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Abstract
In this paper, we focus on the analytical and numerical convexity analysis of discrete
delta Riemann–Liouville fractional differences. In the analytical part of this paper, we
give a new formula for the discrete delta Riemann-Liouville fractional difference as an
alternative definition. We establish a formula for the�2, which will be useful to obtain
the convexity results. We examine the correlation between the positivity of (RL

w0
�αf)(t)

and convexity of the function. In view of the basic lemmas, we define two decreasing
subsets of (2, 3), Hk,ε and Mk,ε . The decrease of these sets allows us to obtain the
relationship between the negative lower bound of (RL

w0
�αf)(t) and convexity of the

function on a finite time set NP
w0

:= {w0,w0 + 1,w0 + 2, . . . ,P} for some
P ∈ Nw0 := {w0,w0 + 1,w0 + 2, . . . }. The numerical part of the paper is dedicated to
examinin the validity of the sets Hk,ε and Mk,ε for different values of k and ε . For this
reason, we illustrate the domain of solutions via several figures explaining the validity
of the main theorem.
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1 Introduction
The recent development of pure and applied mathematics is characterized by increasing
attempts to use mathematical modeling tools of fractional order in different engineering,
medicinal, and biological fields. It is known that this mathematical modeling of fractional
order attempts to improve our understanding of more and more complicated phenomena,
and in general, it is based on ordinary and partial differential equations. In the past several
decades, some algorithms have been proposed for solving such fractional problems, which
can be classified into different categories (see [1–4]).

Discrete fractional problems and discrete fractional operators are worth studying in the
setting of fractional calculus and have attracted much attention from scholars. Further-
more, the concept of discrete fractional calculus was rooted in the few decades; it gets
attention of many researchers recently because of their inquisitive thinking (see [5–7]
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and references therein). The main reason is that these problems and operators have a
wide range of practical applications, such as mathematical analysis [8, 9], stability anal-
ysis [10–12], probability and statistics [13–15], geometry [16, 17], ecology [18, 19], and
topology [20–22].

Positivity, monotonicity and convexity analysis plays a crucial role in discrete fractional
calculus theory. Although a number of papers have been contributed to the analysis of dis-
crete fractional operators with singular and nonsingular kernel type, the question of pos-
itivity, monotonicity, and convexity of discrete fractional operators of Riemann–Liouville
type on a time set still remains open. Furthermore, the positivity, monotonicity, and con-
vexity analysis is important in understanding the nature of the discrete fractional problems
from the perspective of continuous fractional problems. Many authors have developed
many interesting results on optimality and duality in the setting of Riemann–Liouville
and Liouville–Caputo fractional differences; see, for instance, [5, 23–26] and the refer-
ences therein.

Let Nw0 := {w0, w0 + 1, w0 + 2, . . .} and Gw0 (f) := {f : Nw0 →R for w0 ∈R}. There is a clean
and clear correlation between the convexity of a function f ∈ Gw0 (f) and the nonnegativity
of the �2 difference of f, given in the following relationship:

If
(
�2f

)
(t) ≥ 0, then we say that f is convex at t.

Particularly, convexity has been studied in fractional calculus quite extensively. How-
ever, with discrete fractional calculus theory and discrete operators, this area has not re-
ceived a lot of attention so far. Moreover, in terms of numerical simulations, some works
can be found for monotonicity analysis of the discrete fractional calculus operators (see
[27–29] and references therein) or convexity analysis of these operators (see [30–32] and
references therein).

The main objective of this paper is to provide a relationship between the positive lower
bound of the fractional difference operators of delta Riemann–Lioville type (RL

w0�
αf)(t) and

the convexity of a function f on an infinite time set Nw0 and a relationship between the
negative lower bound of (RL

w0�
αf)(t) and convexity of a function f on a finite time set NP

w0 .
Besides, we present some numerical simulations for the negative lower bound case to
demonstrate the solution spaces of the defined sets on the negative lower boundedness
of (RL

w0�
αf)(t).

