Triple-adaptive subgradient extragradient with extrapolation procedure for bilevel split variational inequality

Lu-Chuan Ceng ${ }^{1}$, Debdas Ghosh², Yekini Shehu ${ }^{3 *}$ and Jen-Chih Yao ${ }^{4}$

*Correspondence:
yekini.shehu@zinu.edu.cn
${ }^{3}$ College of Mathematics and Computer Science, Zhejiang Normal University, 321004, Jinhua, People's Republic of China Full list of author information is available at the end of the article

Abstract

This paper introduces a triple-adaptive subgradient extragradient process with extrapolation to solve a bilevel split pseudomonotone variational inequality problem (BSPVIP) with the common fixed point problem constraint of finitely many nonexpansive mappings. The problem under consideration is in real Hilbert spaces, where the BSPVIP involves a fixed point problem of demimetric mapping. The proposed rule exploits the strong monotonicity of one operator at the upper level and the pseudomonotonicity of another mapping at the lower level. The strong convergence result for the proposed algorithm is established under some suitable assumptions. In addition, a numerical example is given to demonstrate the viability of the proposed rule. Our results improve and extend some recent developments to a great extent.

MSC: 65Y05; 65K15; 68W10; 47H05; 47H10
Keywords: Subgradient extragradient process; Bilevel split pseudomonotone variational inequality problem; Extrapolation step; Demimetric mapping; Fixed point; Nonexpansive mapping

1 Introduction

Suppose that $\emptyset \neq C \subset \mathcal{H}$ with C being a closed convex set in a real Hilbert space \mathcal{H}, and $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ are the inner product and the induced norm in \mathcal{H}, respectively. Let P_{C} be the metric projection of \mathcal{H} onto C, and for a given mapping $S: C \rightarrow \mathcal{H}$, let its set of fixed points be denoted by $\operatorname{Fix}(S)$.
Let $A: \mathcal{H} \rightarrow \mathcal{H}$ be a Lipschitz continuous mapping with Lipschitz constant L, and consider the classical variational inequality problem (VIP) of finding $x^{*} \in C$ such that $\left\langle A x^{*}, x-x^{*}\right\rangle \geq 0 \forall x \in C$. We denote the solution set of the VIP by VI (C, A). One of the most popular approaches for settling the VIP is the extragradient method invented by Korpelevich [1] in 1976. For any given initial point $p_{0} \in C$, the method of Korpelevich [1] generates a sequence $\left\{p_{t}\right\}$ as fabricated below:

$$
\left\{\begin{array}{l}
q_{t}=P_{C}\left(p_{t}-\ell A p_{t}\right) \\
p_{t+1}=P_{C}\left(p_{t}-\ell A q_{t}\right), \quad t=0,1,2, \ldots
\end{array}\right.
$$

[^0]where the constant ℓ lies in $\left(0, \frac{1}{L}\right)$. The literature on the VIP is numerous, and Korpelevich's extragradient method has received extensive attention of many scholars, who intensely enhanced it in various aspects; for example, please see [2-26] and the references therein, to name but a few.
Thong and Hieu [26] put forward subgradient extragradient process with extrapolation, which generates a sequence $\left\{p_{t}\right\}$ for any given $p_{1}, p_{0} \in \mathcal{H}$ as follows:
\[

\left\{$$
\begin{array}{l}
w_{t}=p_{t}+\alpha_{t}\left(p_{t}-p_{t-1}\right) \\
y_{t}=P_{C}\left(w_{t}-\zeta A w_{t}\right) \\
C_{t}=\left\{p \in \mathcal{H}:\left\langle w_{t}-\zeta A w_{t}-y_{t}, y_{t}-p\right\rangle \geq 0\right\} \\
p_{t+1}=P_{C_{t}}\left(w_{t}-\ell A y_{t}\right), \quad t=1,2,3, \ldots
\end{array}
$$\right.
\]

where $\zeta \in\left(0, \frac{1}{L}\right)$ and weak convergence is obtained. Given nonexpansive mappings S_{i} : $\mathcal{H} \rightarrow \mathcal{H}, i=1,2, \ldots, N$, Ceng and Shang [16] presented a subgradient extragradient-type process for computing a common element of the common fixed point set and $\mathrm{VI}(C, A)$ when

$$
\Omega:=\bigcap_{i=1}^{N} \operatorname{Fix}\left(S_{i}\right) \cap \mathrm{VI}(C, A) \neq \emptyset
$$

Furthermore, the following strongly convergent algorithm was studied in [21] when $\Omega:=$ $\bigcap_{i=1}^{N} \operatorname{Fix}\left(S_{i}\right) \cap \mathrm{VI}(C, A)$ is nonempty.

Algorithm 1.1 (See [21, Algorithm 3.1]) Modified inertial subgradient extragradient method.

Initialization

Let $\lambda_{1}>0, \alpha>0, \mu \in(0,1)$, and $x_{1}, x_{0} \in \mathcal{H}$ be arbitrary.
Iterative steps
Calculate x_{t+1} as follows:
Step 1. Given the iterates x_{t} and $x_{t-1}(t \geq 1)$, choose α_{t} such that $0 \leq \alpha_{t} \leq \bar{\alpha}_{t}$, where

$$
\bar{\alpha}_{t}= \begin{cases}\min \left\{\alpha, \frac{\varepsilon_{t}}{\left\|x_{t}-x_{t-1}\right\|}\right\} & \text { if } x_{t} \neq x_{t-1}, \\ \alpha & \text { otherwise } .\end{cases}
$$

Step 2. Compute $w_{t}=S_{t} x_{t}+\alpha_{t}\left(S_{t} x_{t}-S_{t} x_{t-1}\right)$ and $y_{t}=P_{C}\left(w_{t}-\lambda_{t} A w_{t}\right)$.
Step 3. Identify $C_{t}=\left\{y \in \mathcal{H}:\left\langle w_{t}-\lambda_{t} A w_{t}-y_{t}, y_{t}-y\right\rangle \geq 0\right\}$, then calculate

$$
z_{t}=P_{C_{t}}\left(w_{t}-\lambda_{t} A y_{t}\right) .
$$

Step 4. Update $x_{t+1}=\beta_{t} f\left(x_{t}\right)+\gamma_{t} x_{t}+\left(\left(1-\gamma_{t}\right) I-\beta_{t} \rho F\right) z_{t}$, where $\rho \in\left(0, \frac{2 \eta}{\kappa^{2}}\right)$ and update

$$
\lambda_{t+1}= \begin{cases}\min \left\{\mu \frac{\left\|w_{t}-y_{t}\right\|^{2}+\left\|z_{t}-y_{t}\right\|^{2}}{2\left\lfloor A w_{t}-A y_{t}, z_{t}-y_{t}\right\rangle}, \lambda_{t}\right\} & \text { if }\left\langle A w_{t}-A y_{t}, z_{t}-y_{t}\right\rangle>0 \\ \lambda_{t} & \text { otherwise }\end{cases}
$$

Set $t:=t+1$ and return to Step 1 , where f is a contraction $(f: \mathcal{H} \rightarrow \mathcal{H}$ is a contraction if there exists $v \in[0,1)$ such that $\|f(x)-f(y)\| \leq v\|x-y\|, \forall x, y \in \mathcal{H}), F$ is η-strongly mono-
tone and κ-Lipschitz continuous (kindly see Sect. 2 for its definition) with $\left\{\beta_{t}\right\},\left\{\gamma_{t}\right\},\left\{\varepsilon_{t}\right\} \subset$ $(0,1)$ fulfilling some conditions.

Next, suppose that C and Q are nonempty, closed, and convex subsets of Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2}, respectively. Let $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ denote a bounded linear operator and A, F : $\mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ and $B: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ be nonlinear mappings. Then, the bilevel split variational inequality problem (BSVIP) (see [27]) is as specified below:

$$
\begin{equation*}
\text { Seek } q^{*} \in \Omega \text { such that }\left\langle F q^{*}, z-q^{*}\right\rangle \geq 0 \quad \forall z \in \Lambda, \tag{1.1}
\end{equation*}
$$

where $\Lambda:=\{z \in \mathrm{VI}(C, A): T z \in \mathrm{VI}(Q, B)\}$ is the solution set of the split variational inequality problem (SVIP), which was introduced by Censor et al. [28] and formulated as follows:

$$
\begin{equation*}
\text { Find } x^{*} \in C \text { such that } \quad\left\langle A x^{*}, x-x^{*}\right\rangle \geq 0 \quad \forall x \in C \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{*}=T x^{*} \in Q \text { such that } \quad\left\langle B y^{*}, y-y^{*}\right\rangle \geq 0 \quad \forall y \in Q \tag{1.3}
\end{equation*}
$$

with $\mathrm{VI}(C, A)$ and $\mathrm{VI}(Q, B)$ representing the solution sets of variational inequalities (1.2) and (1.3), respectively. Note that the SVIP involves finding $x^{*} \in \operatorname{VI}(C, A)$ such that $T x^{*} \in$ $\mathrm{VI}(Q, B)$. Censor et al. [28] proposed a weakly convergent method for approximating the solution of (1.2)-(1.3): for any given initial $x_{1} \in \mathcal{H}_{1}$, identify the sequence $\left\{x_{t}\right\}$ generated by

$$
\begin{equation*}
x_{t+1}=P_{C}(I-\lambda A)\left(x_{t}+\gamma T^{*}\left(P_{Q}(I-\lambda B)-I\right) T x_{t}\right), \quad t=1,2,3, \ldots, \tag{1.4}
\end{equation*}
$$

where A and B both are inverse-strongly monotone and T is a bounded linear operator. Under appropriate assumptions, it was proven in [28] that the sequence $\left\{x_{t}\right\}$ converges weakly to a solution of (1.2)-(1.3).
We note that the VIP can be expressed as the FPP: $S z=P_{Q}(z-\mu B z), \mu>0$, with $\mathrm{VI}(Q, B)=\operatorname{Fix}(S)$. Consequently, we can reformulate the BSVIP in (1.1) as follows: Let A : $\mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ be quasimonotone and L-Lipschitz continuous, $F: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ be κ-Lipschitzian and η-strongly monotone, $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be a nonzero bounded linear operator, and $S: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ be a τ-demimetric mapping with $\tau \in(-\infty, 1)$; then,

$$
\begin{equation*}
\text { Find } q^{*} \in \Omega \text { such that }\left\langle F q^{*}, z-q^{*}\right\rangle \geq 0 \quad \forall z \in \Omega \text {, } \tag{1.5}
\end{equation*}
$$

where $\Omega:=\{z \in \mathrm{VI}(C, A): T z \in \operatorname{Fix}(S)\}$. In this case, such a problem is referred to as a bilevel split quasimonotone variational inequality problem (BSQVIP) and its strong convergence results are obtained in [18].
Assume that $f: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ is a contractive mapping with $v \in[0,1)$ with $v<\zeta:=1-$ $\sqrt{1-\rho\left(2 \eta-\rho \kappa^{2}\right)}$ for $\rho \in\left(0, \frac{2 \eta}{\kappa^{2}}\right), A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ is pseudomonotone and L-Lipschitz continuous with $\|A u\| \leq \liminf _{t \rightarrow \infty}\left\|A u_{t}\right\|$ for each $\left\{u_{t}\right\} \subset C$ with $u_{t} \rightharpoonup u,\left\{S_{i}\right\}_{i=1}^{N}$ is finitely many nonexpansive mappings on \mathcal{H}_{1} and $\Xi:=\bigcap_{i=1}^{N} \operatorname{Fix}\left(S_{i}\right) \cap \Omega \neq \emptyset$. Then, the bilevel split
pseudomonotone variational inequality problem (BSPVIP) with the common fixed point problem (CFPP) constraint is formulated as follows:

$$
\begin{equation*}
\text { Seek } q^{*} \in \Xi \text { such that } \quad\left\langle(\rho F-f) q^{*}, p-q^{*}\right\rangle \geq 0 \quad \forall p \in \Xi . \tag{1.6}
\end{equation*}
$$

We propose triple-adaptive subgradient extragradient-type rule with inertial extrapolation to solve (1.6) in real Hilbert spaces, where the BSPVIP involves the FPP of demimetric mapping S. The rule exploits the strong monotonicity of the operator F at the upper-level problem and the pseudomonotonicity of the mapping A at the lower level. Consequently, we obtain strong convergence result. In addition, a numerical test is provided to show the viability of the suggested rule.
The article is organized as follows: In Sect. 2, we provide some concepts and basic tools for further use. Section 3 gives the convergence analysis of the suggested algorithm. Lastly, Sect. 4 gives a numerical illustration. Our results improve and extend the corresponding ones in [21,29], and the relevant explanatory argument is given after the main proof of convergence result in Sect. 3.

