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Abstract
In this paper, we obtain a nonuniform Berry–Esseen bound for a normal
approximation via the Stein method and the exchangeable-pair coupling technique
where the boundedness condition of the difference between the exchangeable pair
is not required. As applications of the result, we obtain nonuniform bounds for the
normal approximations in two well-known applications that are the independence
test and the quadratic form. Our results suggest that the obtained bounds for the two
applications are sharper than other existing bounds.
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1 Introduction
Stein’s method [1] for normal approximation was first introduced in 1972 as an alternative
approach to the traditional Berry–Esseen normal approximation (see [2, 3]). The method
has been intensively studied and generalized to obtain rates of convergences for differ-
ent distribution approximations. The most common approaches used in Stein’s method
are the concentration-inequality approach, the inductive approach, and the coupling ap-
proach. The exchangeable-pair method introduced by Stein in 1986 [4] is considered as a
prominent coupling approach widely studied in the literature. The method is to construct
a random variable corresponding to the target variable to make the distribution of the pair
commutable. In particular, for a random variable W , we say that the pair (W , W ′) is an ex-
changeable pair if for all measurable sets B and B′, P(W ∈ B, W ′ ∈ B′) = P(W ∈ B′, W ′ ∈ B).
As in Chen, Goldstein, and Shao [5], the exchangeable pair (W , W ′) is said to be a λ-Stein
pair, for λ ∈ (0, 1), if

EW (
W – W ′) = λ(W – R), (1)

where R is a random variable of small order. The exchangeable-pair approach has been
intensively used as a main tool in constructing bounds of distribution approximation. For
instance, Rinott and Rotar [6], Shao and Su [7], and Sumritnorrapong, Neammanee, and
Suntornchost [8] applied the exchangeable-pair approach to obtain uniform bounds for a
normal approximation of a random variable where the the exchangeable pair exists and
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the difference between the exchangeable pairs is bounded. That is, |W – W ′| ≤ A, for a
positive constant A.

Later, in 2019, Shao and Zhang [9] noted that the assumption of bounded distance be-
tween the exchangeable pair might lead to a bound that is not optimal if the difference
between the exchangeable pair is not sufficiently small. Therefore, they proposed an im-
provement of the uniform bound for the normal approximation when the boundedness
assumption is not required. Their result is stated as follows:

sup
z∈R

∣∣P(W ≤ z) – �(z)
∣∣ ≤ E

∣
∣∣
∣1 –

1
2λ

EW (
�2)

∣
∣∣
∣ + E|R| +

1
λ

E
∣∣EW (

��∗)∣∣,

where �(z) is the cumulative distribution function of the standard normal distribu-
tion, � = W – W ′, and �∗ := �∗(W , W ′) is any random variable satisfying �∗(W , W ′) =
�∗(W ′, W ) and �∗ ≥ |�|. As applications of the bound, the authors showed improve-
ments of uniform bounds in many applications such as the quadratic forms.

Later, in 2021, Liu at el. [10] extended the uniform bound of Shao and Zhang [9] to the
following nonuniform bound

∣
∣P(W ≤ z) – �(z)

∣
∣ ≤ C

1 + |z|
{√

E
∣∣
∣∣1 –

1
2λ

EW
(
�2

)
∣∣
∣∣ + E|R| +

1
λ

√
E
∣
∣EW

(
��∗)∣∣2

}
,

where C is a constant. The result was then applied to extend the uniform bounds for dif-
ferent applications to nonuniform bounds. One application is the extension of the uniform
bound for the quadratic forms in Shao and Zhang [9] to a nonuniform bound.

In this paper, with a different approach, we extend the technique in Sumritnorrapong,
Neammanee, and Suntornchost [8] to propose a nonuniform bound of the normal ap-
proximation when the boundedness of the distance between the exchangeable pair is not
required. Moreover, we apply our obtained bound to improve the error bound of the nor-
mal approximation in two well-known applications that are the independence test and
the quadratic forms. In each application, we show that our bound is sharper than other
existing bounds.

