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Abstract
This paper introduces a triple-adaptive subgradient extragradient process with
extrapolation to solve a bilevel split pseudomonotone variational inequality problem
(BSPVIP) with the common fixed point problem constraint of finitely many
nonexpansive mappings. The problem under consideration is in real Hilbert spaces,
where the BSPVIP involves a fixed point problem of demimetric mapping. The
proposed rule exploits the strong monotonicity of one operator at the upper level
and the pseudomonotonicity of another mapping at the lower level. The strong
convergence result for the proposed algorithm is established under some suitable
assumptions. In addition, a numerical example is given to demonstrate the viability of
the proposed rule. Our results improve and extend some recent developments to a
great extent.
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1 Introduction
Suppose that ∅ �= C ⊂ H with C being a closed convex set in a real Hilbert space H, and
〈·, ·〉 and ‖ · ‖ are the inner product and the induced norm in H, respectively. Let PC be
the metric projection of H onto C, and for a given mapping S : C → H, let its set of fixed
points be denoted by Fix(S).

Let A : H → H be a Lipschitz continuous mapping with Lipschitz constant L, and
consider the classical variational inequality problem (VIP) of finding x∗ ∈ C such that
〈Ax∗, x – x∗〉 ≥ 0 ∀x ∈ C. We denote the solution set of the VIP by VI(C, A). One of the
most popular approaches for settling the VIP is the extragradient method invented by Ko-
rpelevich [1] in 1976. For any given initial point p0 ∈ C, the method of Korpelevich [1]
generates a sequence {pt} as fabricated below:

⎧
⎨

⎩

qt = PC(pt – �Apt),

pt+1 = PC(pt – �Aqt), t = 0, 1, 2, . . . ,
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where the constant � lies in (0, 1
L ). The literature on the VIP is numerous, and Korpelevich’s

extragradient method has received extensive attention of many scholars, who intensely
enhanced it in various aspects; for example, please see [2–26] and the references therein,
to name but a few.

Thong and Hieu [26] put forward subgradient extragradient process with extrapolation,
which generates a sequence {pt} for any given p1, p0 ∈H as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wt = pt + αt(pt – pt–1),

yt = PC(wt – ζAwt),

Ct = {p ∈H : 〈wt – ζAwt – yt , yt – p〉 ≥ 0},
pt+1 = PCt (wt – �Ayt), t = 1, 2, 3, . . . ,

where ζ ∈ (0, 1
L ) and weak convergence is obtained. Given nonexpansive mappings Si :

H → H, i = 1, 2, . . . , N , Ceng and Shang [16] presented a subgradient extragradient-type
process for computing a common element of the common fixed point set and VI(C, A)
when

� :=
N⋂

i=1

Fix(Si) ∩ VI(C, A) �= ∅.

Furthermore, the following strongly convergent algorithm was studied in [21] when � :=
⋂N

i=1 Fix(Si) ∩ VI(C, A) is nonempty.

Algorithm 1.1 (See [21, Algorithm 3.1]) Modified inertial subgradient extragradient
method.

Initialization
Let λ1 > 0, α > 0, μ ∈ (0, 1), and x1, x0 ∈H be arbitrary.
Iterative steps
Calculate xt+1 as follows:
Step 1. Given the iterates xt and xt–1 (t ≥ 1), choose αt such that 0 ≤ αt ≤ ᾱt , where

ᾱt =

⎧
⎨

⎩

min{α, εt
‖xt–xt–1‖ } if xt �= xt–1,

α otherwise.

Step 2. Compute wt = Stxt + αt(Stxt – Stxt–1) and yt = PC(wt – λtAwt).
Step 3. Identify Ct = {y ∈H : 〈wt – λtAwt – yt , yt – y〉 ≥ 0}, then calculate

zt = PCt (wt – λtAyt).

Step 4. Update xt+1 = βt f (xt) + γtxt + ((1 – γt)I – βtρF)zt , where ρ ∈ (0, 2η

κ2 ) and update

λt+1 =

⎧
⎨

⎩

min{μ ‖wt–yt‖2+‖zt–yt‖2

2〈Awt–Ayt ,zt–yt〉 ,λt} if 〈Awt – Ayt , zt – yt〉 > 0,

λt otherwise.