2 Preliminaries

A mapping $S: C \rightarrow \mathcal{H}$ is (see [30]):
(i) L-Lipschitz continuous or L-Lipschitzian if $\exists L>0$ such that $\|S \tilde{u}-S \bar{y}\| \leq L\|\tilde{u}-\bar{y}\| \forall \tilde{u}, \bar{y} \in C$. If $L=1$, then S is nonexpansive;
(ii) ς-strongly monotone if $\exists \varsigma>0$ such that $\langle S \tilde{u}-S \bar{y}, \tilde{u}-\bar{y}\rangle \geq \varsigma\|\tilde{u}-\bar{y}\|^{2} \forall \tilde{u}, \bar{y} \in C$;
(iii) monotone if $\langle S \tilde{u}-S \bar{y}, \tilde{u}-\bar{y}\rangle \geq 0 \forall \tilde{u}, \bar{y} \in C$;
(iv) pseudomonotone if $\langle S \tilde{u}, \bar{y}-\tilde{u}\rangle \geq 0 \Longrightarrow\langle S \bar{y}, \bar{y}-\tilde{u}\rangle \geq 0 \forall \tilde{u}, \bar{y} \in C$;
(v) quasimonotone if $\langle S \tilde{u}, \bar{y}-\tilde{u}\rangle>0 \Longrightarrow\langle S \bar{y}, \bar{y}-\tilde{u}\rangle \geq 0 \forall \tilde{u}, \bar{y} \in C$;
(vi) τ-demicontractive if $\exists \tau \in(0,1)$ such that

$$
\|S \tilde{u}-p\|^{2} \leq\|\tilde{u}-p\|^{2}+\tau\|\tilde{u}-S \tilde{u}\|^{2} \quad \forall \tilde{u} \in C, p \in \operatorname{Fix}(S) \neq \emptyset ;
$$

(vii) τ-demimetric if $\exists \tau \in(-\infty, 1)$ such that

$$
\langle\tilde{u}-S \tilde{u}, \tilde{u}-p\rangle \geq \frac{1-\tau}{2}\|\tilde{u}-S \tilde{u}\|^{2} \quad \forall \tilde{u} \in C, p \in \operatorname{Fix}(S) \neq \emptyset ;
$$

(viii) sequentially weakly continuous if $\forall\left\{x_{t}\right\} \subset C, x_{t} \rightharpoonup x \Longrightarrow S x_{t} \rightharpoonup S x$.

Given $\grave{u} \in \mathcal{H}$, there exists unique $P_{C} \grave{u} \in C$ with the following properties.

Lemma 2.1 (See [31]) The following hold:
(i) $\left\langle\check{u}-\grave{v}, P_{C} \check{u}-P_{C} \grave{v}\right\rangle \geq\left\|P_{C} \check{u}-P_{C} \grave{v}\right\|^{2} \forall \check{u}, \grave{v} \in \mathcal{H}$;
(ii) $w=P_{C} \check{u} \Longleftrightarrow\langle\check{u}-w, \grave{v}-w\rangle \leq 0 \forall \check{u} \in \mathcal{H}, \grave{v} \in C$;
(iii) $\|\check{u}-\grave{v}\|^{2} \geq\left\|\check{u}-P_{C} \check{u}\right\|^{2}+\left\|\grave{v}-P_{C} \check{u}\right\|^{2} \forall \check{u} \in \mathcal{H}, \grave{v} \in C$;
(iv) $\|\check{u}-\grave{v}\|^{2}=\|\check{u}\|^{2}-\|\grave{v}\|^{2}-2\langle\check{u}-\grave{v}, \grave{v}\rangle \forall \check{u}, \grave{v} \in \mathcal{H}$;
(v) $\|\vartheta \check{u}+(1-\vartheta) \grave{v}\|^{2}=\vartheta\|\check{u}\|^{2}+(1-\vartheta)\|\grave{v}\|^{2}-\vartheta(1-\vartheta)\|\check{u}-\grave{v}\|^{2} \forall \check{u}, \grave{v} \in \mathcal{H}, \vartheta \in \mathbb{R}$.

Clearly, (ii) \Longrightarrow (iii) \Longrightarrow (iv) $\Longrightarrow(v)$. However, the converse is not generally true.

Lemma 2.2 (See [32]) Let $\varpi \in(0,1], S: C \rightarrow \mathcal{H}$ be nonexpansive and $S^{\varpi}: C \rightarrow \mathcal{H}$ be defined by $S^{\varpi} \dot{x}:=S \dot{x}-\varpi \rho F(S \dot{x}) \forall \dot{x} \in C$, where F is ϱ-Lipschitz continuous and ς-strongly
monotone. Then S^{σ} is a contraction provided $0<\rho<\frac{2 \varsigma}{\varrho^{2}}$, i.e., $\left\|S^{\sigma} \dot{x}-S^{\sigma} \dot{y}\right\| \leq(1-\varpi \zeta) \| \dot{x}-$ $\dot{y} \| \forall \dot{x}, \dot{y} \in C$, where $\zeta=1-\sqrt{1-\rho\left(2 \varsigma-\rho \varrho^{2}\right)} \in(0,1]$.

Lemma 2.3 If $A: C \rightarrow \mathcal{H}$ is pseudomonotone and continuous, then $u^{*} \in C$ solves VIP \Leftrightarrow $\left\langle A v, v-u^{*}\right\rangle \geq 0 \forall v \in C$.

Proof The proof is straightforward and thus we skip it.

Lemma 2.4 (See [32]) Let $\left\{a_{t}\right\} \subset(0, \infty)$ satisfying the condition $a_{t+1} \leq\left(1-\lambda_{t}\right) a_{t}+\lambda_{t} \gamma_{t} \forall t \geq$ 1 , where $\left\{\lambda_{t}\right\},\left\{\gamma_{t}\right\} \subset \mathbb{R}$ and (i) $\left\{\lambda_{t}\right\} \subset[0,1]$ and $\sum_{t=1}^{\infty} \lambda_{t}=\infty$, and (ii) $\lim \sup _{t \rightarrow \infty} \gamma_{t} \leq 0$ or $\sum_{t=1}^{\infty}\left|\lambda_{t} \gamma_{t}\right|<\infty$. Then $\lim _{t \rightarrow \infty} a_{t}=0$.

Lemma 2.5 (See [31, demiclosedness principle]) IfS is nonexpansive with $\operatorname{Fix}(S) \neq \emptyset$, then $I-S$ is demiclosed atzero, i.e., if $\left\{x_{t}\right\}$ is a sequence in C such that $x_{t} \rightharpoonup x \in C$ and $(I-S) x_{t} \rightarrow$ 0 , then $(I-S) x=0$, where I is the identity mapping of \mathcal{H}.

Lemma 2.6 (See [6]) Let $\left\{\boldsymbol{\Gamma}_{s}\right\} \subset \mathbb{R}$ with $\exists\left\{\boldsymbol{\Gamma}_{s_{k}}\right\} \subset\left\{\boldsymbol{\Gamma}_{s}\right\}$ such that $\boldsymbol{\Gamma}_{s_{k}}<\boldsymbol{\Gamma}_{s_{k}+1} \forall k \geq 1$. Let $\{\phi(s)\}_{s \geq s_{0}}$ be formulated as

$$
\phi(s)=\max \left\{k \leq s: \boldsymbol{\Gamma}_{k}<\boldsymbol{\Gamma}_{k+1}\right\}
$$

with $s_{0} \geq 1$ satisfying $\left\{k \leq s_{0}: \boldsymbol{\Gamma}_{k}<\boldsymbol{\Gamma}_{k+1}\right\} \neq \emptyset$. Then:
(i) $\phi\left(s_{0}\right) \leq \phi\left(s_{0}+1\right) \leq \cdots$ and $\phi(s) \rightarrow \infty$;
(ii) $\boldsymbol{\Gamma}_{\phi(s)} \leq \boldsymbol{\Gamma}_{\phi(s)+1}$ and $\boldsymbol{\Gamma}_{s} \leq \boldsymbol{\Gamma}_{\phi(s)+1} \forall s \geq s_{0}$.

3 Convergence analysis

For the convergence analysis of our proposed rule for treating BSPVIP (1.6) with the CFPP constraint, we assume throughout that

- $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a nonzero bounded linear operator with the adjoint T^{*}, and
$S: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ is τ-demimetric with $I-S$ being demiclosed at zero, where $\tau \in(-\infty, 1)$.
- $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ is a pseudomonotone and L-Lipschitz continuous mapping satisfying the condition: $\|A u\| \leq \liminf _{t \rightarrow \infty}\left\|A u_{t}\right\|$ for each $\left\{u_{t}\right\} \subset C$ with $u_{t} \rightharpoonup u$.
- $\left\{S_{i}\right\}_{i=1}^{N}$ is finitely many nonexpansive self-mappings on \mathcal{H}_{1} such that $\Xi:=\bigcap_{i=1}^{N} \operatorname{Fix}\left(S_{i}\right) \cap \Omega \neq \emptyset$ with $\Omega:=\{z \in \operatorname{VI}(C, A): T z \in \operatorname{Fix}(S)\}$. In addition, when required, we write $S_{t}:=S_{t \bmod N}, t=1,2,3, \ldots$.
- $f: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ is a contraction with constant $v \in[0,1)$, and $F: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ is η-strongly monotone and κ-Lipschitzian such that $\nu<\zeta:=1-\sqrt{1-\rho\left(2 \eta-\rho \kappa^{2}\right)}$ for $\rho \in\left(0, \frac{2 \eta}{\kappa^{2}}\right)$.
- $\left\{\beta_{t}\right\},\left\{\gamma_{t}\right\},\left\{\varepsilon_{t}\right\} \subset(0, \infty)$ such that $\beta_{t}+\gamma_{t}<1, \sum_{t=1}^{\infty} \beta_{t}=\infty, \lim _{t \rightarrow \infty} \beta_{t}=0$, $0<\liminf _{t \rightarrow \infty} \gamma_{t} \leq \limsup \lim _{t \rightarrow \infty} \gamma_{t}<1$ and $\varepsilon_{t}=o\left(\beta_{t}\right)$.

Algorithm 3.1 (Triple-adaptive inertial subgradient extragradient rule)

Initialization: Let $\lambda_{1}>0, \epsilon>0, \sigma \geq 0, \mu \in(0,1), \alpha \in[0,1)$, and $x_{0}, x_{1} \in \mathcal{H}_{1}$ be arbitrary.
Iterative steps: Calculate x_{t+1} as follows:
Step 1. Given the iterates x_{t-1} and $x_{t}(t \geq 1)$, choose α_{t} such that $0 \leq \alpha_{t} \leq \bar{\alpha}_{t}$, where

$$
\bar{\alpha}_{t}= \begin{cases}\min \left\{\alpha, \frac{\varepsilon_{t}}{\left\|x_{t}-x_{t-1}\right\|}\right\} & \text { if } x_{t} \neq x_{t-1} \tag{3.1}\\ \alpha & \text { otherwise }\end{cases}
$$

Step 2. Compute $w_{t}=S_{t} x_{t}+\alpha_{t}\left(S_{t} x_{t}-S_{t} x_{t-1}\right)$ and $y_{t}=P_{C}\left(w_{t}-\lambda_{t} A w_{t}\right)$.
Step 3. Construct $C_{t}:=\left\{y \in \mathcal{H}_{1}:\left\langle w_{t}-\lambda_{t} A w_{t}-y_{t}, y_{t}-y\right\rangle \geq 0\right\}$, and compute $v_{t}=P_{C_{t}}\left(w_{t}-\right.$ $\left.\lambda_{t} A y_{t}\right)$ and $z_{t}=v_{t}-\sigma_{t} T^{*}(I-S) T v_{t}$.

Step 4. Calculate $x_{t+1}=\beta_{t} f\left(x_{t}\right)+\gamma_{t} x_{t}+\left(\left(1-\gamma_{t}\right) I-\beta_{t} \rho F\right) z_{t}$ and update

$$
\lambda_{t+1}= \begin{cases}\min \left\{\mu \frac{\left\|w_{t}-y_{t}\right\|^{2}+\left\|v_{t}-y_{t}\right\|^{2}}{2\left\langle A w_{t}-A y_{t}, v_{t}-y_{t}\right\rangle}, \lambda_{t}\right\} & \text { if }\left\langle A w_{t}-A y_{t}, v_{t}-y_{t}\right\rangle>0, \tag{3.2}\\ \lambda_{t} & \text { otherwise }\end{cases}
$$

and for any fixed $\epsilon>0, \sigma_{t}$ is chosen to be the bounded sequence satisfying

$$
\begin{equation*}
0<\epsilon \leq \sigma_{t} \leq \frac{(1-\tau)\left\|T v_{t}-S T v_{t}\right\|^{2}}{\left\|T^{*}\left(T v_{t}-S T v_{t}\right)\right\|^{2}}-\epsilon \quad \text { if } T v_{t} \neq S T v_{t} \tag{3.3}
\end{equation*}
$$

otherwise set $\sigma_{t}=\sigma \geq 0$.
Set $t:=t+1$ and go to Step 1 .

Remark 3.1 We have from (3.1) that $\lim _{t \rightarrow \infty} \frac{\alpha_{t}}{\beta_{t}}\left\|x_{t}-x_{t-1}\right\|=0$. Indeed, we have $\alpha_{t} \| x_{t}-$ $x_{t-1} \| \leq \varepsilon_{t} \forall t \geq 1$, which together with $\lim _{t \rightarrow \infty} \frac{\varepsilon_{t}}{\beta_{t}}=0$ implies that $\frac{\alpha_{t}}{\beta_{t}}\left\|x_{t}-x_{t-1}\right\| \leq \frac{\varepsilon_{t}}{\beta_{t}} \rightarrow 0$. It is easy to see that C_{t} is closed and convex. Furthermore, $C_{t} \neq \emptyset$ since $C \subset C_{t}$ and $C \neq \emptyset$. Hence, $\left\{v_{t}\right\}$ is well defined.

Lemma 3.1 The step size $\left\{\lambda_{t}\right\}$ is nonincreasing with $\lambda_{t} \geq \lambda:=\min \left\{\lambda_{1}, \frac{\mu}{L}\right\} \forall t \geq 1$, and $\lim _{t \rightarrow \infty} \lambda_{t} \geq \lambda:=\min \left\{\lambda_{1}, \frac{\mu}{L}\right\}$.

Proof By (3.2), we get $\lambda_{t} \geq \lambda_{t+1} \forall t \geq 1$. Now, observe that

$$
\left.\begin{array}{l}
\frac{1}{2}\left(\left\|w_{t}-y_{t}\right\|^{2}+\left\|v_{t}-y_{t}\right\|^{2}\right) \geq\left\|w_{t}-y_{t}\right\|\left\|v_{t}-y_{t}\right\| \\
\left\langle A w_{t}-A y_{t}, v_{t}-y_{t}\right\rangle \leq L\left\|w_{t}-y_{t}\right\|\left\|v_{t}-y_{t}\right\|
\end{array}\right\} \Longrightarrow \lambda_{t+1} \geq \min \left\{\lambda_{t}, \frac{\mu}{L}\right\} .
$$

We prove the following lemmas.