The organization of this paper is as follows. First, we state our main theorem. Then, we
present an important lemma and the proof of the main theorem in Sect. 2. In Sect. 3, we
apply the main theorem to obtain nonuniform bounds of normal approximations in two
applications; the independence test and the quadratic forms. Finally, we give a conclusion
of our study in Sect. 4.

Theorem 1 Let (W , W ′) be an exchangeable pair such that EW (W – W ′) = λ(W – R) with
some constant 0 < λ < 1 and a random variable R. Assume that E|W – W ′|2r = O(λr) for
r ∈N. Then, for z ∈ R such that |z| ≥ 1,

∣∣P(W ≤ z) – �(z)
∣∣ ≤ C

(1 + |z|)r

√

E
(

1 –
1

2λ
EW

(
W ′ – W

)2
)2

+
C

(1 + |z|)r O
(
λ

r
2
)

+
C

(1 + |z|)r–1 O(
√

λ)
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+
C

(1 + |z|)r

[
1 +

(
E|R|2) 1

2 +
(
E|R|4) 1

4
]
O(

√
λ)

+
C

1 + |z|E|R|,

where C is a constant. Furthermore, if R = 0, we have

∣∣P(W ≤ z) – �(z)
∣∣ ≤ C

(1 + |z|)r–1

[√

E
(

1 –
1

2λ
EW

(
W ′ – W

)2
)2

+ O(
√

λ)
]

.

2 Proof of main result
To prove the main theorem, recall that Stein’s equation for the normal approximation is

g ′(w) – wg(w) = I(w ≤ z) – �(z), (2)

where I(·) is the indicator function, � is the cumulative distribution function of the stan-
dard normal distribution and g : R →R is a continuous and piecewise-differentiable func-
tion. The solution gz of Stein’s equation (2) is obtained in [4] as

gz(w) =

⎧
⎨

⎩

√
2πe w2

2 �(w)[1 – �(z)] if w ≤ z,
√

2πe w2
2 �(z)[1 – �(w)] if w > z

and

g ′
z(w) =

⎧
⎨

⎩
(1 – �(z))(1 +

√
2πwe w2

2 �(w)), if w < z,

�(z)(–1 +
√

2πwe w2
2 (1 – �(w))), if w > z.

Applying Stein’s solution and the random variable W to (2) and taking an expectation, we
obtain

∣
∣P(W ≤ z) – �(z)

∣
∣ =

∣
∣E

[
g ′

z(W )
]

– E
[
Wgz(W )

]∣∣. (3)

To obtain a bound of the normal approximation, we construct a bound for the term on the
right of (3). Since (W , W ′) is an exchangeable pair, from Chen, Goldstein, and Shao [5],
we obtain

E
(
Wgz(W )

)
= E

∫ ∞

–∞
g ′

z(W + t)K̂(t) dt + E
(
Rgz(W )

)
, (4)

where

K̂(t) =
1

2λ

(
W ′ – W

)[
I
(
0 < t ≤ W ′ – W

)
– I

(
W ′ – W ≤ t ≤ 0

)]
. (5)

By a direct calculation, we can prove that

∫ ∞

–∞
tkK̂ (t) dt =

(W ′ – W )k+2

2λ(k + 1)
, (6)

for any nonnegative integer k. Consequently, we can obtain some moment properties of
the exchangeable pair (W , W ′) as in the following lemma.
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Lemma 2 Let (W , W ′) be an exchangeable pair satisfying E|W – W ′|2r = O(λr) for r ∈ N.
Then,

1. E|W |2r = O(1)
2. E|g ′

z(W )| ≤ C
(1+|z|)2r .

Proof
1. By the binomial formula and (6), we can show that

EW 2r = (2r – 1)E
(∫ ∞

–∞
(W + t)2r–2K̂(t) dt

)

= (2r – 1)E

(∫ ∞

–∞

2r–2∑

k=0

(
2r – 2

k

)
W kt2r–k–2K̂(t) dt

)

= (2r – 1)E

(2r–2∑

k=0

(
2r – 2

k

)
W k(W – W ′)2r–k

2λ(2r – k – 1)

)

≤ (2r – 1)E

(2r–2∑

k=0

(
2r – 2

k

) |W |k|W – W ′|2r–k

λ(2r – k – 1)

)

.