Set t := t + 1 and return to Step 1, where f is a contraction (f : H → H is a contraction if
there exists ν ∈ [0, 1) such that ‖f (x) – f (y)‖ ≤ ν‖x – y‖, ∀x, y ∈H), F is η-strongly mono-
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tone and κ-Lipschitz continuous (kindly see Sect. 2 for its definition) with {βt}, {γt}, {εt} ⊂
(0, 1) fulfilling some conditions.

Next, suppose that C and Q are nonempty, closed, and convex subsets of Hilbert spaces
H1 and H2, respectively. Let T : H1 → H2 denote a bounded linear operator and A, F :
H1 → H1 and B : H2 → H2 be nonlinear mappings. Then, the bilevel split variational
inequality problem (BSVIP) (see [27]) is as specified below:

Seek q∗ ∈ � such that
〈
Fq∗, z – q∗〉 ≥ 0 ∀z ∈ �, (1.1)

where � := {z ∈ VI(C, A) : Tz ∈ VI(Q, B)} is the solution set of the split variational inequal-
ity problem (SVIP), which was introduced by Censor et al. [28] and formulated as follows:

Find x∗ ∈ C such that
〈
Ax∗, x – x∗〉 ≥ 0 ∀x ∈ C (1.2)

and

y∗ = Tx∗ ∈ Q such that
〈
By∗, y – y∗〉 ≥ 0 ∀y ∈ Q (1.3)

with VI(C, A) and VI(Q, B) representing the solution sets of variational inequalities (1.2)
and (1.3), respectively. Note that the SVIP involves finding x∗ ∈ VI(C, A) such that Tx∗ ∈
VI(Q, B). Censor et al. [28] proposed a weakly convergent method for approximating the
solution of (1.2)–(1.3): for any given initial x1 ∈ H1, identify the sequence {xt} generated
by

xt+1 = PC(I – λA)
(
xt + γ T∗(PQ(I – λB) – I

)
Txt

)
, t = 1, 2, 3, . . . , (1.4)

where A and B both are inverse-strongly monotone and T is a bounded linear operator.
Under appropriate assumptions, it was proven in [28] that the sequence {xt} converges
weakly to a solution of (1.2)–(1.3).

We note that the VIP can be expressed as the FPP: Sz = PQ(z – μBz), μ > 0, with
VI(Q, B) = Fix(S). Consequently, we can reformulate the BSVIP in (1.1) as follows: Let A :
H1 →H1 be quasimonotone and L-Lipschitz continuous, F : H1 →H1 be κ-Lipschitzian
and η-strongly monotone, T : H1 → H2 be a nonzero bounded linear operator, and
S : H2 →H2 be a τ -demimetric mapping with τ ∈ (–∞, 1); then,

Find q∗ ∈ � such that
〈
Fq∗, z – q∗〉 ≥ 0 ∀z ∈ �, (1.5)

where � := {z ∈ VI(C, A) : Tz ∈ Fix(S)}. In this case, such a problem is referred to as a
bilevel split quasimonotone variational inequality problem (BSQVIP) and its strong con-
vergence results are obtained in [18].

Assume that f : H1 → H1 is a contractive mapping with ν ∈ [0, 1) with ν < ζ := 1 –
√

1 – ρ(2η – ρκ2) for ρ ∈ (0, 2η

κ2 ), A : H1 → H1 is pseudomonotone and L-Lipschitz con-
tinuous with ‖Au‖ ≤ lim inft→∞ ‖Aut‖ for each {ut} ⊂ C with ut ⇀ u, {Si}N

i=1 is finitely
many nonexpansive mappings on H1 and � :=

⋂N
i=1 Fix(Si) ∩ � �= ∅. Then, the bilevel split
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pseudomonotone variational inequality problem (BSPVIP) with the common fixed point
problem (CFPP) constraint is formulated as follows:

Seek q∗ ∈ � such that
〈
(ρF – f )q∗, p – q∗〉 ≥ 0 ∀p ∈ �. (1.6)

We propose triple-adaptive subgradient extragradient-type rule with inertial extrapola-
tion to solve (1.6) in real Hilbert spaces, where the BSPVIP involves the FPP of demimetric
mapping S. The rule exploits the strong monotonicity of the operator F at the upper-level
problem and the pseudomonotonicity of the mapping A at the lower level. Consequently,
we obtain strong convergence result. In addition, a numerical test is provided to show the
viability of the suggested rule.