The paper is organized as follows. Section 2 contains main properties and notations of
discrete fractional operators of delta Riemann–Lioville type. In Sect. 3, we state and prove
our analytical results by defining the sets Hk,ε and Mk,ε , studying the main lemmas and
theorems on the sets, and examining the delta convexity results of the proposed difference
operators. Section 4 deals with numerical results including eight illustrative figures, in
which the time steps will be applied on the sets Hk,ε and Mk,ε as applications. Also, the
domains of the solutions are determined for both sets. Finally, in Sect. 5, we provide a
conclusion along with future work possibilities in this field.

2 Basic tools and results
In this section, we briefly consider the discrete fractional sums and differences in the set-
ting of Riemann–Liouville. We refer the reader to [5, 12, 33, 34] for the relevant details.
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For f ∈ Gw0+α(f) with α > 0, the � sum operator of order α can be defined as follows:

(
w0�

–αf
)
(t) =

1
�(α)

t–α∑

s=w0

(t – 1 – s)α–1f(s) for t in Nw0+α , (2.1)

where tα is defined by

tα =
�(1 + t)

�(1 + t – α)
, (2.2)

such that the right-hand side of this identity is well defined. Besides, we use tα = 0 when
the numerators in each identity is well-defined but the denominator is not. Further, we
have

�tα = αtα–1. (2.3)

Definition 2.1 (see [5, 33, 34]) Let f ∈ Gw0 (f). Then (�f)(t) := f(t + 1) – f(t) for t ∈ Nw0 is
the � difference operator. In addition, the � fractional difference of order α (ℵ– 1 < α < ℵ)
of the Riemann–Liouville type is defined by

(RL
w0�

αf
)
(t) =

�ℵ

�(ℵ – α)

t+α–ℵ∑

s=w0

(t – s – 1)ℵ–α–1f(s) for t in Nw0+ℵ–α . (2.4)

The following theorem is an alternative representation of the � fractional difference
(2.4), which is also a generalization of the result established for 0 < α < 1 in [25].

Theorem 2.1 For f ∈ Gw0+α(f) with ℵ – 1 < α < ℵ, the � fractional difference of order α of
the Riemann–Liouville type can be given by

(RL
w0�

αf
)
(t) =

1
�(–α)

t+α∑

s=w0

(t – s – 1)–α–1f(s) for t in Nw0+ℵ–α . (2.5)

Proof The result was proved by Mohammed et al. [25, Theorem 1] for ℵ = 1 (that is, for
0 < α < 1), and their result is

(RL
w0�

αf
)
(t) =

1
�(–α)

t+α∑

s=w0

(t – s – 1)–α–1f(s) for t in Nw0+1–α . (2.6)

For ℵ = 2 (that is, for 1 < α < 2), by Definition (2.4) we find that for each t ∈ Nw0+2–α ,

(RL
w0�

αf
)
(t) = �2

(
1

�(–α + 2)

t+α–2∑

s=w0

(t – s – 1)1–αf(s)

)

by=
(2.6)

�

(
1

�(–α + 1)

t+α–1∑

s=w0

(t – s – 1)–αf(s)

)

=
1

�(–α + 1)

{ t+α∑

s=w0

(t – s)–αf(s) –
t+α–1∑

s=w0

(t – s – 1)–αf(s)

}
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=
1

�(–α + 1)

{ t+α∑

s=w0

(t – s)–αf(s) –
t+α∑

s=w0

(t – s – 1)–αf(s)

}

=
1

�(–α + 1)

t+α∑

s=w0

�(t – s – 1)–αf(s)

=
1

�(–α)

t+α∑

s=w0

(t – s – 1)–α–1f(s),

where we have first used (see [25, Lemma 1])

(–α – 1)–α = 0

and then used

�
(
t–α

)
= –αt–α–1.

The same procedure can be repeated ℵ – 1 times to obtain the required result stated by
Theorem 2.1. �

3 Negative lower bound results
Let us state and prove our main lemma concerning the �2 fractional difference.

Lemma 3.1 Let f ∈ Gw0 (f), α ∈ (2, 3), and (RL
w0�

αf)(t) � 0 for t ∈ Nw0+3–α . Then, for t :=
w0 – α + 3 + k with k ∈ N0,

(
�2f

)
(w0 + k + 1) � –

(–α + 3 + k)–α

�(–α + 1)
f(w0) –

(–α + 3 + k)1–α

�(–α + 2)
(�f)(w0)

–
1

�(–α + 2)

k∑

ı=0

(–α + k + 2 – ı)1–α
(
�2f

)
(w0 + ı), (3.1)

where

(–α + k + 2 – ı)1–α

�(–α + 2)
=

(–α + 2)(–α + 3) · · · (–α + k + 2 – ı)
(k – ı + 1)!