Lemma 3.2 The step size σ_{t} formulated in (3.3) is well defined.

Proof It suffices to show that $\left\|T^{*}\left(T v_{t}-S T v_{t}\right)\right\|^{2} \neq 0$. Take $p \in \Xi$ arbitrarily. Since S is a τ-demimetric mapping, we obtain

$$
\begin{align*}
\left\|v_{t}-p\right\|\left\|T^{*}\left(T v_{t}-S T v_{t}\right)\right\| & \geq\left\langle v_{t}-p, T^{*}\left(T v_{t}-S T v_{t}\right)\right\rangle \\
& =\left\langle T v_{t}-T p, T v_{t}-S T v_{t}\right\rangle \tag{3.4}\\
& \geq \frac{1-\tau}{2}\left\|T v_{t}-S T v_{t}\right\|^{2} .
\end{align*}
$$

If $T v_{t} \neq S T v_{t}$, then $\left\|T v_{t}-S T v_{t}\right\|^{2}>0$. Thus, $\left\|T^{*}\left(T v_{t}-S T v_{t}\right)\right\|^{2}>0$.

Lemma 3.3 The sequences $\left\{w_{t}\right\},\left\{y_{t}\right\},\left\{v_{t}\right\}$ satisfy

$$
\left\|v_{t}-p\right\|^{2} \leq\left\|w_{t}-p\right\|^{2}-\left(1-\mu \frac{\lambda_{t}}{\lambda_{t+1}}\right)\left\|w_{t}-y_{t}\right\|^{2}-\left(1-\mu \frac{\lambda_{t}}{\lambda_{t+1}}\right)\left\|v_{t}-y_{t}\right\|^{2} \quad \forall p \in \Xi .
$$

Proof Observe that

$$
\begin{equation*}
2\left\langle A w_{t}-A y_{t}, v_{t}-y_{t}\right\rangle \leq \frac{\mu}{\lambda_{t+1}}\left\|w_{t}-y_{t}\right\|^{2}+\frac{\mu}{\lambda_{t+1}}\left\|v_{t}-y_{t}\right\|^{2} \quad \forall t \geq 1 . \tag{3.5}
\end{equation*}
$$

Note that (3.5) holds when $\left\langle A w_{t}-A y_{t}, v_{t}-y_{t}\right\rangle \leq 0$. Conversely, we have (3.5) by (3.2). Also, $\forall \hat{p} \in \Xi \subset C \subset C_{t}$,

$$
\begin{aligned}
\left\|v_{t}-\hat{p}\right\|^{2} & =\left\|P_{C_{t}}\left(w_{t}-\lambda_{t} A y_{t}\right)-P_{C_{t}} \hat{p}\right\|^{2} \\
& \leq\left\langle v_{t}-\hat{p}, w_{t}-\lambda_{t} A y_{t}-\hat{p}\right\rangle \\
& =\frac{1}{2}\left\|v_{t}-\hat{p}\right\|^{2}+\frac{1}{2}\left\|w_{t}-\hat{p}\right\|^{2}-\frac{1}{2}\left\|v_{t}-w_{t}\right\|^{2}-\left\langle v_{t}-\hat{p}, \lambda_{t} A y_{t}\right\rangle
\end{aligned}
$$

which hence yields

$$
\begin{equation*}
\left\|v_{t}-\hat{p}\right\|^{2} \leq\left\|w_{t}-\hat{p}\right\|^{2}-\left\|v_{t}-w_{t}\right\|^{2}-2\left\langle v_{t}-\hat{p}, \lambda_{t} A y_{t}\right\rangle \tag{3.6}
\end{equation*}
$$

Since $\hat{p} \in \operatorname{VI}(C, A)$, we get $\langle A \hat{p}, \breve{x}-\hat{p}\rangle \geq 0 \forall \breve{x} \in C$. Pseudomonotonicity of A implies $\langle A u, u-$ $\hat{p}\rangle \geq 0 \forall u \in C$. Letting $u:=y_{t} \in C$ gives $\left\langle A y_{t}, \hat{p}-y_{t}\right\rangle \leq 0$. Thus,

$$
\begin{equation*}
\left\langle A y_{t}, \hat{p}-v_{t}\right\rangle=\left\langle A y_{t}, \hat{p}-y_{t}\right\rangle+\left\langle A y_{t}, y_{t}-v_{t}\right\rangle \leq\left\langle A y_{t}, y_{t}-v_{t}\right\rangle . \tag{3.7}
\end{equation*}
$$

Substituting (3.7) for (3.6), we obtain

$$
\begin{equation*}
\left\|v_{t}-\hat{p}\right\|^{2} \leq\left\|w_{t}-\hat{p}\right\|^{2}-\left\|v_{t}-y_{t}\right\|^{2}-\left\|y_{t}-w_{t}\right\|^{2}+2\left\langle w_{t}-\lambda_{t} A y_{t}-y_{t}, v_{t}-y_{t}\right\rangle . \tag{3.8}
\end{equation*}
$$

Since $v_{t}=P_{C_{t}}\left(w_{t}-\lambda_{t} A y_{t}\right)$, we have that $v_{t} \in C_{t}$, and hence

$$
\begin{aligned}
2\left\langle w_{t}-\lambda_{t} A y_{t}-y_{t}, v_{t}-y_{t}\right\rangle= & 2\left\langle w_{t}-\lambda_{t} A w_{t}-y_{t}, v_{t}-y_{t}\right\rangle \\
& +2 \lambda_{t}\left\langle A w_{t}-A y_{t}, v_{t}-y_{t}\right\rangle \\
\leq & 2 \lambda_{t}\left\langle A w_{t}-A y_{t}, v_{t}-y_{t}\right\rangle,
\end{aligned}
$$

which together with (3.5) implies that

$$
\begin{equation*}
2\left\langle w_{t}-\lambda_{t} A y_{t}-y_{t}, v_{t}-y_{t}\right\rangle \leq \mu \frac{\lambda_{t}}{\lambda_{t+1}}\left\|w_{t}-y_{t}\right\|^{2}+\mu \frac{\lambda_{t}}{\lambda_{t+1}}\left\|v_{t}-y_{t}\right\|^{2} . \tag{3.9}
\end{equation*}
$$

Therefore, substituting (3.9) for (3.8), the result follows.

Lemma 3.4 $\left\{x_{t}\right\}$ is bounded.

Proof First of all, we show that $P_{\Xi}(f+I-\rho F)$ is a contraction. Indeed, for any $x, y \in \mathcal{H}_{1}$, by Lemma 2.2, we have

$$
\begin{aligned}
& \left\|P_{\Xi}(f+I-\rho F) x-P_{\Xi}(f+I-\rho F) y\right\| \\
& \quad \leq\|f(x)-f(y)\|+\|(I-\rho F) x-(I-\rho F) y\|
\end{aligned}
$$

$$
\leq \nu\|x-y\|+(1-\zeta)\|x-y\|=[1-(\zeta-v)]\|x-y\|
$$

which implies that $P_{\Xi}(f+I-\rho F)$ is a contraction. Banach's contraction mapping principle guarantees that $P_{\Xi}(f+I-\rho F)$ has a unique fixed point. Say $q^{*} \in \mathcal{H}_{1}$, i.e., $q^{*}=P_{\Xi}(f+I-$ $\rho F) q^{*}$. Hence, there exists unique $q^{*} \in \Xi$ that solves

$$
\begin{equation*}
\left\langle(\rho F-f) q^{*}, p-q^{*}\right\rangle \geq 0 \quad \forall p \in \Xi \tag{3.10}
\end{equation*}
$$

This also means that there exists a unique solution $q^{*} \in \Xi$ to BSPVIP (1.6) with the CFPP constraint.

Now, by the definition of w_{t} in Algorithm 3.1, we have

$$
\begin{aligned}
\left\|w_{t}-q^{*}\right\| & =\left\|S_{t} x_{t}+\alpha_{t}\left(S_{t} x_{t}-S_{t} x_{t-1}\right)-q^{*}\right\| \\
& \leq\left\|x_{t}-q^{*}\right\|+\beta_{t} \frac{\alpha_{t}}{\beta_{t}}\left\|x_{t}-x_{t-1}\right\| .
\end{aligned}
$$

From Remark 3.1, we know that $\lim _{t \rightarrow \infty} \frac{\alpha_{t}}{\beta_{t}}\left\|x_{t}-x_{t-1}\right\|=0$. This means that $\left\{\frac{\alpha_{t}}{\beta_{t}}\left\|x_{t}-x_{t-1}\right\|\right\}$ is bounded. Thus, $\exists M_{1}>0$ such that $\frac{\alpha_{t}}{\beta_{t}}\left\|x_{t}-x_{t-1}\right\| \leq M_{1} \forall t \geq 1$. Hence,

$$
\begin{equation*}
\left\|w_{t}-q^{*}\right\| \leq\left\|x_{t}-q^{*}\right\|+\beta_{t} M_{1} \quad \forall t \geq 1 . \tag{3.11}
\end{equation*}
$$

From Step 3 of Algorithm 3.1, using the definition of z_{t}, we get

$$
\begin{align*}
\left\|z_{t}-q^{*}\right\|^{2}= & \left\|v_{t}-\sigma_{t} T^{*}(I-S) T v_{t}-q^{*}\right\|^{2} \\
= & \left\|v_{t}-q^{*}\right\|^{2}-2 \sigma_{t}\left\langle v_{t}-q^{*}, T^{*}(I-S) T v_{t}\right\rangle \\
& +\sigma_{t}^{2}\left\|T^{*}(I-S) T v_{t}\right\|^{2} \tag{3.12}\\
= & \left\|v_{t}-q^{*}\right\|^{2}-2 \sigma_{t}\left\langle T\left(v_{t}-q^{*}\right),(I-S) T v_{t}\right\rangle \\
& +\sigma_{t}^{2}\left\|T^{*}(I-S) T v_{t}\right\|^{2} .
\end{align*}
$$

Since the operator S is τ-demimetric, from (3.12), we get

$$
\begin{align*}
\left\|z_{t}-q^{*}\right\|^{2} & \leq\left\|v_{t}-q^{*}\right\|^{2}-\sigma_{t}(1-\tau)\left\|(I-S) T v_{t}\right\|^{2}+\sigma_{t}^{2}\left\|T^{*}(I-S) T v_{t}\right\|^{2} \tag{3.13}\\
& =\left\|v_{t}-q^{*}\right\|^{2}+\sigma_{t}\left[\sigma_{t}\left\|T^{*}(I-S) T v_{t}\right\|^{2}-(1-\tau)\left\|(I-S) T v_{t}\right\|^{2}\right]
\end{align*}
$$

However, from the step size σ_{t} in (3.3), we get

$$
\sigma_{t}+\epsilon \leq \frac{(1-\tau)\left\|T v_{t}-S T v_{t}\right\|^{2}}{\left\|T^{*}(I-S) T v_{t}\right\|^{2}}
$$

if and only if

$$
\begin{equation*}
\sigma_{t}\left(\sigma_{t}\left\|T^{*}(I-S) T v_{t}\right\|^{2}-(1-\tau)\left\|T v_{t}-S T v_{t}\right\|^{2}\right) \leq-\sigma_{t} \epsilon\left\|T^{*}(I-S) T v_{t}\right\|^{2} \tag{3.14}
\end{equation*}
$$

Using $0<\epsilon \leq \sigma_{t}$ in (3.3), we have that $-\epsilon^{2} \geq-\sigma_{t} \epsilon$, and hence

$$
\begin{equation*}
-\sigma_{t} \epsilon\left\|T^{*}(I-S) T v_{t}\right\|^{2} \leq-\epsilon^{2}\left\|T^{*}(I-S) T v_{t}\right\|^{2} \tag{3.15}
\end{equation*}
$$

Combining (3.13), (3.14), and (3.15), we obtain

$$
\begin{align*}
\left\|z_{t}-q^{*}\right\|^{2} & \leq\left\|v_{t}-q^{*}\right\|^{2}-\sigma_{t} \epsilon\left\|T^{*}(I-S) T v_{t}\right\|^{2} \\
& \leq\left\|v_{t}-q^{*}\right\|^{2}-\epsilon^{2}\left\|T^{*}(I-S) T v_{t}\right\|^{2} \tag{3.16}\\
& \leq\left\|v_{t}-q^{*}\right\|^{2}
\end{align*}
$$

In addition, by Lemma 3.1, we have $\lim _{t \rightarrow \infty} \lambda_{t} \geq \lambda:=\min \left\{\lambda_{1}, \frac{\mu}{L}\right\}$, which leads to $\lim _{t \rightarrow \infty}(1-$ $\left.\mu \frac{\lambda_{t}}{\lambda_{t+1}}\right)=1-\mu>0$. Without loss of generality, we may assume that $1-\mu \frac{\lambda_{t}}{\lambda_{t+1}}>0 \forall t \geq 1$. Thus, by Lemma 3.3, we get

$$
\begin{align*}
\left\|v_{t}-q^{*}\right\|^{2} \leq & \left\|w_{t}-q^{*}\right\|^{2}-\left(1-\mu \frac{\lambda_{t}}{\lambda_{t+1}}\right)\left\|w_{t}-y_{t}\right\|^{2} \\
& -\left(1-\mu \frac{\lambda_{t}}{\lambda_{t+1}}\right)\left\|v_{t}-y_{t}\right\|^{2} \tag{3.17}\\
\leq & \left\|w_{t}-q^{*}\right\|^{2}
\end{align*}
$$

Combining (3.11), (3.16), and (3.17), we obtain

$$
\begin{equation*}
\left\|z_{t}-q^{*}\right\| \leq\left\|v_{t}-q^{*}\right\| \leq\left\|w_{t}-q^{*}\right\| \leq\left\|x_{t}-q^{*}\right\|+\beta_{t} M_{1} \quad \forall t \geq 1 \tag{3.18}
\end{equation*}
$$