The article is organized as follows: In Sect. 2, we provide some concepts and basic tools
for further use. Section 3 gives the convergence analysis of the suggested algorithm. Lastly,
Sect. 4 gives a numerical illustration. Our results improve and extend the corresponding
ones in [21, 29], and the relevant explanatory argument is given after the main proof of
convergence result in Sect. 3.

2 Preliminaries
A mapping S : C →H is (see [30]):

(i) L-Lipschitz continuous or L-Lipschitzian if ∃L > 0 such that
‖Sũ – Sȳ‖ ≤ L‖ũ – ȳ‖ ∀ũ, ȳ ∈ C. If L = 1, then S is nonexpansive;

(ii) ς -strongly monotone if ∃ς > 0 such that 〈Sũ – Sȳ, ũ – ȳ〉 ≥ ς‖ũ – ȳ‖2 ∀ũ, ȳ ∈ C;
(iii) monotone if 〈Sũ – Sȳ, ũ – ȳ〉 ≥ 0 ∀ũ, ȳ ∈ C;
(iv) pseudomonotone if 〈Sũ, ȳ – ũ〉 ≥ 0 �⇒ 〈Sȳ, ȳ – ũ〉 ≥ 0 ∀ũ, ȳ ∈ C;
(v) quasimonotone if 〈Sũ, ȳ – ũ〉 > 0 �⇒ 〈Sȳ, ȳ – ũ〉 ≥ 0 ∀ũ, ȳ ∈ C;

(vi) τ -demicontractive if ∃τ ∈ (0, 1) such that

‖Sũ – p‖2 ≤ ‖ũ – p‖2 + τ‖ũ – Sũ‖2 ∀ũ ∈ C, p ∈ Fix(S) �= ∅;

(vii) τ -demimetric if ∃τ ∈ (–∞, 1) such that

〈ũ – Sũ, ũ – p〉 ≥ 1 – τ

2
‖ũ – Sũ‖2 ∀ũ ∈ C, p ∈ Fix(S) �= ∅;

(viii) sequentially weakly continuous if ∀{xt} ⊂ C, xt ⇀ x �⇒ Sxt ⇀ Sx.
Given ù ∈H, there exists unique PCù ∈ C with the following properties.

Lemma 2.1 (See [31]) The following hold:
(i) 〈ǔ – v̀, PCǔ – PCv̀〉 ≥ ‖PCǔ – PCv̀‖2 ∀ǔ, v̀ ∈H;

(ii) w = PCǔ ⇐⇒ 〈ǔ – w, v̀ – w〉 ≤ 0 ∀ǔ ∈H, v̀ ∈ C;
(iii) ‖ǔ – v̀‖2 ≥ ‖ǔ – PCǔ‖2 + ‖v̀ – PCǔ‖2 ∀ǔ ∈H, v̀ ∈ C;
(iv) ‖ǔ – v̀‖2 = ‖ǔ‖2 – ‖v̀‖2 – 2〈ǔ – v̀, v̀〉 ∀ǔ, v̀ ∈H;
(v) ‖ϑ ǔ + (1 – ϑ)v̀‖2 = ϑ‖ǔ‖2 + (1 – ϑ)‖v̀‖2 – ϑ(1 – ϑ)‖ǔ – v̀‖2 ∀ǔ, v̀ ∈H,ϑ ∈R.

Clearly, (ii) �⇒ (iii) �⇒ (iv) �⇒ (v). However, the converse is not generally true.

Lemma 2.2 (See [32]) Let � ∈ (0, 1], S : C → H be nonexpansive and S� : C → H be
defined by S� x́ := Sx́ – �ρF(Sx́) ∀x́ ∈ C, where F is �-Lipschitz continuous and ς -strongly
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monotone. Then S� is a contraction provided 0 < ρ < 2ς

�2 , i.e., ‖S� x́ – S� ý‖ ≤ (1 – �ζ )‖x́ –
ý‖ ∀x́, ý ∈ C, where ζ = 1 –

√
1 – ρ(2ς – ρ�2) ∈ (0, 1].

Lemma 2.3 If A : C → H is pseudomonotone and continuous, then u∗ ∈ C solves VIP ⇔
〈Av, v – u∗〉 ≥ 0 ∀v ∈ C.