< 0 (3.2)

and

(–α + 3 + k)–α

�(–α + 1)
> 0 and

(–α + 3 + k)1–α

�(–α + 2)
< 0. (3.3)

Proof By Theorem 2.1 and (2.3) we have

(RL
w0�

αf
)
(t) =

1
�(–α)

t+α∑

s=w0

(t – s – 1)–α–1f(s)

=
1

�(–α + 1)

t+α∑

s=w0

�(t – s – 1)–αf(s)

=
(t – w0)–α

�(–α + 1)
f(w0) +

1
�(–α + 1)

t+α∑

s=w0

(t – s – 1)–α(�f)(s),
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where we have used (–α – 1)–α = 0. By the same technique as before, we can deduce

(RL
w0�

αf
)
(t) =

(t – w0)–α

�(–α + 1)
f(w0) +

1
�(–α + 2)

t+α∑

s=w0

�(t – s – 1)1–α(�f)(s)

=
(t – w0)–α

�(–α + 1)
f(w0) +

(t – w0)1–α

�(–α + 2)
(�f)(w0)

+
1

�(–α + 2)

t+α∑

s=w0

(t – s – 1)1–α
(
�2f

)
(s), (3.4)

where we have used (–α – 1)1–α = 0. Since (t – s – 1)1–α = 0 at s = t + α, t + α – 1, (3.4)
becomes

(RL
w0�

αf
)
(t) =

(t – w0)–α

�(–α + 1)
f(w0) +

(t – w0)1–α

�(–α + 2)
(�f)(w0)

+
1

�(–α + 2)

t+α–2∑

s=w0

(t – s – 1)1–α
(
�2f

)
(s)

=
(
�2f

)
(t + α – 2) +

(t – w0)–α

�(–α + 1)
f(w0) +

(t – w0)1–α

�(–α + 2)
(�f)(w0)

+
1

�(–α + 2)

t+α–3∑

s=w0

(t – s – 1)1–α
(
�2f

)
(s). (3.5)

By the assumption (RL
w0�

αf)(t) � 0 it follows that

(
�2f

)
(t + α – 2) � –

(t – w0)–α

�(–α + 1)
f(w0) –

(t – w0)1–α

�(–α + 2)
(�f)(w0)

–
1

�(–α + 2)

t+α–3∑

s=w0

(t – s – 1)1–α
(
�2f

)
(s).

For t := w0 – α + 3 + k with k ∈ N0, it becomes

(
�2f

)
(w0 + k + 1) � –

(–α + 3 + k)–α

�(–α + 1)
f(w0) –

(–α + 3 + k)1–α

�(–α + 2)
(�f)(w0)

–
1

�(–α + 2)

k∑

ı=0

(2 – α + k – ı)1–α
(
�2f

)
(w0 + ı),

which is the required (3.1). Now it is clear that for 2 < α < 3,

(–α + k + 2 – ı)1–α

�(–α + 2)
=

�(–α + 3 + k – ı)
�(–α + 2)�(2 + k – ı)

=
(–α + 2)(–α + 3) · · · (–α + k + 2 – ı)

(k – ı + 1)!
< 0,
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(–α + 3 + k)–α

�(–α + 1)
=

�(–α + 4 + k)
�(4 + k)�(–α + 1)

=
(–α + 1)(–α + 2)(–α + 3) · · · (–α + k + 1)(–α + k + 2)(–α + k + 3)

(k + 3)!

> 0,

and

(–α + 3 + k)1–α

�(–α + 2)
=

�(–α + 4 + k)
�(4 + k)�(–α + 2)

=
(–α + 2)(–α + 3) · · · (–α + k + 2)(–α + k + 3)

(k + 3)!
< 0

for ı = 0, 1, . . . , k and k ∈ N0. Thus our proof is complete. �

Based on this lemma, we now can present the � convexity result.