Since $\beta_{t}+\gamma_{t}<1 \forall t \geq 1$, we get $\frac{\beta_{t}}{1-\gamma_{t}}<1 \forall t \geq 1$. So, from Lemma 2.2 and (3.18) it follows that

$$
\begin{aligned}
\left\|x_{t+1}-q^{*}\right\|= & \left\|\beta_{t} f\left(x_{t}\right)+\gamma_{t} x_{t}+\left(\left(1-\gamma_{t}\right) I-\beta_{t} \rho F\right) z_{t}-q^{*}\right\| \\
\leq & \beta_{t}\left\|f\left(x_{t}\right)-q^{*}\right\|+\gamma_{t}\left\|x_{t}-q^{*}\right\| \\
& +\left(1-\beta_{t}-\gamma_{t}\right)\left\|\left(\frac{1-\gamma_{t}}{1-\beta_{t}-\gamma_{t}} I-\frac{\beta_{t}}{1-\beta_{t}-\gamma_{t}} \rho F\right) z_{t}-q^{*}\right\| \\
\leq & \beta_{t}\left(\left\|f\left(x_{t}\right)-f\left(q^{*}\right)\right\|+\left\|f\left(q^{*}\right)-q^{*}\right\|\right)+\gamma_{t}\left\|x_{t}-q^{*}\right\| \\
& +\left(1-\beta_{t}-\gamma_{t}\right)\left\|\left(\frac{1-\gamma_{t}}{1-\beta_{t}-\gamma_{t}} I-\frac{\beta_{t}}{1-\beta_{t}-\gamma_{t}} \rho F\right) z_{t}-q^{*}\right\| \\
\leq & \beta_{t}\left(v\left\|x_{t}-q^{*}\right\|+\left\|f\left(q^{*}\right)-q^{*}\right\|\right)+\gamma_{t}\left\|x_{t}-q^{*}\right\| \\
& +\left(1-\gamma_{t}\right)\left\|\left(I-\frac{\beta_{t}}{1-\gamma_{t}} \rho F\right) z_{t}-\left(1-\frac{\beta_{t}}{1-\gamma_{t}}\right) q^{*}\right\| \\
= & \beta_{t}\left(v\left\|x_{t}-q^{*}\right\|+\left\|f\left(q^{*}\right)-q^{*}\right\|\right)+\gamma_{t}\left\|x_{t}-q^{*}\right\| \\
& +\left(1-\gamma_{t}\right)\left\|\left(I-\frac{\beta_{t}}{1-\gamma_{t}} \rho F\right) z_{t}-\left(I-\frac{\beta_{t}}{1-\gamma_{t}} \rho F\right) q^{*}+\frac{\beta_{t}}{1-\gamma_{t}}(I-\rho F) q^{*}\right\| \\
\leq & \beta_{t}\left(v\left\|x_{t}-q^{*}\right\|+\left\|f\left(q^{*}\right)-q^{*}\right\|\right)+\gamma_{t}\left\|x_{t}-q^{*}\right\| \\
& +\left(1-\gamma_{t}\right)\left[\left(1-\frac{\beta_{t}}{1-\gamma_{t}} \zeta\right)\left\|z_{t}-q^{*}\right\|+\frac{\beta_{t}}{1-\gamma_{t}}\left\|(I-\rho F) q^{*}\right\|\right] \\
= & \beta_{t}\left(v\left\|x_{t}-q^{*}\right\|+\left\|f\left(q^{*}\right)-q^{*}\right\|\right)+\gamma_{t}\left\|x_{t}-q^{*}\right\| \\
& +\left(1-\gamma_{t}-\beta_{t} \zeta\right)\left\|z_{t}-q^{*}\right\|+\beta_{t}\left\|(I-\rho F) q^{*}\right\|
\end{aligned}
$$

$$
\begin{aligned}
\leq & \beta_{t}\left(v\left\|x_{t}-q^{*}\right\|+\left\|f\left(q^{*}\right)-q^{*}\right\|\right)+\gamma_{t}\left\|x_{t}-q^{*}\right\| \\
& +\left(1-\gamma_{t}-\beta_{t} \zeta\right)\left(\left\|x_{t}-q^{*}\right\|+\beta_{t} M_{1}\right)+\beta_{t}\left\|(I-\rho F) q^{*}\right\| \\
\leq & {\left[1-\beta_{t}(\zeta-v)\right]\left\|x_{t}-q^{*}\right\|+\beta_{t}\left(M_{1}+\left\|f\left(q^{*}\right)-q^{*}\right\|+\left\|(I-\rho F) q^{*}\right\|\right) } \\
= & {\left[1-\beta_{t}(\zeta-v)\right]\left\|x_{t}-q^{*}\right\|+\beta_{t}(\zeta-v) \frac{M_{1}+\left\|f\left(q^{*}\right)-q^{*}\right\|+\left\|(I-\rho F) q^{*}\right\|}{\zeta-v} } \\
\leq & \max \left\{\left\|x_{t}-q^{*}\right\|, \frac{M_{1}+\left\|f\left(q^{*}\right)-q^{*}\right\|+\left\|(I-\rho F) q^{*}\right\|}{\zeta-v}\right\} .
\end{aligned}
$$

Thus, $\left\|x_{t}-q^{*}\right\| \leq \max \left\{\left\|x_{1}-q^{*}\right\|, \frac{M_{1}+\left\|f\left(q^{*}\right)-q^{*}\right\|+\left\|(I-\rho F) q^{*}\right\|}{\zeta-v}\right\}$ for all $t \geq 1$. Thus, $\left\{x_{t}\right\}$ is bounded, and so are the sequences $\left\{v_{t}\right\},\left\{w_{t}\right\},\left\{y_{t}\right\},\left\{z_{t}\right\},\left\{f\left(x_{t}\right)\right\},\left\{F z_{t}\right\},\left\{S_{t} x_{t}\right\}$.

Lemma 3.5 Let $\left\{v_{t}\right\},\left\{w_{t}\right\},\left\{x_{t}\right\},\left\{y_{t}\right\},\left\{z_{t}\right\}$ be the sequences generated by Algorithm 3.1. Suppose that $x_{t}-x_{t+1} \rightarrow 0, w_{t}-x_{t} \rightarrow 0, w_{t}-y_{t} \rightarrow 0$, and $v_{t}-z_{t} \rightarrow 0$. Then $\omega_{w}\left(\left\{x_{t}\right\}\right) \subset \Xi$ with $\omega_{w}\left(\left\{x_{t}\right\}\right)=\left\{z \in \mathcal{H}_{1}: x_{t_{k}} \rightharpoonup z\right.$ for some $\left.\left\{x_{t_{k}}\right\} \subset\left\{x_{t}\right\}\right\}$.

Proof Take an arbitrary fixed $z \in \omega_{w}\left(\left\{x_{t}\right\}\right)$. Then $\exists\left\{x_{t_{k}}\right\} \subset\left\{x_{t}\right\}$ such that $x_{t_{k}} \rightharpoonup z \in \mathcal{H}_{1}$. Thanks to $w_{t}-x_{t} \rightarrow 0$, by which $\exists\left\{w_{t_{k}}\right\} \subset\left\{w_{t}\right\}$ such that $w_{t_{k}} \rightharpoonup z \in \mathcal{H}_{1}$. In what follows, we claim that $z \in \Xi$. In fact, from Algorithm 3.1, we get $w_{t}-x_{t}=S_{t} x_{t}-x_{t}+\alpha_{t}\left(S_{t} x_{t}-S_{t} x_{t-1}\right) \forall t \geq$ 1 , and hence

$$
\begin{aligned}
\left\|S_{t} x_{t}-x_{t}\right\| & =\left\|w_{t}-x_{t}-\alpha_{t}\left(S_{t} x_{t}-S_{t} x_{t-1}\right)\right\| \\
& \leq\left\|w_{t}-x_{t}\right\|+\alpha_{t}\left\|S_{t} x_{t}-S_{t} x_{t-1}\right\| \\
& \leq\left\|w_{t}-x_{t}\right\|+\beta_{t} \frac{\alpha_{t}}{\beta_{t}}\left\|x_{t}-x_{t-1}\right\| .
\end{aligned}
$$

Using Remark 3.1 and the assumption $w_{t}-x_{t} \rightarrow 0$, we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|x_{t}-S_{t} x_{t}\right\|=0 \tag{3.19}
\end{equation*}
$$

Also, from $y_{t}=P_{C}\left(w_{t}-\lambda_{t} A w_{t}\right)$, we have $\left\langle w_{t}-\lambda_{t} A w_{t}-y_{t}, y_{t}-y\right\rangle \geq 0 \forall y \in C$, and hence

$$
\begin{equation*}
\frac{1}{\lambda_{t}}\left\langle w_{t}-y_{t}, v-y_{t}\right\rangle+\left\langle A w_{t}, y_{t}-w_{t}\right\rangle \leq\left\langle A w_{t}, v-w_{t}\right\rangle \quad \forall v \in C \tag{3.20}
\end{equation*}
$$

Observe that $\lambda_{t} \geq \min \left\{\lambda_{1}, \frac{\mu}{L}\right\}$. So, from (3.20), we get $\liminf _{k \rightarrow \infty}\left\langle A w_{t_{k}}, y-w_{t_{k}}\right\rangle \geq 0 \forall y \in C$. In the meantime, observe that $\left\langle A y_{t}, y-y_{t}\right\rangle=\left\langle A y_{t}-A w_{t}, y-w_{t}\right\rangle+\left\langle A w_{t}, y-w_{t}\right\rangle+\left\langle A y_{t}, w_{t}-\right.$ $\left.y_{t}\right\rangle$. Since $w_{t}-y_{t} \rightarrow 0$, we obtain $A w_{t}-A y_{t} \rightarrow 0$, which together with (3.20) arrives at $\liminf _{k \rightarrow \infty}\left\langle A y_{t_{k}}, v-y_{t_{k}}\right\rangle \geq 0 \forall v \in C$.

For $i=1,2, \ldots, N$,

$$
\begin{aligned}
\left\|x_{t}-S_{t+i} x_{t}\right\| & \leq\left\|x_{t}-x_{t+i}\right\|+\left\|x_{t+i}-S_{t+i} x_{t+i}\right\|+\left\|S_{t+i} x_{t+i}-S_{t+i} x_{t}\right\| \\
& \leq 2\left\|x_{t}-x_{t+i}\right\|+\left\|x_{t+i}-S_{t+i} x_{t+i}\right\| .
\end{aligned}
$$

Hence, from (3.19) and the assumption $x_{t}-x_{t+1} \rightarrow 0$, we get $\lim _{t \rightarrow \infty}\left\|x_{t}-S_{t+i} x_{t}\right\|=0$ for $i=1,2, \ldots, N$. This immediately implies that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|x_{t}-S_{l x} x_{t}\right\|=0 \quad \text { for } l=1,2, \ldots, N \tag{3.21}
\end{equation*}
$$

Pick $\left\{\varsigma_{k}\right\} \subset(0,1), \varsigma_{k} \downarrow 0$. For all $k \geq 1$, let m_{k} be the smallest positive integer such that

$$
\begin{equation*}
\left\langle A y_{t_{k}}, y-y_{t_{k}}\right\rangle+\varsigma_{k} \geq 0 \quad \forall k \geq m_{k} . \tag{3.22}
\end{equation*}
$$

Since $\left\{\varsigma_{k}\right\}$ is nonincreasing, it is clear that $\left\{m_{k}\right\}$ is nondecreasing.
Again from the assumption on A, we know that $\liminf _{k \rightarrow \infty}\left\|A y_{t_{k}}\right\| \geq\|A z\|$. If $A z=0$, then z is a solution, i.e., $z \in \mathrm{VI}(C, A)$. Let $A z \neq 0$. Then we have $0<\|A z\| \leq \liminf _{k \rightarrow \infty}\left\|A y_{t_{k}}\right\|$. Without loss of generality, we may assume that $A y_{t_{k}} \neq 0 \forall k \geq 1$. Noticing $\left\{y_{m_{k}}\right\} \subset\left\{y_{t_{k}}\right\}$ and $A y_{t_{k}} \neq 0 \forall k \geq 1$, set $u_{m_{k}}=\frac{A y_{m_{k}}}{\left\|A y_{m_{k}}\right\|^{2}}$, and then $\left\langle A y_{m_{k}}, u_{m_{k}}\right\rangle=1 \forall k \geq 1$. So, from (3.22), we get $\left\langle A y_{m_{k}}, y+\varsigma_{k} u_{m_{k}}-y_{m_{k}}\right\rangle \geq 0 \forall k \geq 1$. By the pseudomonotonicity of A, we obtain $\left\langle A\left(y+\varsigma_{k} u_{m_{k}}\right), y+\varsigma_{k} u_{m_{k}}-y_{m_{k}}\right\rangle \geq 0 \forall k \geq 1$. This immediately yields

$$
\begin{equation*}
\left\langle A y, y-y_{m_{k}}\right\rangle \geq\left\langle A y-A\left(y+\varsigma_{k} u_{m_{k}}\right), y+\varsigma_{k} u_{m_{k}}-y_{m_{k}}\right\rangle-\varsigma_{k}\left\langle A y, u_{m_{k}}\right\rangle \quad \forall k \geq 1 . \tag{3.23}
\end{equation*}
$$

From $x_{t_{k}} \rightharpoonup z$ and $x_{t}-y_{t} \rightarrow 0$ (due to $w_{t}-x_{t} \rightarrow 0$ and $w_{t}-y_{t} \rightarrow 0$), we obtain $y_{t_{k}} \rightharpoonup z$. So, $\left\{y_{t}\right\} \subset C$ guarantees $z \in C$. Since $\left\{y_{m_{k}}\right\} \subset\left\{y_{t_{k}}\right\}$ and $\varsigma_{k} \downarrow 0$, we have $0 \leq$ $\lim \sup _{k \rightarrow \infty}\left\|\varsigma_{k} u_{m_{k}}\right\|=\lim \sup _{k \rightarrow \infty} \frac{\varsigma_{k}}{\left\|A y_{m_{k}}\right\|} \leq \frac{\lim _{\sup }^{p_{\rightarrow \infty} \varsigma_{k}}}{\lim \inf } \mathrm{f}_{k \rightarrow \infty}\left\|A y_{t_{k}}\right\|=0$. Hence, we get $\varsigma_{k} u_{m_{k}} \rightarrow 0$.