Applying the weighted AM-GM inequality, we can show that

1
λ

E
(|W |k∣∣W – W ′∣∣2r–k)

≤
[

k
2r

(
λ( 2r

k –1)(r–1)–1E|W |2r) +
2r – k

2r

(
E|W – W ′|2r

λr

)]
,

for all 0 ≤ k ≤ 2r – 2. Consequently,

E|W |2r ≤ (2r – 1)
(

2r – 2
2r

E|W |2r

(2r + 1)2r +
(2r – 1)2r–2

rλr E
∣∣W – W ′∣∣2r

)

+ (2r – 1)
2r–3∑

k=0

(
2r – 2

k

)
1

2r – k – 1
k
2r

λ( 2r
k –1)(r–1)–1E|W |2r

+ (2r – 1)
2r–3∑

k=0

(
2r – 2

k

)
1

2r – k – 1
2r – k
2rλr E

∣∣W – W ′∣∣2r

≤ 2r – 2
2r

E|W |2r +
(2r – 1)2r–2

λr E
∣∣W – W ′∣∣2r

+ (2r – 1)

(2r–3∑

k=0

(
2r – 2

k

)
k

2r(2r – k – 1)
λ( 2r

k –1)(r–1)–1

)

E|W |2r

+ (2r – 1)

(2r–3∑

k=0

(
2r – 2

k

)
2r – k

2rλr(2r – k – 1)

)

E
∣
∣W – W ′∣∣2r .

Rewriting the inequality, we can show that

E|W |2r ≤ C
E|W – W ′|2r

λr , (7)
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for some constant C. Since E|W – W ′|2r = O(λr), we can conclude that
E|W |r = O(1).

2. From the fact that

1 – �(z) ≤ e– z2
2√

2πz
for z > 0,

and

�(z) ≤ e– z2
2√

2π |z| for z < 0,

we can show that

0 ≤ g ′
z(w) =

(
1 – �(z)

)(
1 +

√
2πwe

w2
2 �(w)

) ≤ e– z2
2√

2πz
, for w ≤ 0,

and

0 < g ′
z(w) ≤ (

1 – �(z)
)
(

1 +
√

2π
z
2

e
z2
8

)
≤ e– z2

2√
2πz

+
e –3z2

8

2
, for 0 < w ≤ z

2
.

Therefore,

∣
∣g ′

z(w)
∣
∣ ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e– z2
2√

2πz , w ≤ 0,

e– z2
2√

2πz + e– 3z2
8

2 , 0 < w ≤ z
2 ,

1, w > z
2 .

Consequently,

E
∣
∣g ′

z(W )
∣
∣ = E

∣
∣g ′

z(W )
∣
∣I(W ≤ 0) + E

∣
∣g ′

z(W )
∣
∣I

(
0 < W ≤ z

2

)

+ E
∣
∣g ′

z(W )
∣
∣I

(
W >

z
2

)

≤ 2e– z2
2√

2πz
+

e– 3z2
8

2
+ P

(
W >

z
2

)

≤ 2e– z2
2√

2πz
+

e– 3z2
8

2
+

CE|W |2r

z2r

=
1

(1 + z)2r (1 + z)2r
(

e– z2
2√

2πz
+

e– 3z2
8

2
+

C
z2r

)
(8)

≤ C
(1 + z)2r for z > 0,

where we use the property that E|W |2r = O(1) to obtain (8). Therefore, the lemma is
proved. �
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Having obtained the important moment properties, we applied them to prove the main
result as follows.

Proof of Theorem 1 By the property of the standard normal distribution, �(z) = 1 –�(–z),
it suffices to assume that z ≥ 1. From (3) and (4), we obtain

∣
∣P(W ≤ z) – �(z)

∣
∣ ≤

∣∣
∣∣Eg ′

z(W ) – Eg ′
z(W )

∫ ∞

–∞
K̂(t) dt

∣∣
∣∣

+
∣
∣∣
∣E

∫ ∞

–∞

(
g ′

z(W ) – g ′
z(W + t)

)
K̂(t) dt

∣
∣∣
∣ + ERgz(W )

= : |T1| + |T2| + |T3|, (9)

where

T1 = Eg ′
z(W ) – Eg ′

z(W )
∫ ∞

–∞
K̂(t) dt,

T2 = E
∫ ∞

–∞

(
g ′

z(W ) – g ′
z(W + t)

)
K̂ (t) dt,

and

T3 = ERgz(W ).