Theorem 3.1 If α ∈ (2, 3) and f ∈ Gw0 (f) satisfies (RL
w0�

αf)(t) � 0 for all t ∈ Nw0+3–α , f(w0) �
0, (�f)(w0) � 0, and (�2f)(w0) � 0, then (�2f)(t) � 0 for t ∈ Nw0 .

Proof We will prove by using strong induction. From the assumption we know that
(�2f)(w0) � 0. We assume that (�2f)(w0 + ı) � 0 for ı = 0, 1, . . . , k. Then Lemma 3.1 gives
that (�2f)(w0 + k + 1) � 0. Thus the proof is done. �

This theorem has demonstrated a correlation between the nonnegativity of (RL
w0�

αf)(t)
and the convexity of f. Now we wish to investigate what happens by replacing the zero
lower bound of Theorem 3.1 with a negative lower bound –ε for some ε > 0.

Firstly, we need a lemma concerning the sets Hk,ε and Mk,ε defined by

Hk,ε :=
{
α ∈ (2, 3);

�(–α + k + 4)
�(–α + 1)(k + 3)!

� ε

}
⊆ (2, 3) (3.6)

and

Mk,ε :=
{
α ∈ (2, 3);

�(–α + k + 4)
�(–α + 2)(k + 2)!

� –ε

}
⊆ (2, 3), (3.7)

respectively, for some ε > 0 and k ∈ N0.

Lemma 3.2 The collections {Hk,ε}∞k=0 and {Mk,ε}∞k=0 are decreasing for all ε > 0. Moreover,

∞⋂

k=0

Hk,ε = ∅ and
∞⋂

k=0

Mk,ε = ∅.

Proof Suppose that α ∈ Hk+1,ε . Then we have

(–α + k + 4)(–α + k + 3)(–α + k + 2) · · · (–α + 3)(–α + 2)(–α + 1)
(k + 3)!

=
�(–α + k + 5)

�(–α + 1)(k + 4)!
� ε.



Baleanu et al. Journal of Inequalities and Applications          (2023) 2023:4 Page 7 of 13

Also, we know that

�(–α + k + 5)
�(–α + 1)(k + 4)!

=
–α + k + 4

k + 4
(–α + k + 3)(–α + k + 2)(–α + k + 1) · · · (–α + 3)(–α + 2)(–α + 1)

(k + 3)!

� (–α + k + 3)(–α + k + 2)(–α + k + 1) · · · (–α + 3)(–α + 2)(–α + 1)
(k + 3)!

=
�(–α + k + 4)

�(–α + 1)(k + 3)!
,

since α ∈ (2, 3),

–α + k + 4
k + 4

� 1 ⇐⇒ –α + k + 4 � k + 4 (which is clearly true),

and by Lemma 3.1,

(–α + k + 3)(–α + k + 2)(–α + k + 1) · · · (–α + 3)(–α + 2)(–α + 1)
(k + 3)!

� 0.

Thus Hk+1,ε ⊆ Hk,ε , and hence the collection {Hk,ε}∞k=0 is decreasing.
Similarly to the above proof, we can prove that {Hk,ε}∞k=0 is decreasing as well.
To end the lemma, following Theorem 3.4-1 in [35], we have

lim
k→∞

�(–α + k + 4)
�(–α + 1)(k + 3)!

= lim
k→∞

�(–α + k + 4)
�(–α + 1)�(k + 4)

· (k + 4)–α

(k + 4)–α

= lim
k→∞

1
(k + 4)α�(–α + 1)

· lim
k→∞

�(–α + k + 4)
�(k + 4)

(k + 4)α

= 0 · 1 = 0 (3.8)

and

lim
k→∞

�(–α + k + 4)
�(–α + 2)(k + 2)!