Next, we show that $z \in \Xi$. Indeed, using (3.21), we have $x_{t_{k}}-S_{l} x_{t_{k}} \rightarrow 0$ for $l=1,2, \ldots, N$. By Lemma 2.5, $I-S_{l}$ is demiclosed at zero for $l=1,2, \ldots, N$. Thus, from $x_{t_{k}} \rightharpoonup z$, we get $z \in \operatorname{Fix}\left(S_{l}\right)$. Since l is an arbitrary element in the finite set $\{1,2, \ldots, N\}$, it follows that $z \in$ $\bigcap_{i=1}^{N} \operatorname{Fix}\left(S_{i}\right)$. Also, letting $k \rightarrow \infty$, we have that the right-hand side of (3.23) tends to zero. Thus, $\langle A \vec{y}, \vec{y}-z\rangle=\liminf _{k \rightarrow \infty}\left\langle A \vec{y}, \vec{y}-y_{m_{k}}\right\rangle \geq 0 \forall \vec{y} \in C$. By Lemma 2.3 we have $z \in \mathrm{VI}(C, A)$. Furthermore, we claim $T z \in \operatorname{Fix}(S)$. In fact, noticing $z_{t}=v_{t}-\sigma_{t} T^{*}(I-S) T v_{t}$, from $0<\epsilon \leq \sigma_{t}$ and $v_{t}-z_{t} \rightarrow 0$, we get

$$
\epsilon\left\|T^{*}(I-S) T v_{t}\right\| \leq \sigma_{t}\left\|T^{*}(I-S) T v_{t}\right\|=\left\|v_{t}-z_{t}\right\| \rightarrow 0 \quad(t \rightarrow \infty)
$$

which together with the τ-demimetricness of S leads to

$$
\begin{align*}
\frac{1-\tau}{2}\left\|(I-S) T v_{t}\right\|^{2} & \leq\left\langle(I-S) T v_{t}, T\left(v_{t}-q^{*}\right)\right\rangle \tag{3.24}\\
& \leq\left\|T^{*}(I-S) T v_{t}\right\|\left\|v_{t}-q^{*}\right\| \rightarrow 0 \quad(t \rightarrow \infty)
\end{align*}
$$

Noticing $x_{t+1}=\beta_{t} f\left(x_{t}\right)+\gamma_{t} x_{t}+\left(\left(1-\gamma_{t}\right) I-\beta_{t} \rho F\right) z_{t}$, we have

$$
\begin{aligned}
\left(1-\gamma_{t}\right)\left\|z_{t}-x_{t}\right\| & =\left\|x_{t+1}-x_{t}-\beta_{t}\left(f\left(x_{t}\right)-\rho F z_{t}\right)\right\| \\
& \leq\left\|x_{t+1}-x_{t}\right\|+\beta_{t}\left(\left\|f\left(x_{t}\right)\right\|+\left\|\rho F z_{t}\right\|\right)
\end{aligned}
$$

Since $0<\liminf _{t \rightarrow \infty}\left(1-\gamma_{t}\right), x_{t}-x_{t+1} \rightarrow 0$ and $\beta_{t} \rightarrow 0$, from the boundedness of $\left\{x_{t}\right\}$ and $\left\{z_{t}\right\}$, we get $\lim _{t \rightarrow \infty}\left\|z_{t}-x_{t}\right\|=0$, which hence yields

$$
\left\|v_{t}-x_{t}\right\| \leq\left\|v_{t}-z_{t}\right\|+\left\|z_{t}-x_{t}\right\| \rightarrow 0 \quad(t \rightarrow \infty)
$$

From $x_{t_{k}} \rightharpoonup z$, we get $v_{t_{k}} \rightharpoonup z$. It follows that $T v_{t_{k}} \rightharpoonup T z$. From (3.24) one derives $T z \in$ $\operatorname{Fix}(S)$. Therefore, $z \in \bigcap_{i=1}^{N} \operatorname{Fix}\left(S_{i}\right) \cap \Omega=\Xi$. This completes the proof.

Theorem $3.1\left\{x_{t}\right\}$ generated by Algorithm 3.1 converges strongly to the unique solution $q^{*} \in \Xi$ of BSPVIP (1.6) with the CFPP constraint.

Proof First of all, in terms of Lemma 3.4 we obtain that $\left\{x_{t}\right\}$ is bounded. From its proof we know that there exists a unique solution $q^{*} \in \Xi$ of BSPVIP (1.6) with the CFPP constraint, i.e., VIP (3.10) has a unique solution $q^{*} \in \Xi$.

Step 1. We claim that

$$
\begin{aligned}
& \left(1-\beta_{t} \zeta-\gamma_{t}\right)\left[\left(1-\mu \frac{\lambda_{t}}{\lambda_{t+1}}\right)\left(\left\|w_{t}-y_{t}\right\|^{2}+\left\|v_{t}-y_{t}\right\|^{2}\right)+\epsilon^{2}\left\|T^{*}(I-S) T v_{t}\right\|^{2}\right] \\
& \quad \leq\left\|x_{t}-q^{*}\right\|^{2}-\left\|x_{t+1}-q^{*}\right\|^{2}+\beta_{t} M_{4}
\end{aligned}
$$

for some $M_{4}>0$. Also

$$
\begin{aligned}
x_{t+1}-q^{*}= & \beta_{t}\left(f\left(x_{t}\right)-q^{*}\right)+\gamma_{t}\left(x_{t}-q^{*}\right)+\left(1-\beta_{t}-\gamma_{t}\right)\left\{\frac { 1 - \gamma _ { t } } { 1 - \beta _ { t } - \gamma _ { t } } \left[\left(I-\frac{\beta_{t}}{1-\gamma_{t}} \rho F\right) z_{t}\right.\right. \\
& \left.\left.-\left(I-\frac{\beta_{t}}{1-\gamma_{t}} \rho F\right) q^{*}\right]+\frac{\beta_{t}}{1-\beta_{t}-\gamma_{t}}(I-\rho F) q^{*}\right\} \\
= & \beta_{t}\left(f\left(x_{t}\right)-f\left(q^{*}\right)\right)+\gamma_{t}\left(x_{t}-q^{*}\right) \\
& +\left(1-\gamma_{t}\right)\left[\left(I-\frac{\beta_{t}}{1-\gamma_{t}} \rho F\right) z_{t}-\left(I-\frac{\beta_{t}}{1-\gamma_{t}} \rho F\right) q^{*}\right]+\beta_{t}(f-\rho F) q^{*} .
\end{aligned}
$$

Using Lemma 2.2, we get

$$
\begin{align*}
\left\|x_{t+1}-q^{*}\right\|^{2} \leq & \| \beta_{t}\left(f\left(x_{t}\right)-f\left(q^{*}\right)\right)+\gamma_{t}\left(x_{t}-q^{*}\right) \tag{3.25}\\
& +\left(1-\gamma_{t}\right)\left[\left(I-\frac{\beta_{t}}{1-\gamma_{t}} \rho F\right) z_{t}-\left(I-\frac{\beta_{t}}{1-\gamma_{t}} \rho F\right) q^{*}\right] \|^{2} \\
& +2 \beta_{t}\left((f-\rho F) q^{*}, x_{t+1}-q^{*}\right\rangle \\
\leq & {\left[\beta_{t} v\left\|x_{t}-q^{*}\right\|+\gamma_{t}\left\|x_{t}-q^{*}\right\|+\left(1-\gamma_{t}\right)\left(1-\frac{\beta_{t}}{1-\gamma_{t}} \zeta\right)\left\|z_{t}-q^{*}\right\|\right]^{2} } \\
& +2 \beta_{t}\left((f-\rho F) q^{*}, x_{t+1}-q^{*}\right) \\
= & {\left[\beta_{t} \nu\left\|x_{t}-q^{*}\right\|+\gamma_{t}\left\|x_{t}-q^{*}\right\|+\left(1-\beta_{t} \zeta-\gamma_{t}\right)\left\|z_{t}-q^{*}\right\|\right]^{2} } \\
& +2 \beta_{t}\left((f-\rho F) q^{*}, x_{t+1}-q^{*}\right) \\
\leq & \beta_{t} \nu\left\|x_{t}-q^{*}\right\|^{2}+\gamma_{t}\left\|x_{t}-q^{*}\right\|^{2}+\left(1-\beta_{t} \zeta-\gamma_{t}\right)\left\|z_{t}-q^{*}\right\|^{2} \\
& +2 \beta_{t}\left((f-\rho F) q^{*}, x_{t+1}-q^{*}\right\rangle \\
\leq & \beta_{t} \nu\left\|x_{t}-q^{*}\right\|^{2}+\gamma_{t}\left\|x_{t}-q^{*}\right\|^{2}+\left(1-\beta_{t} \zeta-\gamma_{t}\right)\left\|z_{t}-q^{*}\right\|^{2} \\
& +\beta_{t} M_{2} \tag{3.26}
\end{align*}
$$

(due to $\beta_{t} \nu+\gamma_{t}+\left(1-\beta_{t} \zeta-\gamma_{t}\right)=1-\beta_{t}(\zeta-v) \leq 1$), where $\sup _{t \geq 1} 2\left\|(f-\rho F) q^{*}\right\|\left\|x_{t}-q^{*}\right\| \leq M_{2}$ for some $M_{2}>0$. Substituting (3.16) for (3.25), by Lemma 3.3 we get

$$
\left\|x_{t+1}-q^{*}\right\|^{2} \leq \beta_{t} \nu\left\|x_{t}-q^{*}\right\|^{2}+\gamma_{t}\left\|x_{t}-q^{*}\right\|^{2}+\left(1-\beta_{t} \zeta-\gamma_{t}\right)\left[\left\|v_{t}-q^{*}\right\|^{2}\right.
$$

$$
\begin{align*}
& \left.-\epsilon^{2}\left\|T^{*}(I-S) T v_{t}\right\|^{2}\right]+\beta_{t} M_{2} \\
\leq & \beta_{t} v\left\|x_{t}-q^{*}\right\|^{2}+\gamma_{t}\left\|x_{t}-q^{*}\right\|^{2}+\left(1-\beta_{t} \zeta-\gamma_{t}\right)\left[\left\|w_{t}-q^{*}\right\|^{2}\right. \\
& -\left(1-\mu \frac{\lambda_{t}}{\lambda_{t+1}}\right)\left(\left\|w_{t}-y_{t}\right\|^{2}+\left\|v_{t}-y_{t}\right\|^{2}\right) \\
& \left.-\epsilon^{2}\left\|T^{*}(I-S) T v_{t}\right\|^{2}\right]+\beta_{t} M_{2} . \tag{3.27}
\end{align*}
$$

Also, from (3.18) we have

$$
\begin{align*}
\left\|w_{t}-q^{*}\right\|^{2} & \leq\left(\left\|x_{t}-q^{*}\right\|+\beta_{t} M_{1}\right)^{2} \\
& =\left\|x_{t}-q^{*}\right\|^{2}+\beta_{t}\left(2 M_{1}\left\|x_{t}-q^{*}\right\|+\beta_{t} M_{1}^{2}\right) \tag{3.28}\\
& \leq\left\|x_{t}-q^{*}\right\|^{2}+\beta_{t} M_{3}
\end{align*}
$$

where $\sup _{t \geq 1}\left(2 M_{1}\left\|x_{t}-q^{*}\right\|+\beta_{t} M_{1}^{2}\right) \leq M_{3}$ for some $M_{3}>0$. Combining (3.27) and (3.28), we obtain

$$
\begin{aligned}
\left\|x_{t+1}-q^{*}\right\|^{2} \leq & \beta_{t} v\left\|x_{t}-q^{*}\right\|^{2}+\gamma_{t}\left\|x_{t}-q^{*}\right\|^{2} \\
& +\left(1-\beta_{t} \zeta-\gamma_{t}\right)\left[\left\|x_{t}-q^{*}\right\|^{2}+\beta_{t} M_{3}\right] \\
& -\left(1-\beta_{t} \zeta-\gamma_{t}\right)\left[\left(1-\mu \frac{\lambda_{t}}{\lambda_{t+1}}\right)\left(\left\|w_{t}-y_{t}\right\|^{2}+\left\|v_{t}-y_{t}\right\|^{2}\right)\right. \\
& \left.+\epsilon^{2}\left\|T^{*}(I-S) T v_{t}\right\|^{2}\right]+\beta_{t} M_{2} \\
\leq & {\left[1-\beta_{t}(\zeta-v)\right]\left\|x_{t}-q^{*}\right\|^{2}-\left(1-\beta_{t} \zeta-\gamma_{t}\right)\left[(1 - \mu \frac { \lambda _ { t } } { \lambda _ { t + 1 } }) \left(\left\|w_{t}-y_{t}\right\|^{2}\right.\right.} \\
& \left.\left.+\left\|v_{t}-y_{t}\right\|^{2}\right)+\epsilon^{2}\left\|T^{*}(I-S) T v_{t}\right\|^{2}\right]+\beta_{t} M_{4} \\
\leq & \left\|x_{t}-q^{*}\right\|^{2}-\left(1-\beta_{t} \zeta-\gamma_{t}\right)\left[\left(1-\mu \frac{\lambda_{t}}{\lambda_{t+1}}\right)\left(\left\|w_{t}-y_{t}\right\|^{2}+\left\|v_{t}-y_{t}\right\|^{2}\right)\right. \\
& \left.+\epsilon^{2}\left\|T^{*}(I-S) T v_{t}\right\|^{2}\right]+\beta_{t} M_{4},
\end{aligned}
$$

where $M_{4}:=M_{2}+M_{3}$. This immediately implies that

$$
\begin{align*}
& \left(1-\beta_{t} \zeta-\gamma_{t}\right)\left[\left(1-\mu \frac{\lambda_{t}}{\lambda_{t+1}}\right)\left(\left\|w_{t}-y_{t}\right\|^{2}+\left\|v_{t}-y_{t}\right\|^{2}\right)+\epsilon^{2}\left\|T^{*}(I-S) T v_{t}\right\|^{2}\right] \tag{3.29}\\
& \quad \leq\left\|x_{t}-q^{*}\right\|^{2}-\left\|x_{t+1}-q^{*}\right\|^{2}+\beta_{t} M_{4}
\end{align*}
$$