To obtain the bound in (9), we apply the technique in Sumritnorrapong, Neammanee, and
Suntornchost [8] to each of the three terms as follows.

For the bound for |T1|, we note that

|T1| ≤
√

E
(
g ′

z(W )
)2

√

E
(

1 – EW
(∫ ∞

–∞
K̂(t) dt

))2

≤
√

E
(
g ′

z(W )
)2

√

E
(

1 –
1

2λ
EW

(
W ′ – W

)2
)2

.

Using the properties of Stein’s solution gz and applying Lemma 2, we obtain

E
(
g ′

z(W )
)2 ≤ E

∣
∣g ′

z(W )
∣
∣ ≤ C

(1 + z)2r .

Therefore,

|T1| ≤ C
(1 + z)r

√

E
(

1 –
1

2λ
EW

(
W ′ – W

)2
)2

. (10)

To bound |T2|, we note that

|T2| =
∣
∣∣
∣E

∫ ∞

–∞

{
g ′

z(W ) – g ′
z(W + t)

}
K̂(t) dt

∣
∣∣
∣

≤ E
∫ ∞

–∞

∣
∣g ′

z(W ) – g ′
z(W + t)

∣
∣K̂(t) dt
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≤ T21 + T22 + T23, (11)

where

T21 = EI
(

δW ≥ z
4

)∫ ∞

–∞

∣
∣g ′

z(W ) – g ′
z(W + t)

∣
∣K̂(t) dt,

T22 = EI
(

δW <
z
4

)∫ ∞

–∞
I
(
z – max(0, t) < W < z – min(0, t)

)
K̂(t) dt,

T23 = EI
(

δW <
z
4

)∫ ∞

–∞

∫ 0

t
h(W + u)K̂(t) du dt,

and h(w) = (wgz(w))′.
The bound for the term T21 is

|T21| ≤ EI
(

δW ≥ z
4

)∫ ∞

–∞
K̂(t) dt

≤ EI
(

δW ≥ z
4

)
(W – W ′)2

2λ

≤ 1
2λ

(
P
(

δW ≥ z
4

)) 1
2 (

E
∣∣W – W ′∣∣4) 1

2

≤ C
(1 + z)r O

(
λ

r
2
)
, (12)

where we use Markov’s inequality and the assumption that E|W – W ′|2r = O(λr) to obtain
the last inequality.

To obtain a bound for T22 we define a function fδ,r : R →R, for δ > 0, and r ∈N, as

fδ,r(t) =

⎧
⎪⎪⎨

⎪⎪⎩

2δ(1 + t + δ)r if t < z – 2δ,

(1 + t + δ)r(t – z + 4δ) if z – 2δ ≤ t ≤ z + 2δ,

6δ(1 + t + δ)r if t > z + 2δ.

Then,

f ′
δ,r(t) =

⎧
⎪⎪⎨

⎪⎪⎩

2δr(1 + t + δ)r–1 if t < z – 2δ,

(1 + t + δ)r + (t – z + 2δ)r(1 + t + δ)r–1 if z – 2δ < t < z + 2δ,

6δr(1 + t + δ)r–1 if t > z + 2δ,

and

f ′
δ,r(t) ≥

⎧
⎨

⎩
(1 + z + δ)r if z – 2δ < t < z + 2δ,

0 if t < z – 2δ or t > z – 2δ.
(13)

Applying the power mean inequality to fδ,r , we obtain

∣
∣fδ,r(t)

∣
∣ ≤ 6 · 3r–1δ

(
1 + |t|r + δr) for all t ∈R.
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Moreover, note that

z – 2δW < W + t < z + 2δW

for |t| ≤ δW and z – δW < W < z + δW . Therefore,

|T22| ≤ E
∫

|t|≤δW

I
(
z – |t| < W < z + |t|)K̂(t) dt

≤ E
∫

|t|≤δW

(1 + z + δW )r

(1 + z)r I(z – δW < W < z + δW )K̂(t) dt

≤ 1
(1 + z)r E

∫

|t|≤δW

f ′
δW ,r(W + t)K̂(t) dt

=
1

(1 + z)r

(
EWfδW ,r(W ) – ERfδW ,r(W )

)

≤ C
(1 + z)r E

(|W |δW
(
1 + |W |r + δr

W
))

+
C

(1 + z)r E
(|R|δW

(
1 + |W |r + δr

W
))

.