= lim
k→∞

�(–α + k + 4)
�(–α + 2)�(k + 3)

· (k + 3)–α

(k + 3)–α

= lim
k→∞

1
(k + 3)α�(–α + 2)

· lim
k→∞

�(–α + k + 4)
�(k + 3)

(k + 3)α

= 0 · 1 = 0. (3.9)

Hence, for ε > 0, there exist k1 := k1(ε) � 0 and k2 := k2(ε) � 0 such that Hk,ε = ∅ for all
k � k1 and Mk,ε = ∅ for all k � k2. Consequently,

∞⋂

k=0

Hk,ε = ∅ and
∞⋂

k=0

Mk,ε = ∅,

as required. Thus the proof is done. �

Based on the above lemma, we now state and prove our convexity results.
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Theorem 3.2 Suppose α ∈ (2, 3) and f ∈ Gw0 (f) satisfies

(RL
w0�

αf
)
(t) � εf(w0) for t ∈ NP

w0+3–α (3.10)

and some P ∈ Nw0+3–α such that ε > 0 and f(w0) � 0. If
(i) (�f)(w0) � 0,

(ii) (�2f)(w0) � 0, and
(iii) α ∈ HP–w0+α–3,ε ,

then (�2f)(t) � 0 for all t ∈ NP–3+α
w0 .

Proof By the assumption that (RL
w0�

αf)(t) � εf(w0) in (3.5), changing the variable t := w0 –
α + 3 + k for k ∈ N0, we have

(
�2f

)
(w0 + k + 1) �

[
(–α + 3 + k)–α

�(–α + 1)
– ε

][
–f(w0)

]
–

(–α + 3 + k)1–α

�(–α + 2)
(�f)(w0)

–
1

�(–α + 2)

k∑

ı=0

(2 – α + k – ı)1–α
(
�2f

)
(w0 + ı). (3.11)

From the condition (i) and (3.3) it follows that

(
�2f

)
(w0 + k + 1) �

[
�(–α + k + 4)

�(–α + 1)(k + 3)!
– ε

]
[
–f(w0)

]

–
1

�(–α + 2)

k∑

ı=0

(2 – α + k – ı)1–α
(
�2f

)
(w0 + ı). (3.12)

Since α ∈ HP–w0+α–3,ε by condition (iii) and

HP–w0+α–3,ε = HP–w0+α–3,ε ∩
P–w0+α–4⋂

k=0

Hk,ε

by Lemma 3.2, it follows that

�(–α + k + 4)
�(–α + 1)(k + 3)!

– ε � 0 (3.13)

for k ∈ NP–w0+α–4
0 . Consequently, by condition (ii), the fact that [–f(w0)] ≥ 0, (3.2), and

(3.13) in (3.12), we obtain

(
�2f

)
(w0 + k + 1) � 0 for k ∈ NP–w0+α–4

0 ,

and thus (�2f)(t) � 0 for all t ∈ NP–3+α
w0 , as desired. �

Theorem 3.3 Suppose α ∈ (2, 3) and f ∈ Gw0 (f) satisfies

(RL
w0�

αf
)
(t) � –ε(�f)(w0) for t ∈ NP

w0+3–α (3.14)

and some P ∈ Nw0+3–α such that ε > 0 and (�f)(w0) � 0. If
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(i) f(w0) � 0,
(ii) (�2f)(w0) � 0, and

(iii) α ∈ MP–w0+α–3,ε ,
then (�2f)(t) � 0 for all t ∈ NP–3+α

w0 .

Proof According to condition (i) ([–f(w0)] ≥ 0) and (3.3), it follows from (3.11) that

(
�2f

)
(w0 + k + 1) � –

(–α + 3 + k)1–α

�(–α + 2)
(�f)(w0)

–
1

�(–α + 2)

k∑

ı=0

(2 – α + k – ı)1–α
(
�2f

)
(w0 + ı).

Therefore by the same technique as in the proof of Theorem 3.2 we can prove this theorem
as well. �

4 Numerical simulation tests
In the last section, the effectiveness of the negative lower bound inasmuch as the appli-
cation of the analytical results in the previous section, especially, Theorems 3.2 and 3.3,
will be shown via some numerical figures of the sets Hk,ε and Mk,ε . All figures and results
have been performed with MATLAB 18b software.

Note that in all figures, the α-axis is the horizontal axis, and the k-axis is the vertical one.
Figures 1 and 2 show the number of k values and discrete collection of α values of the set
Hk,ε in the interval (2, 3), whereas Figs. 3 and 4 show the number of k values and discrete
collection of α values of the set Mk,ε in the interval (2, 3). Note that the red lines refer to
the empty set of points occurred in Hk,ε and Mk,ε , and the black parts of the figures refer
to the nonempty set of points of these sets.