Step 2. We claim that

$$
\begin{aligned}
\left\|x_{t+1}-q^{*}\right\|^{2} \leq & {\left[1-\beta_{t}(\zeta-v)\right]\left\|x_{t}-q^{*}\right\|^{2}+\beta_{t}(\zeta-v)\left[\frac{2}{\zeta-v}\left\langle(f-\rho F) q^{*}, x_{t+1}-q^{*}\right\rangle\right.} \\
& \left.+\frac{M}{\zeta-v} \cdot \frac{\alpha_{t}}{\beta_{t}} \cdot\left\|x_{t}-x_{t-1}\right\|\right]
\end{aligned}
$$

for some $M>0$. Indeed, we have

$$
\begin{align*}
\left\|w_{t}-q^{*}\right\|^{2} & \leq\left[\left\|x_{t}-q^{*}\right\|+\alpha_{t}\left\|x_{t}-x_{t-1}\right\|\right]^{2} \tag{3.30}\\
& \leq\left\|x_{t}-q^{*}\right\|^{2}+\alpha_{t}\left\|x_{t}-x_{t-1}\right\|\left[2\left\|x_{t}-q^{*}\right\|+\alpha_{t}\left\|x_{t}-x_{t-1}\right\|\right]
\end{align*}
$$

Combining (3.18), (3.25), and (3.30), we have

$$
\begin{align*}
\left\|x_{t+1}-q^{*}\right\|^{2} \leq & \beta_{t} \nu\left\|x_{t}-q^{*}\right\|^{2}+\gamma_{t}\left\|x_{t}-q^{*}\right\|^{2} \\
& +\left(1-\beta_{t} \zeta-\gamma_{t}\right)\left\|z_{t}-q^{*}\right\|^{2}+2 \beta_{t}\left((f-\rho F) q^{*}, x_{t+1}-q^{*}\right\rangle \\
\leq & \beta_{t} \nu\left\|x_{t}-q^{*}\right\|^{2}+\gamma_{t}\left\|x_{t}-q^{*}\right\|^{2}+\left(1-\beta_{t} \zeta-\gamma_{t}\right)\left\|w_{t}-q^{*}\right\|^{2} \\
& +2 \beta_{t}\left((f-\rho F) q^{*}, x_{t+1}-q^{*}\right\rangle \\
\leq & \beta_{t} \nu\left\|x_{t}-q^{*}\right\|^{2}+\gamma_{t}\left\|x_{t}-q^{*}\right\|^{2}+\left(1-\beta_{t} \zeta-\gamma_{t}\right)\left\{\left\|x_{t}-q^{*}\right\|^{2}\right. \\
& \left.+\alpha_{t}\left\|x_{t}-x_{t-1}\right\|\left[2\left\|x_{t}-q^{*}\right\|+\alpha_{t}\left\|x_{t}-x_{t-1}\right\|\right]\right\} \\
& +2 \beta_{t}\left((f-\rho F) q^{*}, x_{t+1}-q^{*}\right\rangle \\
\leq & {\left[1-\beta_{t}(\zeta-v)\right]\left\|x_{t}-q^{*}\right\|^{2}+\alpha_{t}\left\|x_{t}-x_{t-1}\right\|\left[2\left\|x_{t}-q^{*}\right\|+\alpha_{t}\left\|x_{t}-x_{t-1}\right\|\right] } \\
& \left.+2 \beta_{t}(f-\rho F) q^{*}, x_{t+1}-q^{*}\right\rangle \\
\leq & {\left[1-\beta_{t}(\zeta-v)\right]\left\|x_{t}-q^{*}\right\|^{2}+\alpha_{t}\left\|x_{t}-x_{t-1}\right\| M } \\
& +2 \beta_{t}\left((f-\rho F) q^{*}, x_{t+1}-q^{*}\right\rangle \\
= & {\left[1-\beta_{t}(\zeta-v)\right]\left\|x_{t}-q^{*}\right\|^{2}+\beta_{t}(\zeta-v) \cdot\left[\frac{2\left\langle(f-\rho F) q^{*}, x_{t+1}-q^{*}\right\rangle}{\zeta-v}\right.} \\
& \left.+\frac{M}{\zeta-v} \cdot \frac{\alpha_{t}}{\beta_{t}} \cdot\left\|x_{t}-x_{t-1}\right\|\right], \tag{3.31}
\end{align*}
$$

where $\sup _{t \geq 1}\left\{2\left\|x_{t}-q^{*}\right\|+\alpha_{t}\left\|x_{t}-x_{t-1}\right\|\right\} \leq M$.
Step 3. We show that $\left\{x_{t}\right\}$ converges strongly to $q^{*} \in \Xi$. Put $\boldsymbol{\Gamma}_{t}=\left\|x_{t}-q^{*}\right\|^{2}$.
Case 1. Assume that integer $t_{0} \geq 1$ with $\left\{\boldsymbol{\Gamma}_{t}\right\}_{t \geq t_{0}}$ is nonincreasing. Then $\lim _{t \rightarrow \infty} \boldsymbol{\Gamma}_{t}=d<$ $+\infty, \lim _{t \rightarrow \infty}\left(\boldsymbol{\Gamma}_{t}-\boldsymbol{\Gamma}_{t+1}\right)=0$. By (3.29), one obtains

$$
\begin{aligned}
& \left(1-\beta_{t} \zeta-\gamma_{t}\right)\left[\left(1-\mu \frac{\lambda_{t}}{\lambda_{t+1}}\right)\left(\left\|w_{t}-y_{t}\right\|^{2}+\left\|v_{t}-y_{t}\right\|^{2}\right)+\epsilon^{2}\left\|T^{*}(I-S) T v_{t}\right\|^{2}\right] \\
& \quad \leq\left\|x_{t}-q^{*}\right\|^{2}-\left\|x_{t+1}-q^{*}\right\|^{2}+\beta_{t} M_{4}=\boldsymbol{\Gamma}_{t}-\boldsymbol{\Gamma}_{t+1}+\beta_{t} M_{4} .
\end{aligned}
$$

Since $\lim _{t \rightarrow \infty}\left(1-\mu \frac{\lambda_{t}}{\lambda_{t+1}}\right)=1-\mu>0, \liminf _{t \rightarrow \infty}\left(1-\gamma_{t}\right)>0, \beta_{t} \rightarrow 0$, and $\boldsymbol{\Gamma}_{t}-\boldsymbol{\Gamma}_{t+1} \rightarrow 0$, one has

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\|w_{t}-y_{t}\right\|=\lim _{t \rightarrow \infty}\left\|v_{t}-y_{t}\right\|=\lim _{t \rightarrow \infty}\left\|T^{*}(I-S) T v_{t}\right\|=0 \tag{3.32}
\end{equation*}
$$

Noticing $z_{t}=v_{t}-\sigma_{t} T^{*}(I-S) T v_{t}$ and the boundedness of $\left\{\sigma_{t}\right\}$, from (3.32) we get

$$
\begin{equation*}
\left\|v_{t}-z_{t}\right\|=\sigma_{t}\left\|T^{*}(I-S) T v_{t}\right\| \rightarrow 0 \quad(t \rightarrow \infty) \tag{3.33}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left\|w_{t}-z_{t}\right\| \leq\left\|w_{t}-y_{t}\right\|+\left\|y_{t}-v_{t}\right\|+\left\|v_{t}-z_{t}\right\| \rightarrow 0 \quad(t \rightarrow \infty) \tag{3.34}
\end{equation*}
$$

Moreover, noticing $x_{t+1}-q^{*}=\gamma_{t}\left(x_{t}-q^{*}\right)+\left(1-\gamma_{t}\right)\left(z_{t}-q^{*}\right)+\beta_{t}\left(f\left(x_{t}\right)-\rho F z_{t}\right)$, we obtain from (3.18) that

$$
\begin{aligned}
\left\|x_{t+1}-q^{*}\right\|^{2}= & \left\|\gamma_{t}\left(x_{t}-q^{*}\right)+\left(1-\gamma_{t}\right)\left(z_{t}-q^{*}\right)+\beta_{t}\left(f\left(x_{t}\right)-\rho F z_{t}\right)\right\|^{2} \\
\leq & \left\|\gamma_{t}\left(x_{t}-q^{*}\right)+\left(1-\gamma_{t}\right)\left(z_{t}-q^{*}\right)\right\|^{2} \\
& +2\left(\beta_{t}\left(f\left(x_{t}\right)-\rho F z_{t}\right), x_{t+1}-q^{*}\right\rangle \\
\leq & \gamma_{t}\left\|x_{t}-q^{*}\right\|^{2}+\left(1-\gamma_{t}\right)\left\|z_{t}-q^{*}\right\|^{2}-\gamma_{t}\left(1-\gamma_{t}\right)\left\|x_{t}-z_{t}\right\|^{2} \\
& +2\left\|\beta_{t}\left(f\left(x_{t}\right)-\rho F z_{t}\right)\right\|\left\|x_{t+1}-q^{*}\right\| \\
\leq & \gamma_{t}\left\|x_{t}-q^{*}\right\|^{2}+\left(1-\gamma_{t}\right)\left\|z_{t}-q^{*}\right\|^{2}-\gamma_{t}\left(1-\gamma_{t}\right)\left\|x_{t}-z_{t}\right\|^{2} \\
& +2 \beta_{t}\left(\left\|f\left(x_{t}\right)\right\|+\left\|\rho F z_{t}\right\|\right)\left\|x_{t+1}-x^{*}\right\| \\
\leq & \gamma_{t}\left(\left\|x_{t}-q^{*}\right\|+\beta_{t} M_{1}\right)^{2}+\left(1-\gamma_{t}\right)\left(\left\|x_{t}-q^{*}\right\|+\beta_{t} M_{1}\right)^{2} \\
& -\gamma_{t}\left(1-\gamma_{t}\right)\left\|x_{t}-z_{t}\right\|^{2}+2 \beta_{t}\left(\left\|f\left(x_{t}\right)\right\|+\left\|\rho F z_{t}\right\|\right)\left\|x_{t+1}-q^{*}\right\| \\
= & \left(\left\|x_{t}-q^{*}\right\|+\beta_{t} M_{1}\right)^{2}-\gamma_{t}\left(1-\gamma_{t}\right)\left\|x_{t}-z_{t}\right\|^{2} \\
& +2 \beta_{t}\left(\left\|f\left(x_{t}\right)\right\|+\left\|\rho F z_{t}\right\|\right)\left\|x_{t+1}-q^{*}\right\| \\
= & \left\|x_{t}-q^{*}\right\|^{2}+\beta_{t} M_{1}\left[2\left\|x_{t}-q^{*}\right\|+\beta_{t} M_{1}\right] \\
& -\gamma_{t}\left(1-\gamma_{t}\right)\left\|x_{t}-z_{t}\right\|^{2}+2 \beta_{t}\left(\left\|f\left(x_{t}\right)\right\|+\left\|\rho F z_{t}\right\|\right)\left\|x_{t+1}-q^{*}\right\|,
\end{aligned}
$$

which immediately leads to

$$
\begin{aligned}
\gamma_{t}\left(1-\gamma_{t}\right)\left\|x_{t}-z_{t}\right\|^{2} \leq & \left\|x_{t}-q^{*}\right\|^{2}-\left\|x_{t+1}-q^{*}\right\|^{2} \\
& +\beta_{t} M_{1}\left[2\left\|x_{t}-q^{*}\right\|+\beta_{t} M_{1}\right]+2 \beta_{t}\left(\left\|f\left(x_{t}\right)\right\|\right. \\
& \left.+\left\|\rho F z_{t}\right\|\right)\left\|x_{t+1}-q^{*}\right\| \\
\leq & \boldsymbol{\Gamma}_{t}-\boldsymbol{\Gamma}_{t+1}+\beta_{t} M_{1}\left[2 \boldsymbol{\Gamma}_{t}^{\frac{1}{2}}+\beta_{t} M_{1}\right] \\
& +2 \beta_{t}\left(\left\|f\left(x_{t}\right)\right\|+\left\|\rho F z_{t}\right\|\right) \boldsymbol{\Gamma}_{t+1}^{\frac{1}{2}} .
\end{aligned}
$$

Since $0<\liminf _{t \rightarrow \infty} \gamma_{t} \leq \limsup \sup _{t \rightarrow \infty} \gamma_{t}<1, \beta_{t} \rightarrow 0, \boldsymbol{\Gamma}_{t}-\boldsymbol{\Gamma}_{t+1} \rightarrow 0$, and $\lim _{t \rightarrow \infty} \boldsymbol{\Gamma}_{t}=d<$ $+\infty$, from the boundedness of $\left\{x_{t}\right\},\left\{z_{t}\right\}$, we infer that

$$
\lim _{t \rightarrow \infty}\left\|x_{t}-z_{t}\right\|=0
$$

So, it follows from (3.34) that

$$
\begin{equation*}
\left\|w_{t}-x_{t}\right\| \leq\left\|w_{t}-z_{t}\right\|+\left\|z_{t}-x_{t}\right\| \rightarrow 0 \quad(t \rightarrow \infty) \tag{3.35}
\end{equation*}
$$