Using Hölder’s inequality and applying Lemma 2, we obtain

E
(|W |δW

(
1 + |W |r + δr

W
)) ≤ (

EW 2) 1
2
(
E
∣
∣W – W ′∣∣2) 1

2 +
(
E|W |2r) r+1

2r
(
E
∣
∣W – W ′∣∣4) 1

4

+
(
E|W |4) 1

4
(
E
∣∣W – W ′∣∣2r) r+1

2r

≤ O(
√

λ)

and

E
(|R|δW

(
1 + |W |r + δr

W
))

≤ (
E|R|2) 1

2
(
E
∣
∣W – W ′∣∣2) 1

2 +
(
E|R|4) 1

4
(
E|W |4) 1

4
(
E
∣
∣W – W ′∣∣2r) 1

2

+
(
E|R|4) 1

4
(
E
∣∣W – W ′∣∣2r) r+1

2r

≤ [(
E|R|2) 1

2 +
(
E|R|4) 1

4
]
O(

√
λ).

Therefore,

|T22| ≤ C
(1 + z)r

[
1 +

(
E|R|2) 1

2 +
(
E|R|4) 1

4
]
O(

√
λ). (14)

For the bound of T23, we note that

T23 ≤ EI
(

δW <
z
4

)∫ ∞

–∞

∫ 0

t
h(W + u)K̂(t)I

(
W + u ≤ 3z

4

)
du dt

+ EI
(

δW <
z
4

)∫ ∞

–∞

∫ 0

t
h(W + u)K̂(t)I

(
W + u >

3z
4

)
du dt. (15)
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From the definition of h defined by h(w) = (wgz(w))′, we can obtain a bound of the function
h as follows.

If w ≤ 3z
4 , then (see Equation (38) in [8]),

h(w) ≤ 1
z

(
1 +

9z2

16

)
e– 7z2

32 +
e– z2

2√
2π

≤ C
(1 + z)r .

For w > 3z
4 , we have

h(w) ≤ 1.001(1 + z).

Applying

∫ ∞

–∞

∫ 0

t
K̂(t) du dt ≤

∫ ∞

–∞
|t|K̂(t) dt =

1
4λ

∣
∣W ′ – W

∣
∣3,

and Markov’s inequality,

P
(

W >
z
2

)
≤ CE|W |2r

z2r ,

respectively, to the first and second terms of (15), we obtain

|T23| ≤ C
λ(1 + z)r E

∣
∣W – W ′∣∣3 +

C(1 + z)
λ

E
∣
∣W – W ′∣∣3

I

(
W >

z
2

)

≤ C
λ(1 + z)r E

∣
∣W – W ′∣∣3 +

C
λ(1 + z)r–1

(
E
∣
∣W – W ′∣∣6) 1

2
(
E|W |2r) 1

2

≤ C
(1 + z)r–1 O(

√
λ), (16)

where we use Hölder’s inequality to obtain the second inequality.
Using the property of Stein’s solution, we obtain

|T3| =
∣∣ERgz(W )

∣∣ ≤ 1
z

E|R| ≤ C
1 + z

E|R|. (17)

From (9)–(17), we have

∣∣P(W ≤ z) – �(z)
∣∣ ≤ C

(1 + |z|)r

√

E
(

1 –
1

2λ
EW

(
W ′ – W

)2
)2

+
C

(1 + |z|)r O
(
λ

r
2
)

+
C

(1 + |z|)r–1 O(
√

λ)

+
C

(1 + |z|)r

[
1 +

(
E|R|2) 1

2 +
(
E|R|4) 1

4
]
O(

√
λ)

+
C

1 + |z|E|R|.

Therefore, the theorem is proved. �
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3 Applications
In this section, we discuss two applications of our main theorem; the independence test
and the quadratic forms.