Proof The proof is straightforward and thus we skip it. �

Lemma 2.4 (See [32]) Let {at} ⊂ (0,∞) satisfying the condition at+1 ≤ (1–λt)at +λtγt ∀t ≥
1, where {λt}, {γt} ⊂ R and (i) {λt} ⊂ [0, 1] and

∑∞
t=1 λt = ∞, and (ii) lim supt→∞ γt ≤ 0 or

∑∞
t=1 |λtγt| < ∞. Then limt→∞ at = 0.

Lemma 2.5 (See [31, demiclosedness principle]) If S is nonexpansive with Fix(S) �= ∅, then
I –S is demiclosed at zero, i.e., if {xt} is a sequence in C such that xt ⇀ x ∈ C and (I –S)xt →
0, then (I – S)x = 0, where I is the identity mapping of H.

Lemma 2.6 (See [6]) Let {�s} ⊂ R with ∃{�sk } ⊂ {�s} such that �sk < �sk +1 ∀k ≥ 1. Let
{φ(s)}s≥s0 be formulated as

φ(s) = max{k ≤ s : �k < �k+1}

with s0 ≥ 1 satisfying {k ≤ s0 : �k < �k+1} �= ∅. Then:
(i) φ(s0) ≤ φ(s0 + 1) ≤ · · · and φ(s) → ∞;

(ii) �φ(s) ≤ �φ(s)+1 and �s ≤ �φ(s)+1 ∀s ≥ s0.

3 Convergence analysis
For the convergence analysis of our proposed rule for treating BSPVIP (1.6) with the CFPP
constraint, we assume throughout that

• T : H1 →H2 is a nonzero bounded linear operator with the adjoint T∗, and
S : H2 →H2 is τ -demimetric with I – S being demiclosed at zero, where τ ∈ (–∞, 1).

• A : H1 →H1 is a pseudomonotone and L-Lipschitz continuous mapping satisfying
the condition: ‖Au‖ ≤ lim inft→∞ ‖Aut‖ for each {ut} ⊂ C with ut ⇀ u.

• {Si}N
i=1 is finitely many nonexpansive self-mappings on H1 such that

� :=
⋂N

i=1 Fix(Si) ∩ � �= ∅ with � := {z ∈ VI(C, A) : Tz ∈ Fix(S)}. In addition, when
required, we write St := St mod N , t = 1, 2, 3, . . . .

• f : H1 →H1 is a contraction with constant ν ∈ [0, 1), and F : H1 →H1 is η-strongly
monotone and κ-Lipschitzian such that ν < ζ := 1 –

√
1 – ρ(2η – ρκ2) for ρ ∈ (0, 2η

κ2 ).
• {βt}, {γt}, {εt} ⊂ (0,∞) such that βt + γt < 1,

∑∞
t=1 βt = ∞, limt→∞ βt = 0,

0 < lim inft→∞ γt ≤ lim supt→∞ γt < 1 and εt = o(βt).

Algorithm 3.1 (Triple-adaptive inertial subgradient extragradient rule)
Initialization: Let λ1 > 0, ε > 0, σ ≥ 0, μ ∈ (0, 1), α ∈ [0, 1), and x0, x1 ∈H1 be arbitrary.
Iterative steps: Calculate xt+1 as follows:
Step 1. Given the iterates xt–1 and xt (t ≥ 1), choose αt such that 0 ≤ αt ≤ ᾱt , where

ᾱt =

⎧
⎨

⎩

min{α, εt
‖xt–xt–1‖ } if xt �= xt–1,

α otherwise.
(3.1)
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Step 2. Compute wt = Stxt + αt(Stxt – Stxt–1) and yt = PC(wt – λtAwt).
Step 3. Construct Ct := {y ∈H1 : 〈wt – λtAwt – yt , yt – y〉 ≥ 0}, and compute vt = PCt (wt –

λtAyt) and zt = vt – σtT∗(I – S)Tvt .
Step 4. Calculate xt+1 = βt f (xt) + γtxt + ((1 – γt)I – βtρF)zt and update

λt+1 =

⎧
⎨

⎩

min{μ ‖wt–yt‖2+‖vt–yt‖2

2〈Awt–Ayt ,vt–yt〉 ,λt} if 〈Awt – Ayt , vt – yt〉 > 0,

λt otherwise,
(3.2)

and for any fixed ε > 0, σt is chosen to be the bounded sequence satisfying

0 < ε ≤ σt ≤ (1 – τ )‖Tvt – STvt‖2

‖T∗(Tvt – STvt)‖2 – ε if Tvt �= STvt , (3.3)

otherwise set σt = σ ≥ 0.
Set t := t + 1 and go to Step 1.