Also, from Algorithm 3.1 we obtain that

$$
\begin{align*}
\left\|x_{t+1}-x_{t}\right\| & =\left\|\beta_{t} f\left(x_{t}\right)+\left(1-\gamma_{t}\right)\left(z_{t}-x_{t}\right)-\beta_{t} \rho F z_{t}\right\| \\
& \leq\left(1-\gamma_{t}\right)\left\|z_{t}-x_{t}\right\|+\beta_{t}\left\|f\left(x_{t}\right)-\rho F z_{t}\right\| \tag{3.36}\\
& \leq\left\|z_{t}-x_{t}\right\|+\beta_{t}\left(\left\|f\left(x_{t}\right)\right\|+\left\|\rho F z_{t}\right\|\right) \rightarrow 0 \quad(t \rightarrow \infty)
\end{align*}
$$

In addition, the boundedness of $\left\{x_{t}\right\}$ means there is $\left\{x_{t_{k}}\right\} \subset\left\{x_{t}\right\}$ such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left\langle(f-\rho F) q^{*}, x_{t}-q^{*}\right\rangle=\lim _{k \rightarrow \infty}\left\langle(f-\rho F) q^{*}, x_{t_{k}}-q^{*}\right\rangle . \tag{3.37}
\end{equation*}
$$

Since $\left\{x_{t}\right\}$ is bounded, we may assume that $x_{t_{k}} \rightharpoonup \widetilde{z}$. We get from (3.37)

$$
\begin{align*}
\limsup _{t \rightarrow \infty}\left\langle(f-\rho F) q^{*}, x_{t}-q^{*}\right\rangle & =\lim _{k \rightarrow \infty}\left\langle(f-\rho F) q^{*}, x_{t_{k}}-q^{*}\right\rangle \tag{3.38}\\
& =\left\langle(f-\rho F) q^{*}, \widetilde{z}-q^{*}\right\rangle
\end{align*}
$$

Since $x_{t}-x_{t+1} \rightarrow 0, w_{t}-x_{t} \rightarrow 0, w_{t}-y_{t} \rightarrow 0$, and $v_{t}-z_{t} \rightarrow 0$, by Lemma 3.5 we deduce that $\tilde{z} \in \omega_{w}\left(\left\{x_{t}\right\}\right) \subset \Xi$. Hence, from (3.10) and (3.38), one gets

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left\langle(f-\rho F) q^{*}, x_{t}-q^{*}\right\rangle=\left\langle(f-\rho F) q^{*}, \tilde{z}-q^{*}\right\rangle \leq 0 \tag{3.39}
\end{equation*}
$$

which together with (3.36) leads to

$$
\begin{align*}
& \limsup _{t \rightarrow \infty}\left\langle(f-\rho F) q^{*}, x_{t+1}-q^{*}\right\rangle \\
& \quad=\limsup _{t \rightarrow \infty}\left[\left\langle(f-\rho F) q^{*}, x_{t+1}-x_{t}\right\rangle+\left\langle(f-\rho F) q^{*}, x_{t}-q^{*}\right\rangle\right] \tag{3.40}\\
& \quad \leq \limsup _{t \rightarrow \infty}\left[\left\|(f-\rho F) q^{*}\right\|\left\|x_{t+1}-x_{t}\right\|+\left\langle(f-\rho F) q^{*}, x_{t}-q^{*}\right\rangle\right] \leq 0 .
\end{align*}
$$

Note that $\left\{\beta_{t}(\zeta-v)\right\} \subset[0,1], \sum_{t=1}^{\infty} \beta_{t}(\zeta-v)=\infty$, and

$$
\limsup _{t \rightarrow \infty}\left[\frac{2\left\langle(f-\rho F) q^{*}, x_{t+1}-q^{*}\right\rangle}{\zeta-v}+\frac{M}{\zeta-v} \cdot \frac{\alpha_{t}}{\beta_{t}} \cdot\left\|x_{t}-x_{t-1}\right\|\right] \leq 0 .
$$

By Lemma 2.4 and (3.31), $\lim _{t \rightarrow \infty}\left\|x_{t}-q^{*}\right\|^{2}=0$.
Case 2. Suppose that $\exists\left\{\boldsymbol{\Gamma}_{t_{k}}\right\} \subset\left\{\boldsymbol{\Gamma}_{t}\right\}$ such that $\boldsymbol{\Gamma}_{t_{k}}<\boldsymbol{\Gamma}_{t_{k}+1} \forall k \in \mathcal{N}$, where \mathcal{N} is the set of all positive integers. Define the mapping $\phi: \mathcal{N} \rightarrow \mathcal{N}$ by

$$
\phi(t):=\max \left\{k \leq t: \boldsymbol{\Gamma}_{k}<\boldsymbol{\Gamma}_{k+1}\right\} .
$$

By Lemma 2.6, we get

$$
\boldsymbol{\Gamma}_{\phi(t)} \leq \boldsymbol{\Gamma}_{\phi(t)+1} \quad \text { and } \quad \boldsymbol{\Gamma}_{t} \leq \boldsymbol{\Gamma}_{\phi(t)+1} .
$$

From (3.29) we have

$$
\begin{align*}
(1- & \left.\beta_{\phi(t)} \zeta-\gamma_{\phi(t)}\right)\left[\left(1-\mu \frac{\lambda_{\phi(t)}}{\lambda_{\phi(t)+1}}\right)\left(\left\|w_{\phi(t)}-y_{\phi(t)}\right\|^{2}+\left\|v_{\phi(t)}-y_{\phi(t)}\right\|^{2}\right)\right. \\
& \left.+\epsilon^{2}\left\|T^{*}(I-S) T v_{\phi(t)}\right\|^{2}\right] \tag{3.41}\\
\leq & \left\|x_{\phi(t)}-q^{*}\right\|^{2}-\left\|x_{\phi(t)+1}-q^{*}\right\|^{2}+\beta_{\phi(t)} M_{4} \\
= & \Gamma_{\phi(t)}-\boldsymbol{\Gamma}_{\phi(t)+1}+\beta_{\phi(t)} M_{4}
\end{align*}
$$

which immediately yields

$$
\lim _{t \rightarrow \infty}\left\|w_{\phi(t)}-y_{\phi(t)}\right\|=\lim _{t \rightarrow \infty}\left\|v_{\phi(t)}-y_{\phi(t)}\right\|=\lim _{t \rightarrow \infty}\left\|T^{*}(I-S) T v_{\phi(t)}\right\|=0
$$

Similar to Case 1,

$$
\begin{align*}
& \lim _{t \rightarrow \infty}\left\|v_{\phi(t)}-z_{\phi(t)}\right\|=\lim _{t \rightarrow \infty}\left\|w_{\phi(t)}-x_{\phi(t)}\right\|=\lim _{t \rightarrow \infty}\left\|x_{\phi(t)+1}-x_{\phi(t)}\right\|=0 \\
& \limsup \tag{3.42}\\
& \lim _{t \rightarrow \infty}\left((f-\rho F) q^{*}, x_{\phi(t)+1}-q^{*}\right\rangle \leq 0
\end{align*}
$$

By (3.31),

$$
\begin{aligned}
\beta_{\phi(t)}(\zeta-v) \boldsymbol{\Gamma}_{\phi(t)} \leq & \boldsymbol{\Gamma}_{\phi(t)}-\boldsymbol{\Gamma}_{\phi(t)+1}+\beta_{\phi(t)}(\zeta-v)\left[\frac{2\left\langle(f-\rho F) q^{*}, x_{\phi(t)+1}-q^{*}\right\rangle}{\zeta-v}\right. \\
& \left.+\frac{M}{\zeta-v} \cdot \frac{\alpha_{\phi(t)}}{\beta_{\phi(t)}} \cdot\left\|x_{\phi(t)}-x_{\phi(t)-1}\right\|\right] \\
\leq & \beta_{\phi(t)}(\zeta-v)\left[\frac{2\left\langle(f-\rho F) q^{*}, x_{\phi(t)+1}-q^{*}\right\rangle}{\zeta-v}\right. \\
& \left.+\frac{M}{\zeta-v} \cdot \frac{\alpha_{\phi(t)}}{\beta_{\phi(t)}} \cdot\left\|x_{\phi(t)}-x_{\phi(t)-1}\right\|\right]
\end{aligned}
$$

and so

$$
\begin{aligned}
& \limsup _{t \rightarrow \infty} \boldsymbol{\Gamma}_{\phi(t)} \\
& \quad \leq \limsup _{t \rightarrow \infty}\left[\frac{2\left\langle(f-\rho F) q^{*}, x_{\phi(t)+1}-q^{*}\right\rangle}{\zeta-v}+\frac{M}{\zeta-v} \cdot \frac{\alpha_{\phi(t)}}{\beta_{\phi(t)}} \cdot\left\|x_{\phi(t)}-x_{\phi(t)-1}\right\|\right] \\
& \quad \leq 0
\end{aligned}
$$

Thus, $\lim _{t \rightarrow \infty}\left\|x_{\phi(t)}-q^{*}\right\|^{2}=0$. Also note that

$$
\begin{align*}
\left\|x_{\phi(t)+1}-q^{*}\right\|^{2}-\left\|x_{\phi(t)}-q^{*}\right\|^{2}= & 2\left\langle x_{\phi(t)+1}-x_{\phi(t)}, x_{\phi(t)}-q^{*}\right\rangle \\
& +\left\|x_{\phi(t)+1}-x_{\phi(t)}\right\|^{2} \tag{3.43}\\
\leq & 2\left\|x_{\phi(t)+1}-x_{\phi(t)}\right\|\left\|x_{\phi(t)}-q^{*}\right\| \\
& +\left\|x_{\phi(t)+1}-x_{\phi(t)}\right\|^{2} .
\end{align*}
$$

Owing to $\boldsymbol{\Gamma}_{t} \leq \boldsymbol{\Gamma}_{\phi(t)+1}$, we get

$$
\begin{aligned}
& \qquad \begin{aligned}
\left\|x_{t}-q^{*}\right\|^{2} \leq & \left\|x_{\phi(t)+1}-q^{*}\right\|^{2} \\
\leq & \left\|x_{\phi(t)}-q^{*}\right\|^{2}+2\left\|x_{\phi(t)+1}-x_{\phi(t)}\right\|\left\|x_{\phi(t)}-q^{*}\right\| \\
& +\left\|x_{\phi(t)+1}-x_{\phi(t)}\right\|^{2} \rightarrow 0,
\end{aligned} \\
& \text { i.e., } x_{t} \rightarrow q^{*} \text { as } t \rightarrow
\end{aligned}
$$

Remark 3.2

(i) The results in [21] are extended to develop BSPVIP (1.6) with the CFPP constraint, i.e., the problem of finding $q^{*} \in \Xi=\bigcap_{i=1}^{N} \operatorname{Fix}\left(S_{i}\right) \cap \Omega$ such that
$\left\langle(\rho F-f) q^{*}, p-q^{*}\right\rangle \geq 0 \forall p \in \Xi$, where $\Omega=\{z \in \mathrm{VI}(C, A): T z \in \operatorname{Fix}(S)\}$ with A being pseudomonotone and Lipschitzian mapping. The results in [21] are extended to develop our triple-adaptive inertial subgradient extragradient rule for settling BSPVIP (1.6) with the CFPP constraint, which is on the basis of the subgradient extragradient method with adaptive step sizes, accelerated inertial approach, hybrid deepest-descent method, and viscosity approximation technique. In [21] the following holds:

$$
x_{t} \rightarrow q^{*} \in \Omega=\bigcap_{i=1}^{N} \operatorname{Fix}\left(S_{i}\right) \cap \mathrm{VI}(C, A) \quad \Leftrightarrow \quad\left\|x_{t}-x_{t+1}\right\| \rightarrow 0
$$

with $q^{*}=P_{\Omega}(I-\rho F+f) q^{*}$. In our results, Lemma 2.6 implies that

$$
x_{t} \rightarrow q^{*} \in \Xi=\bigcap_{i=1}^{N} \operatorname{Fix}\left(S_{i}\right) \cap\{z \in \mathrm{VI}(C, A): T z \in \operatorname{Fix}(S)\}
$$

with $q^{*}=P_{\Xi}(I-\rho F+f) q^{*}$.
(ii) BSQVIP (1.5) (i.e., the problem of finding $q^{*} \in \Omega$ such that $\left\langle F q^{*}, p-q^{*}\right\rangle \geq 0 \forall p \in \Omega$, where $\Omega=\{z \in \operatorname{VI}(C, A): T z \in \operatorname{Fix}(S)\}$ with A being quasimonotone and Lipschitzian mapping) in [29] is extended to develop BSPVIP (1.6) with the CFPP constraint, i.e., the problem of finding $q^{*} \in \Xi=\bigcap_{i=1}^{N} \operatorname{Fix}\left(S_{i}\right) \cap \Omega$ such that $\left\langle(\rho F-f) q^{*}, p-q^{*}\right\rangle \geq 0 \forall p \in \Xi$, where $\Omega=\{z \in \mathrm{VI}(C, A): T z \in \operatorname{Fix}(S)\}$ with A being pseudomonotone and Lipschitzian mapping.

4 Numerical implementation

In this section, we compare our proposed Algorithm 3.1 with Algorithm 1 of [27] using the example below. All codes were written in MATLAB R2017a and performed on a PC Desktop Intel(R) Core(TM) i7-8700U CPU @ 3.20GHz 3.19GHz, RAM 8.00 GB.