3.1 Independence test
The test of independence is an important test in statistics particularly in multivariate
statistics. The main role of the test is to test the independence between different vari-
ables in an m-variable population, say X = (X1, . . . , Xm)′ with covariance matrix �. Let
{X1, X2, . . . , Xn} be a random sample of size n form the m-variable population represented
by a random vector. One well-known test of independence was proposed by Schott [11]
where the author considered a test based on the sum of squared sample correlation coef-
ficients. Specifically, let r = (rij)m×m be the sample correlation matrix, where

rij =
∑n

k=1(Xik – Xi)(Xjk – Xj)√∑n
k=1(Xik – Xi)2

√∑n
k=1(Xjk – Xj)2

,

Xi = (X1i, X2i, . . . , Xmi)′ and Xi = 1
n
∑n

k=1 Xik . Let tn,m be the sum of squared rijs for i > j,

tn,m =
m∑

i=2

i–1∑

j=1

r2
ij,

and

W := Wn,m = cn,m

(
tn,m –

m(m – 1)
2(n – 1)

)
,

where cn,m = n
√

n+2√
m(m–1)(n–1) .

Schott [11] proved that

Wn,m
d−→ N(0, 1),

where m = O(n).
Later, in 2012, Chen and Shao [12] gave a uniform bound for the independence test with

the assumptions m = O(n) and E(X24
11 ) < ∞ as

sup
z∈R

∣
∣P(Wn,m < z) – �(z)

∣
∣ = O

(
1
m

)
.

Later, in 2019, Rerkruthairat [13] extended the bound to be a nonuniform bound, which
is

∣
∣P(Wn,m < z) – �(z)

∣
∣ ≤ 1

0.5 + |z| · O
(

1
m

)
,

for every z ∈R.
Applying our main result, we can improve the bound of Rerkruthairat [13] by increasing

the rate of convergence to 1
(1+|z|)3 · O( 1√

m ), as in the following theorem.
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Theorem 3 Let {Xij, 1 ≤ i ≤ m, 1 ≤ j ≤ n} be independent and identically distributed ran-
dom variables and � be the cumulative distribution function of the standard normal dis-
tribution. Assume that m = O(n). If E(X24

11 ) < ∞, then for z ∈R,

∣∣P(Wm,n ≤ z) – �(z)
∣∣ ≤ 1

(1 + |z|)3 · O
(

1√
m

)
.

Proof For the case |z| < 1, applying the result of uniform bounds for the independence test
in [12], we obtain

∣∣P(Wm,n ≤ z) – �(z)
∣∣ ≤ 1

(1 + |z|)3 · O
(

1√
m

)
.

For the case |z| ≥ 1, we follow the exchangeable pair constructed in Chen and Shao [12]. In
particular, let X∗

i , 1 ≤ i ≤ n be an independent copy of Xi, 1 ≤ i ≤ n, and let I be a uniform
distributed random variable on {1, 2, . . . , m}, which is independent of {Xi, X∗

i , 1 ≤ i ≤ n}.
Define t∗

n,m = tn,m –
∑m

j=1
j 
=I

r2
Ij +

∑m
j=1
j 
=I

r2
I∗j, where

ri∗j =
∑n

k=1(X∗
ik – X∗

i )(Xjk – Xj)√∑n
k=1(X∗

ik – X∗
i )2

√∑n
k=1(Xjk – Xj)2

.

Define W ′ := W ′
n,m = cn,m(t∗

n,m – m(m–1)
2(n–1) ). Then, (W , W ′) is an exchangeable pair such that

EW (W – W ′) = 2
m W and

E
(
W – W ′)8 = O

(
1

m4

)
. (18)

Chen and Shao [12] proved that

∣∣
∣∣

1
2λ

EW (
W – W ′)2 – 1

∣∣
∣∣ ≤ c2

n,mm
4

(J1 + J2) + O
(

1
n

)
,

where

J1 =

∣∣∣
∣∣

1
m

m∑

i=1

{ m∑

j=1
j 
=i

(
r2

ij –
1

n – 1

)}2

–
2(m – 1)

n2

∣∣∣
∣∣

and

J2 =

∣∣
∣∣
∣

1
m

m∑

i=1

EW

{ m∑

j=1
j 
=i

(
r2

i∗j –
1

n – 1

)}2

–
2(m – 1)

n2

∣∣
∣∣
∣
.

