(3.1)

dy.

Page 9 of 15
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From m < §(¢) < M for ¥ € [k1, k2], we get

(5o () =55

and

M-m
B

<

m+M [ (1+70 1-v
2 _3(< 2 )K”( 2 )Kz)

Using (3.2) and (3.3), we have

2

227 (a+ D[, Ki+K2\ oy K1+ K2
T (- k) [jkﬁs( 2 >+szg( 2 )]’

_ 1 1
<L Kl(M—m)/ (19“+—>d19
4 A 3

K=K o+4
12

E[zsm) - s(w> . 23(@]

)(M—m).

a+1

The proof of the theorem is finished. O

Corollary 2 Considering o = 1 in Theorem 4, we obtain

1 K1+ Ko 1 k2 5(ky — K1)
‘g[zg(’ﬁ)—g< ) )"’23(’(2)]—’(2_[{1/’(1 S(ﬁ)dﬂ‘ST(M—ml

Corollary 3 Under the assumptions of Theorem 4, if there exists M € R* such that
1T (9)| <M for all ¥ € [k1,k3], then we have

3 2

20“1[‘(01 + 1) o K1+ Ko o K1 + Ko
Fama (M5 (57 ]

Koy —K1 [ +4
< M
-6 a+1

Remark 3 1If we choose o = 1 in Corollary 3, then we get

‘1 [2{%) —3("1 +K2> ¥ 2&(@]

1 K1+ Ko 1 k2 5(ky — k1)
‘g[%(iﬁ) —3( 2 ) +25(K2)] i /Kl 3(19)6119‘ < TM,

which was proved by Alomari and Liu [2].

Page 10 of 15
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4 Milne-type inequality for Lipschitz functions involving fractional integrals

In this part, we present some fractional Milne-type inequalities for Lipschitz functions.

Theorem 5 Suppose that the assumptions of Lemma 1 hold. If §' is an L-Lipschitz function

on [k1, k2], then we get the following inequality:

% [mm) - 5(“ ; K2> ¥ 2@(&)}

2 e+ 1), K1+K2\ g K1+ K2
- (k2 —Kk1)* [j‘(ﬁS( 2 >+JK2_S< 2 ):|

_(K2—K1)2 a+8 I
Y oa+2

Proof With help of Lemma 1 and since §’ is an L-Lipschitz function, we get

2

2 e+, K1+
- I:jK1+S(

(k2 —Kk1)*

Ky — K1 ! o l /
L)l
2

E[zwn - s(“ * ”"’) . 23(@]
K

Jona(*37)]

1+0
-¥ K1+
#((557)s
<K2_K1/1 U“"‘+1
=4 ), 3

(ka — Kk1)? 1 1
= L +=.
4 a+2 6

The proof of this theorem is completed. O

Corollary 4 If we consider o =1 in Theorem 5, then we get

1 1 K2 )2
stm)—s(“ “‘2) +2@(K2>] - / w)dﬁ' Lol
3 2 Ky — K1 K1 8
5 Milne-type inequality for functions of bounded variation involving fractional
integrals
In this part, we show Milne-type inequality for fractional integrals involving functions of

bounded variation.
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Theorem 6 Let § : [«1,k2] — R be a mapping of bounded variation on [k1,k;]. Then we

get

‘%[2%) _ 3("1 ;”2> . 23(@]

2@+ 1), K1+ K> N K1 + K2 2.
TR I

where \/f(%) denotes the total variation of § on [c, d].

Proof Define the function K, (v) by

K1+Ko a _ (kg—k1)* K1+ko
1(( ) _( 2 _U) YT K1 <vu =< PR
v)=
“ (v — fareye 4 (kp—K1)* KIHD 0y e
2 329 7 2 = 2.

By utilizing integration by parts, we get

/ " Ko (v) d3 ()

1

K1tk9

_ 2 [ [(K1t+K (K — k1)
"fn << 2 ’“) MR )‘m“)
+ /K:@ ((U _a ;Kz) + (Kéf;)a>ds(u)
_ (I€1+K2_U a_'_(Kz—Kl)“ 3(v)
- 2 3.0
K1;K2 K1+ Ko -l
‘“f <__U> F(v)dv
1 2
+ (U_K1+K2 a+(K2—K1)a 3(v)
2 3.2¢
K2 a-1
_a/ (U_"1+"2) F(v) dv
= 2

(ko — k1) [ K1+ K2 (k2 —Kk1)*
= S +
3.2% 2 3.20-2

K1+K9
2

K1

K2

(5.1)

K1+K2
2

§0c) - D(a + 1)3;3(“ - ’“2)

2
. (k2 _Kl)ag(Kz) _ (k2 —K1)°‘3<K1 +K2> e+ 1)3g2_5<K1 +K2)

3.20-2 3.2« 2 2
= % [2S(K1) —S(Kl ;KZ) + 25(’@)]

o+ 1)[33“3('“ ;Kz) " jzzg<%>].
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That is,

% [qu) - s(“ * "2> ¥ 2&(@}

21T (a + 1) K1+ K> K1+ Ko
2 et i + e
e [8(57) (75

a—1 K2
S f K, ()d5 ().

(k2 —Kk1)*

It is well known that if g,§ : [«1,«2] — R are such that g is continuous on [«1,x2] and § is
of bounded variation on [k1, 3], then fKKlZ g(¥) dF () exists and

| ﬁ)dw)’ sup |g(z9)|\/(s> (52)

Belk1ia]

Otherwise, utilizing (5.2), we have

‘%[2%) - 3("1 ;”2> . 23(@]

2"“1[‘(01 + 1) K1+ Ky K1+ Kg
_E e | AL
s 27 (757) (5

20¢—1

" (k2 —r1)®

2e-1 2 K1+ K2 “ (K2 )
Socz-fq)a“n (( 2 _“> EENT >d3(”)
2 k1 +K2\* (ky—K1)*
Jow (v 5552) 55555 v

K1+ K —Kk1)”
( 5 —u) 32d ‘\/(m

f " Ko () d3 ()

SELY)

+

201—1
< sup
(k2 =11)* | ey 222

K1+ K2 oz
v sup (U _ ) |\ (5)
ve[152 9] 2 3 2 SR
2271 ( ) 3, ( RPN
* Ky —K1)* Ky —K1)*
 (ky—r1)” [ 3.2072 y ®)+ 3.2072 K1\+/Kz W
7
2,7
=2 \/®)
3 M O

6 Conclusion

In this article, we established a fractional Milne-type inequality for differentiable map-
pings. In addition, we considered bounded functions, Lipschitz functions, functions of
bounded variation, and obtained Milne-type inequalities for them. Moreover, generaliza-
tions of the results of Alomari and Liu [1] were presented. In a future work, curious readers
can obtain new versions of Milne-type inequalities for different fractional integrals. What
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is more, researchers can obtain several new Milne-type inequalities using other notions
of convexity.
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