Suppose that $H_{1}=H_{2}=L_{2}([0,1])$ is endowed with the inner product $\langle x, y\rangle=$ $\int_{0}^{1} x(t) y(t) d t, \forall x, y \in L_{2}([0,1])$ and the induced norm $\|x\|:=\int_{0}^{1}|x(t)|^{2} d t, \forall x, y \in L_{2}([0,1])$. Let $T: L_{2}([0,1]) \rightarrow L_{2}([0,1])$ be defined by

$$
T x(s)=\int_{0}^{1} e^{-s t} x(t) d t, \quad \forall x \in L_{2}([0,1]), \forall s, t \in[0,1]
$$

Then T is a bounded linear operator with adjoint

$$
T^{*} x(s)=\int_{0}^{1} e^{-s t} x(t) d t, \quad \forall x \in L_{2}([0,1]), \forall s, t \in[0,1] .
$$

Let $C=\left\{x \in L_{2}([0,1]):\langle t+1, x\rangle \leq 1\right\}$. Then C is a nonempty closed and convex subset. The projection P_{C} is given as

$$
P_{C}(x)= \begin{cases}\frac{1-\langle t+1, x\rangle}{\|y\|^{2}}(t+1)+x, & \text { if }\langle t+1, x\rangle>1 \\ x, & \text { if }\langle t+1, x\rangle \leq 1\end{cases}
$$

Also, let $Q=\left\{x \in L_{2}([0,1]):\|x\| \leq 2\right\}$. Then Q is a nonempty closed and convex subset. P_{Q} is

$$
P_{Q}(x)= \begin{cases}x & \text { if } x \in Q \\ \frac{2 x}{\|x\|} & \text { if otherwise }\end{cases}
$$

Let $A: L_{2}([0,1]) \rightarrow L_{2}([0,1])$ be defined by

$$
A x(t):=e^{-\|x\|^{2}} \int_{0}^{t} x(s) d s, \quad \forall x \in L_{2}([0,1]), t \in[0,1]
$$

Then A is pseudomonotone and Lipschitz continuous but not monotone. Also define B : $L_{2}([0,1]) \rightarrow L_{2}([0,1])$ by

$$
B x(t):=\max \{x(t), 0\}, \quad \forall t \in[0,1] .
$$

Take $f(x)=\frac{x}{2}, x \in L_{2}([0,1]), \beta_{t}=\frac{1}{t+1}$ and $F=I$.
To test the algorithms, we choose the following parameters for the algorithm: for our algorithm, we used $\lambda_{1}=0.06, \epsilon=10^{-4}, \sigma=0.5, \mu=0.06, \alpha=10^{-3}, \epsilon_{t}=(t+1)^{-2}, \beta_{t}=$ $(t+1)^{-1}, \gamma_{t}=2 t(5 t+9)^{-1}, \rho=0.07$. For Anh's algorithm, we choose $\eta=0.06, \gamma=0.05$, $\mu=0.07, \delta_{t}=10^{-3}, \lambda_{t}=2 t(5 t+1)^{-1}, \alpha_{t}=(t+1)^{-1}$. We used Err $=\left\|x_{t+1}-x_{t}\right\|<10^{-4}$ as a stopping criterion for each algorithm. We test the algorithms using the following starting points:
Case I: $x_{0}=2 t^{2}+1, x_{1}=\exp (3 t)$
Case II: $x_{0}=2 t^{2}-2 t+1, x_{1}=-4\left(t^{3}+2 t-3\right)$;
Case III: $x_{0}=t^{4}-1, x_{1}=t^{5}-9$;
Case IV: $x_{0}=\frac{1}{4} t^{2}+2 t, x_{1}=\frac{1}{3} \cos (2 t)$.
The numerical results are shown in Table 1 and Fig. 1.

Algorithm 4.1

Initialization: Let $\lambda_{1}>0, \epsilon>0, \sigma \geq 0, \mu \in(0,1), \alpha \in[0,1)$, and $x_{0}, x_{1} \in \mathcal{H}_{1}$ be arbitrary.
Iterative steps: Calculate x_{t+1} as follows:
Step 1. Given the iterates x_{t-1} and $x_{t}(t \geq 1)$, choose α_{t} such that $0 \leq \alpha_{t} \leq \bar{\alpha}_{t}$, where

$$
\bar{\alpha}_{t}= \begin{cases}\min \left\{\alpha, \frac{\varepsilon_{t}}{\left\|x_{t}-x_{t-1}\right\|}\right\} & \text { if } x_{t} \neq x_{t-1} \tag{4.1}\\ \alpha & \text { otherwise }\end{cases}
$$

Table 1 Computational result

		Algorithm 4.1	Anh's algorithm
Case I	No of Iter.	8	271
Case II	CPU time (sec)	2.1034	10.2340
	No of Iter.	8	285
Case III	CPU time (sec)	3.7897	11.7137
	No of Iter.	9	291
Case IV	CPU time (sec)	3.5364	19.1699
	No of Iter.	7	133
	CPU time (sec)	1.6817	7.7101

Figure 1 Numerical results, Top Left: Case I; Top Right: Case II; Bottom Left: Case III; Bottom Right: Case IV

Step 2. Compute $w_{t}=x_{t}+\alpha_{t}\left(x_{t}-x_{t-1}\right)$ and $y_{t}=P_{C}\left(w_{t}-\lambda_{t} A w_{t}\right)$.
Step 3. Construct $C_{t}:=\left\{y \in \mathcal{H}_{1}:\left\langle w_{t}-\lambda_{t} A w_{t}-y_{t}, y_{t}-y\right\rangle \geq 0\right\}$, and compute $v_{t}=P_{C_{t}}\left(w_{t}-\right.$ $\left.\lambda_{t} A y_{t}\right)$ and $z_{t}=v_{t}-\sigma_{t} T^{*}(I-S) T v_{t}$, where $S=P_{Q}(I-\varphi B)-\varphi\left(B\left(P_{Q}(I-\varphi B)\right)-B\right)$ and $\varphi \in(0,1)$.

Step 4. Calculate $x_{t+1}=\beta_{t} \frac{x_{t}}{2}+\gamma_{t} x_{t}+\left(\left(1-\gamma_{t}\right) I-\beta_{t} \rho\right) z_{t}$ and update

$$
\lambda_{t+1}= \begin{cases}\min \left\{\mu \frac{\left\|w_{t}-y_{t}\right\|^{2}+\left\|v_{t}-y_{t}\right\|^{2}}{2\left\langle A w_{t}-A y_{t}, v_{t}-y_{t}\right\rangle}, \lambda_{t}\right\} & \text { if }\left\langle A w_{t}-A y_{t}, v_{t}-y_{t}\right\rangle>0 \tag{4.2}\\ \lambda_{t} & \text { otherwise }\end{cases}
$$

and for any fixed $\epsilon>0, \sigma_{t}$ is chosen to be the bounded sequence satisfying

$$
\begin{equation*}
0<\epsilon \leq \sigma_{t} \leq \frac{(1-\tau)\left\|T v_{t}-S T v_{t}\right\|^{2}}{\left\|T^{*}\left(T v_{t}-S T v_{t}\right)\right\|^{2}}-\epsilon \quad \text { if } T v_{t} \neq S T v_{t} \tag{4.3}
\end{equation*}
$$

otherwise set $\sigma_{t}=\sigma \geq 0$.
Set $t:=t+1$ and go to Step 1 .

Funding

Lu-Chuan Ceng was supported by the 2020 Shanghai Leading Talents Program of the Shanghai, Municipal Human Resources and Social Security Bureau (20LJ2006100), the Innovation Program of Shanghai Municipal Education Commission (15ZZ068), and the Program for Outstanding Academic Leaders in Shanghai City (15XD1503100). Jen-Chih Yao was partially supported by the grant MOST 111-2115-M-039-001-MY2 to carry out this research work.

Abbreviations

VIP, Variational inequality problem; BSPVIP, Bilevel split pseudomonotone variational inequality problem; CFPP, Common fixed point problem.

Availability of data and materials

Not applicable.

Declarations

Competing interests

The authors declare no competing interests.

Author contributions

All authors contributed equally to this manuscript. All authors reviewed the manuscript.

Author details

${ }^{1}$ Department of Mathematics, Shanghai Normal University, Shanghai 200234, China. ${ }^{2}$ Department of Mathematical Sciences, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India. ${ }^{3}$ College of Mathematics and Computer Science, Zhejiang Normal University, 321004, Jinhua, People's Republic of China. ${ }^{4}$ Research Center for Interneural Computing, China Medical University Hospital, China Medical University, Taichung, Taiwan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 24 October 2022 Accepted: 3 January 2023 Published online: 26 January 2023

References

1. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody 12, 747-756 (1976)
2. Yao, Y., Liou, Y.C., Kang, S.M.: Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method. Comput. Math. Appl. 59, 3472-3480 (2010)
3. Shehu, Y., lyiola, O.S.: Strong convergence result for monotone variational inequalities. Numer. Algorithms 76, 259-282 (2017)
4. Shehu, Y., Dong, Q.L., Jiang, D.: Single projection method for pseudo-monotone variational inequality in Hilbert spaces. Optimization 68, 385-409 (2019)
5. Ceng, L.C., Petrusel, A., Yao, J.C., Yao, Y.: Hybrid viscosity extragradient method for systems of variational inequalities, fixed points of nonexpansive mappings, zero points of accretive operators in Banach spaces. Fixed Point Theory 19(2), 487-501 (2018)
6. Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899-912 (2008)
7. Ceng, L.C., Liou, Y.C., Wen, C.F., Wu, Y.J.: Hybrid extragradient viscosity method for general system of variational inequalities. J. Inequal. Appl. 2015, 150 (2015)
8. Ceng, L.C., Wen, C.F.: Relaxed extragradient methods for systems of variational inequalities. J. Inequal. Appl. 2015, 140 (2015)
9. Ceng, L.C., Sahu, D.R., Yao, J.C.: A unified extragradient method for systems of hierarchical variational inequalities in a Hilbert space. J. Inequal. Appl. 2014, 460 (2014)
10. Ceng, L.C., Hadjisavvas, N., Wong, N.C.: Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J. Glob. Optim. 46, 635-646 (2010)
11. Ceng, L.C., Ansari, Q.H., Schaible, S.: Hybrid extragradient-like methods for generalized mixed equilibrium problems, systems of generalized equilibrium problems and optimization problems. J. Glob. Optim. 53, 69-96 (2012)
12. Denisov, S.V., Semenov, V.V., Chabak, L.M.: Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern. Syst. Anal. 51, 757-765 (2015)
13. Dong, Q.L., Lu, Y.Y., Yang, J.F.: The extragradient algorithm with inertial effects for solving the variational inequality. Optimization 65, 2217-2226 (2016)
14. Ceng, L.C., Liou, Y.C., Wen, C.F.: Extragradient method for convex minimization problem. J. Inequal. Appl. 2014, 444 (2014)
15. Chen, J.Z., Ceng, L.C., Qiu, Y.Q., Kong, Z.R.: Extra-gradient methods for solving split feasibility and fixed point problems. Fixed Point Theory Appl. 2015, 192 (2015)
16. Ceng, L.C., Shang, M.: Hybrid inertial subgradient extragradient methods for variational inequalities and fixed point problems involving asymptotically nonexpansive mappings. Optimization 70, 715-740 (2021)
17. Ceng, L.C., Pang, C.T., Wen, C.F.: Multi-step extragradient method with regularization for triple hierarchical variational inequalities with variational inclusion and split feasibility constraints. J. Inequal. Appl. 2014, 492 (2014)
18. Ceng, L.C., Latif, A., Ansari, Q.H., Yao, J.C.: Hybrid extragradient method for hierarchical variational inequalities. Fixed Point Theory Appl. 2014, 222 (2014)
19. Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399-412 (2014)
20. Ceng, L.C., Liou, Y.C., Wen, C.F.: Composite relaxed extragradient method for triple hierarchical variational inequalities with constraints of systems of variational inequalities. J. Nonlinear Sci. Appl. 10, 2018-2039 (2017)
21. Ceng, L.C., Petrusel, A., Qin, X., Yao, J.C.: A modified inertial subgradient extragradient method for solving pseudomonotone variational inequalities and common fixed point problems. Fixed Point Theory 21, 93-108 (2020)
22. Ceng, L.C., Liou, Y.C., Wen, C.F.: A hybrid extragradient method for bilevel pseudomonotone variational inequalities with multiple solutions. J. Nonlinear Sci. Appl. 9(2016), 4052-4069 (2016)
23. Yang, J., Liu, H., Liu, Z.: Modified subgradient extragradient algorithms for solving monotone variational inequalities. Optimization 67, 2247-2258 (2018)
24. Vuong, P.T.: On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities. J. Optim. Theory Appl. 176, 399-409 (2018)
25. Thong, D.V., Hieu, D.V.: Modified Tseng's extragradient algorithms for variational inequality problems. J. Fixed Point Theory Appl. 20(4), 152 (2018)
26. Thong, D.V., Hieu, D.V.: Modified subgradient extragradient method for variational inequality problems. Numer. Algorithms 79, 597-610 (2018)
27. Anh, T.V.: Line search methods for bilevel split pseudomonotone variational inequality problems. Numer. Algorithms 81, 1067-1087 (2019)
28. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301-323 (2012)
29. Abuchu, J.A., Ugwunnadi, G.C., Darvish, V., Narain, O.K.: Accelerated hybrid subgradient extragradient methods for solving bilevel split quasimonotone variational inequality problems. Optimization (2022, in press)
30. Huy, P.V., Van, L.H.M., Hien, N.D., Anh, T.V.: Modified Tseng's extragradient methods with self-adaptive step size for solving bilevel split variational inequality problems. Optimization 71(6), 1721-1748 (2022)
31. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New York (1984)
32. Xu, H.K., Kim, T.H.: Convergence of hybrid steepest-descent methods for variational inequalities. J. Optim. Theory Appl. 119, 185-201 (2003)

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