Moreover,

EJ2
1 = O

(
m
n4

)
and EJ2

2 = O
(

m
n4

)
.
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Applying the inequality (a + b)2 ≤ 2(a2 + b2) and using the property that m = O(n),

E
(

1 –
1

2λ
EW (

W – W ′)2
)2

≤ c4
n,mm2

8
E(J1 + J2)2 + O

(
1
n2

)

≤ c4
n,mm2

4
(
EJ2

1 + EJ2
2
)

+ O
(

1
n2

)

= O
(

1
m

)
. (19)

Substituting λ = 2
m and R = 0 in Theorem 1, and using (18), (19), and the property that

m = O(n), we obtain

∣
∣P(W ≤ z) – �(z)

∣
∣ ≤ 1

(1 + z)3 · O
(

1√
m

)
.

This completes the proof. �

3.2 Quadratic forms
In this section, we apply our main theorem to the problem of the quadratic forms. In
particular, let X1, X2, . . . , Xn be independent and identically distributed random variables
with EXi = 0, Var(Xi) = 1 and EX4

i < ∞ for all i ∈ {1, 2, . . . , n}. Let A = [aij]n×n be a real
symmetric matrix and

σ 2
n = 2

n∑

i=1

n∑

j=1

a2
ij. (20)

Therefore, the quadratic forms is defined as

W := Wn =
1
σn

n∑

i=1

n∑

j=1
j 
=i

aijXiXj. (21)

The problem of quadratic forms has been widely studied in the literature. For example,
Jong [14] proved a central limit theorem of the quadratic forms. Götze and Tikhomirov
[15] gave an asymptotic distribution of the quadratic forms.

Later, in 2019, Shao and Zhang [9] obtained a uniform bound for the quadratic forms
with the assumption that aii = 0 for all 1 ≤ i ≤ n as

sup
z∈R

∣
∣P(Wn ≤ z) – �(z)

∣
∣ ≤ CEX4

1
σ 2

n

(√√
√
√

∑

i

(∑

j

a2
ij

)2

+

√√
√
√

∑

i,j

(∑

k

aikajk

)2)
,

where C is a positive constant. The bound of normal approximation was extended to a
nonuniform bound in Liu et al. [10] as the following:

∣∣P(Wn ≤ z) – �(z)
∣∣ ≤ CEX4

1
(1 + z)2σ 2

n

(√√√
√

∑

i

(∑

j

a2
ij

)2

+

√√√
√

∑

i,j

(∑

k

aikajk

)2)
.
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In this section, we apply our main result to obtain a sharper nonuniform bound of the nor-
mal approximation for the quadratic forms. Our bound is given in the following theorem.

Theorem 4 Let X1, X2, . . . , Xn be independent and identically distributed random vari-
ables with EXi = 0, Var(Xi) = 1 and EX8

i < ∞ for all i ∈ {1, 2, . . . , n}, and A = [aij]n×n be a
real symmetric matrix with aii = 0 for all 1 ≤ i ≤ n. Then, for z ∈R,

∣
∣P(W ≤ z) – �(z)

∣
∣

≤ C
(1 + |z|)3

(
EX4

1
σ 2

n

(√√
√
√

∑

i

(∑

j

a2
ij

)2

+

√√
√
√

∑

i,j

(∑

k

aikajk

)2)
+ O

(
1√
n

))
.

Proof For the case |z| < 1, we apply the result of a uniform bound for quadratic forms in
[9] and we obtain

∣
∣P(W ≤ z) – �(z)

∣
∣

≤ CEX4
1

(1 + |z|)3σ 2
n

(√√
√
√

∑

i

(∑

j

a2
ij

)2

+

√√
√
√

∑

i,j

(∑

k

aikajk

)2)

≤ C
(1 + |z|)3

(
EX4

1
σ 2

n

(√√√
√

∑

i

(∑

j

a2
ij

)2

+

√√√
√

∑

i,j

(∑

k

aikajk

)2)
+ O

(
1√
n

))
.