Remark 3.1 We have from (3.1) that limt→∞ αt
βt

‖xt – xt–1‖ = 0. Indeed, we have αt‖xt –
xt–1‖ ≤ εt ∀t ≥ 1, which together with limt→∞ εt

βt
= 0 implies that αt

βt
‖xt – xt–1‖ ≤ εt

βt
→ 0.

It is easy to see that Ct is closed and convex. Furthermore, Ct �= ∅ since C ⊂ Ct and C �= ∅.
Hence, {vt} is well defined.

Lemma 3.1 The step size {λt} is nonincreasing with λt ≥ λ := min{λ1, μ

L } ∀t ≥ 1, and
limt→∞ λt ≥ λ := min{λ1, μ

L }.

Proof By (3.2), we get λt ≥ λt+1 ∀t ≥ 1. Now, observe that

1
2 (‖wt – yt‖2 + ‖vt – yt‖2) ≥ ‖wt – yt‖‖vt – yt‖
〈Awt – Ayt , vt – yt〉 ≤ L‖wt – yt‖‖vt – yt‖

}

�⇒ λt+1 ≥ min

{

λt ,
μ

L

}

. �

We prove the following lemmas.

Lemma 3.2 The step size σt formulated in (3.3) is well defined.

Proof It suffices to show that ‖T∗(Tvt – STvt)‖2 �= 0. Take p ∈ � arbitrarily. Since S is a
τ -demimetric mapping, we obtain

‖vt – p‖∥∥T∗(Tvt – STvt)
∥
∥ ≥ 〈

vt – p, T∗(Tvt – STvt)
〉

= 〈Tvt – Tp, Tvt – STvt〉

≥ 1 – τ

2
‖Tvt – STvt‖2.

(3.4)

If Tvt �= STvt , then ‖Tvt – STvt‖2 > 0. Thus, ‖T∗(Tvt – STvt)‖2 > 0. �

Lemma 3.3 The sequences {wt}, {yt}, {vt} satisfy

‖vt – p‖2 ≤ ‖wt – p‖2 –
(

1 – μ
λt

λt+1

)

‖wt – yt‖2 –
(

1 – μ
λt

λt+1

)

‖vt – yt‖2 ∀p ∈ �.
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Proof Observe that

2〈Awt – Ayt , vt – yt〉 ≤ μ

λt+1
‖wt – yt‖2 +

μ

λt+1
‖vt – yt‖2 ∀t ≥ 1. (3.5)

Note that (3.5) holds when 〈Awt – Ayt , vt – yt〉 ≤ 0. Conversely, we have (3.5) by (3.2). Also,
∀p̂ ∈ � ⊂ C ⊂ Ct ,

‖vt – p̂‖2 =
∥
∥PCt (wt – λtAyt) – PCt p̂

∥
∥2

≤ 〈vt – p̂, wt – λtAyt – p̂〉

=
1
2
‖vt – p̂‖2 +

1
2
‖wt – p̂‖2 –

1
2
‖vt – wt‖2 – 〈vt – p̂,λtAyt〉,

which hence yields

‖vt – p̂‖2 ≤ ‖wt – p̂‖2 – ‖vt – wt‖2 – 2〈vt – p̂,λtAyt〉. (3.6)

Since p̂ ∈ VI(C, A), we get 〈Ap̂, x̆– p̂〉 ≥ 0 ∀x̆ ∈ C. Pseudomonotonicity of A implies 〈Au, u–
p̂〉 ≥ 0 ∀u ∈ C. Letting u := yt ∈ C gives 〈Ayt , p̂ – yt〉 ≤ 0. Thus,

〈Ayt , p̂ – vt〉 = 〈Ayt , p̂ – yt〉 + 〈Ayt , yt – vt〉 ≤ 〈Ayt , yt – vt〉. (3.7)

Substituting (3.7) for (3.6), we obtain

‖vt – p̂‖2 ≤ ‖wt – p̂‖2 – ‖vt – yt‖2 – ‖yt – wt‖2 + 2〈wt – λtAyt – yt , vt – yt〉. (3.8)