• In Fig. 1, the set Hk,0.00005 in Fig. 1(a) and the set Hk,0.00001 in Fig. 1(b) have the same
values of k in N120

0 := {0, 1, . . . , 120}. In Fig. 1(a), we see that Hk,ε = ∅ for k � 40,
whereas Hk,ε = ∅ for k � 90 in Fig. 1(b).

• In Fig. 2, the set Hk,0.000005 in Fig. 2(a) and the set Hk,0.000001 in Fig. 2(b) have the same
values of k in N120

0 . In Fig. 2(a), we observe that Hk,ε = ∅ for k � 120, whereas
Hk,ε = ∅ for k � 165 in Fig. 2(b).

Figure 1 Plot of Hk,ε for k ∈ N120
0 and different values of ε
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Figure 2 Plot of Hk,ε for k ∈ N200
0 and different values of ε

Figure 3 Plot of Mk,ε for k ∈ N200
0 and different values of ε

Figure 4 Plot of Mk,ε for k ∈ N250
0 and different values of ε

In both Figs. 1 and 2, the set Hk,ε remains empty for less values of k when ε is larger
than when ε is small. Furthermore, this set arises to be enriched almost surely toward α

values closer to 2 than those closer to 3; especially, for α ≈ 2.2, it appears that the set Hk,ε

is most concentrated.
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Next, we consider the set Mk,ε for various values of k and ε:
• Considering Fig. 3, we see that the set Mk,0.0005 in Fig. 3(a) and the set Mk,0.0001 in

Fig. 3(b) have the same values of k in N200
0 . Moreover, in Fig. 3(a), we can observe that

Mk,ε = ∅ for k � 130, whereas Mk,ε = ∅ for k � 165 in Fig. 3(b) for a smaller value of ε.
• Considering Fig. 4, we note that the set Mk,0.00005 in Fig. 4(a) and the set Mk,0.00001 in

Fig. 4(b) have the same values of k in N200
0 . Furthermore, in Figs. 4(a) and 4(b), we can

note that Mk,ε = ∅ for k � 170.
Just like in Figs. 1 and 2, we can conclude that in both Figs. 3 and 4, the set Mk,ε tends

to remain empty for less values of k when ε is larger than when ε is small.
Finally, from the sets Hk,ε and Mk,ε we can conclude that:
• Both sets Hk,ε and Mk,ε tend to remain empty for less values of k when ε is larger

than when ε is small.
• The set Hk,ε gives a larger empty space even for ε smaller than the set of Mk,ε , which

has large nonempty space values.
• Theorems 3.2 and 3.3 may be employed for the largest number of time steps whenever

α approaches 2.2 and 0 < ε 
 1.

5 Conclusions
We have performed analytical and numerical convexity analysis for discrete delta
Riemann–Liouville fractional difference operators. The numerical part can be summa-
rized as follows:

• An alternative definition for the discrete delta Riemann–Liouville fractional difference
is derived in Theorem 2.1.

• A �2 formula is obtained in Lemma 3.1.
• A relationship between the positivity of (RL

w0�
αf)(t) and convexity of f is considered in

Theorem 3.1.
• Two sets Hk,ε and Mk,ε are defined based on the basic lemmas, and it is shown that

they are decreasing in Lemma 3.2.
• Based on the decrease of these sets, relationships between the negative lower bound

of (RL
w0�

αf)(t) and convexity of f has been derived in Theorems 3.2 and 3.3 on a finite
time set NP

w0 .
On the other hand, the numerical part in Sect. 4 can be summarized as follows:

• The domain of solutions of the sets Hk,ε and Mk,ε for various values of k and ε has
been illustrated in Figs. 1–4.

• In view of these figures, the validity and applicability of Theorems 3.2 and 3.3 is
explained.

• We have concluded that when ε is small, the sets Hk,ε and Mk,ε tend to remain
nonempty for more values of k than for larger ε. Furthermore, the sets appear to be
enriched powerfully toward the values of α closer to 2 than those closer to 3 for all
values of ε.
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