For the case |z| ≥ 1, following Shao and Zhang [9], let X ′
i be an independent copy of Xi

and I be a random index uniformly distribution over {1, 2, . . . , n}. Define

W ′ := W ′
n = Wn –

2
σn

n∑

j=1

aIjXj
(
XI – X ′

I
)
. (22)

Then, W ′ is an exchangeable pair of W and

W – W ′ =
2
σn

∑

j 
=I

aIjXj
(
XI – X ′

I
)
. (23)

Consequently, EW (W – W ′) = 2
n W , and

√

E
(

1 –
1

2λ
EW

(
W – W ′)2

)2

≤ CEX4
1

σ 2
n

(√√√
√

∑

i

(∑

j

a2
ij

)2

+

√√√
√

∑

i,j

(∑

k

aikajk

)2)
. (24)
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Using (23) and the properties of conditional expectation, we obtain

EW (
W – W ′)8 =

(
2
σn

)8

EW
(∑

j 
=I

aIjXj
(
XI – X ′

I
)
)8

=
(

2
σn

)8 1
n

n∑

i=1

EW
((

Xi – X ′
i
)8

(∑

j 
=i

aijXj

)8)

≤ 28

nσ 8
n

n∑

i=1

EW

(( 8∑

k=0

(
8
k

)
|Xi|k

∣∣X ′
i
∣∣8–k

)(∑

j 
=i

aijXj

)8
)

=
28

nσ 8
n

n∑

i=1

(∑

j 
=i

aijXj

)8
( 8∑

k=0

(
8
k

)
|Xi|kE

∣
∣X ′

i
∣
∣8–k

)

. (25)

By Hölder’s inequality, we have E|Xi|k < (E|Xi|8)k/8 for k ≤ 8. Therefore,

E
(∑

j 
=i

aijXj

)8

= E

( n∑

j=1

aijXj

)8

≤ C
(
EX8

1
)
(( n∑

j=1

a3
ij

)2( n∑

j=1

a2
ij

)

+

( n∑

j=1

a2
ij

)4)

(26)

and

8∑

k=0

E|Xi|kE
∣∣X ′

i
∣∣8–k ≤ CEX8

i . (27)

Using the properties of conditional expectation and (25)–(27), we obtain

E
(
W – W ′)8 = E

(
EW (

W – W ′)8)

≤ C
nσ 8

n

n∑

i=1

E
(∑

j 
=i

aijXj

)8
( 8∑

k=0

EXk
i EX ′8–k

i

)

≤ C
nσ 8

n
EX8

1

n∑

i=1

(( n∑

j=1

a3
ij

)2( n∑

j=1

a2
ij

)

+

( n∑

j=1

a2
ij

)4)

.

We can see that σ 8
n = O(n8) and

n∑

i=1

(( n∑

j=1

a3
ij

)2( n∑

j=1

a2
ij

)

+

( n∑

j=1

a2
ij

)4)

= O
(
n5).

Therefore,

E
(
W – W ′)8 = O

(
1
n4

)
. (28)
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Substituting λ = 2
n and R = 0 in Theorem 1, and using (24) and (28), we obtain

∣∣P(W ≤ z) – �(z)
∣∣

≤ C
(1 + |z|)3

(
EX4

1
σ 2

n

(√√
√
√

∑

i

(∑

j

a2
ij

)2

+

√√
√
√

∑

i,j

(∑

k

aikajk

)2)
+ O

(
1√
n

))
.

Therefore, the proof is complete. �

4 Discussions
In this paper, we have constructed a nonuniform bound for normal approximation by us-
ing the exchangeable techniques where the distance between the exchangeable pair could
be unbounded. Moreover, we have applied our main result to two applications: (1) the in-
dependence test where we showed that our bound is sharper than the most recent bound
obtained in Rerkruthairat [13]; (2) the quadratic forms where we showed that the obtained
bound is smaller than the bound obtained in Liu et al. [10]. Some further extensions of our
study can be carried out, for instance, to investigate further applications of the obtained
bound, or to adapt the concept to obtain a bound for other coupling techniques.
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