Since vt = PCt (wt – λtAyt), we have that vt ∈ Ct , and hence

2〈wt – λtAyt – yt , vt – yt〉 = 2〈wt – λtAwt – yt , vt – yt〉
+ 2λt〈Awt – Ayt , vt – yt〉

≤ 2λt〈Awt – Ayt , vt – yt〉,

which together with (3.5) implies that

2〈wt – λtAyt – yt , vt – yt〉 ≤ μ
λt

λt+1
‖wt – yt‖2 + μ

λt

λt+1
‖vt – yt‖2. (3.9)

Therefore, substituting (3.9) for (3.8), the result follows. �

Lemma 3.4 {xt} is bounded.

Proof First of all, we show that P�(f + I – ρF) is a contraction. Indeed, for any x, y ∈ H1,
by Lemma 2.2, we have

∥
∥P�(f + I – ρF)x – P�(f + I – ρF)y

∥
∥

≤ ∥
∥f (x) – f (y)

∥
∥ +

∥
∥(I – ρF)x – (I – ρF)y

∥
∥
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≤ ν‖x – y‖ + (1 – ζ )‖x – y‖ =
[
1 – (ζ – ν)

]‖x – y‖,

which implies that P�(f + I – ρF) is a contraction. Banach’s contraction mapping principle
guarantees that P�(f + I – ρF) has a unique fixed point. Say q∗ ∈ H1, i.e., q∗ = P�(f + I –
ρF)q∗. Hence, there exists unique q∗ ∈ � that solves

〈
(ρF – f )q∗, p – q∗〉 ≥ 0 ∀p ∈ �. (3.10)

This also means that there exists a unique solution q∗ ∈ � to BSPVIP (1.6) with the CFPP
constraint.

Now, by the definition of wt in Algorithm 3.1, we have

∥
∥wt – q∗∥∥ =

∥
∥Stxt + αt(Stxt – Stxt–1) – q∗∥∥

≤ ∥
∥xt – q∗∥∥ + βt

αt

βt
‖xt – xt–1‖.

From Remark 3.1, we know that limt→∞ αt
βt

‖xt – xt–1‖ = 0. This means that { αt
βt

‖xt – xt–1‖}
is bounded. Thus, ∃M1 > 0 such that αt

βt
‖xt – xt–1‖ ≤ M1 ∀t ≥ 1. Hence,

∥
∥wt – q∗∥∥ ≤ ∥

∥xt – q∗∥∥ + βtM1 ∀t ≥ 1. (3.11)

From Step 3 of Algorithm 3.1, using the definition of zt , we get

∥
∥zt – q∗∥∥2 =

∥
∥vt – σtT∗(I – S)Tvt – q∗∥∥2

=
∥
∥vt – q∗∥∥2 – 2σt

〈
vt – q∗, T∗(I – S)Tvt

〉

+ σ 2
t
∥
∥T∗(I – S)Tvt

∥
∥2

=
∥
∥vt – q∗∥∥2 – 2σt

〈
T

(
vt – q∗), (I – S)Tvt

〉

+ σ 2
t
∥
∥T∗(I – S)Tvt

∥
∥2.

(3.12)

Since the operator S is τ -demimetric, from (3.12), we get

∥
∥zt – q∗∥∥2 ≤ ∥

∥vt – q∗∥∥2 – σt(1 – τ )
∥
∥(I – S)Tvt

∥
∥2 + σ 2

t
∥
∥T∗(I – S)Tvt

∥
∥2

=
∥
∥vt – q∗∥∥2 + σt

[
σt

∥
∥T∗(I – S)Tvt

∥
∥2 – (1 – τ )

∥
∥(I – S)Tvt

∥
∥2].

(3.13)

However, from the step size σt in (3.3), we get

σt + ε ≤ (1 – τ )‖Tvt – STvt‖2

‖T∗(I – S)Tvt‖2

if and only if

σt
(
σt

∥
∥T∗(I – S)Tvt

∥
∥2 – (1 – τ )‖Tvt – STvt‖2) ≤ –σtε

∥
∥T∗(I – S)Tvt

∥
∥2. (3.14)

Using 0 < ε ≤ σt in (3.3), we have that –ε2 ≥ –σtε, and hence

–σtε
∥
∥T∗(I – S)Tvt

∥
∥2 ≤ –ε2∥∥T∗(I – S)Tvt

∥
∥2. (3.15)
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Combining (3.13), (3.14), and (3.15), we obtain

∥
∥zt – q∗∥∥2 ≤ ∥

∥vt – q∗∥∥2 – σtε
∥
∥T∗(I – S)Tvt

∥
∥2

≤ ∥
∥vt – q∗∥∥2 – ε2∥∥T∗(I – S)Tvt

∥
∥2

≤ ∥
∥vt – q∗∥∥2.

(3.16)

In addition, by Lemma 3.1, we have limt→∞ λt ≥ λ := min{λ1, μ

L }, which leads to limt→∞(1–
μ λt

λt+1
) = 1 – μ > 0. Without loss of generality, we may assume that 1 – μ λt

λt+1
> 0 ∀t ≥ 1.

Thus, by Lemma 3.3, we get

∥
∥vt – q∗∥∥2 ≤ ∥

∥wt – q∗∥∥2 –
(

1 – μ
λt

λt+1

)

‖wt – yt‖2

–
(

1 – μ
λt

λt+1

)

‖vt – yt‖2

≤ ∥
∥wt – q∗∥∥2.

(3.17)

Combining (3.11), (3.16), and (3.17), we obtain

∥
∥zt – q∗∥∥ ≤ ∥

∥vt – q∗∥∥ ≤ ∥
∥wt – q∗∥∥ ≤ ∥

∥xt – q∗∥∥ + βtM1 ∀t ≥ 1. (3.18)

Since βt + γt < 1 ∀t ≥ 1, we get βt
1–γt

< 1 ∀t ≥ 1. So, from Lemma 2.2 and (3.18) it follows
that

∥
∥xt+1 – q∗∥∥ =

∥
∥βt f (xt) + γtxt +

(
(1 – γt)I – βtρF

)
zt – q∗∥∥

≤ βt
∥
∥f (xt) – q∗∥∥ + γt

∥
∥xt – q∗∥∥

+ (1 – βt – γt)
∥
∥
∥
∥

(
1 – γt

1 – βt – γt
I –

βt

1 – βt – γt
ρF

)

zt – q∗
∥
∥
∥
∥

≤ βt
(∥
∥f (xt) – f

(
q∗)∥∥ +

∥
∥f

(
q∗) – q∗∥∥)

+ γt
∥
∥xt – q∗∥∥

+ (1 – βt – γt)
∥
∥
∥
∥

(
1 – γt

1 – βt – γt
I –

βt

1 – βt – γt
ρF

)

zt – q∗
∥
∥
∥
∥

≤ βt
(
ν
∥
∥xt – q∗∥∥ +

∥
∥f

(
q∗) – q∗∥∥)

+ γt
∥
∥xt – q∗∥∥

+ (1 – γt)
∥
∥
∥
∥

(

I –
βt

1 – γt
ρF

)

zt –
(

1 –
βt

1 – γt

)

q∗
∥
∥
∥
∥

= βt
(
ν
∥
∥xt – q∗∥∥ +

∥
∥f

(
q∗) – q∗∥∥)

+ γt
∥
∥xt – q∗∥∥

+ (1 – γt)
∥
∥
∥
∥

(

I –
βt

1 – γt
ρF

)

zt –
(

I –
βt

1 – γt
ρF

)

q∗ +
βt

1 – γt
(I – ρF)q∗

∥
∥
∥
∥

≤ βt
(
ν
∥
∥xt – q∗∥∥ +

∥
∥f

(
q∗) – q∗∥∥)

+ γt
∥
∥xt – q∗∥∥

+ (1 – γt)
[(

1 –
βt

1 – γt
ζ

)
∥
∥zt – q∗∥∥ +

βt

1 – γt

∥
∥(I – ρF)q∗∥∥

]

= βt
(
ν
∥
∥xt – q∗∥∥ +

∥
∥f

(
q∗) – q∗∥∥)

+ γt
∥
∥xt – q∗∥∥

+ (1 – γt – βtζ )
∥
∥zt – q∗∥∥ + βt

∥
∥(I – ρF)q∗∥∥
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≤ βt
(
ν
∥
∥xt – q∗∥∥ +

∥
∥f

(
q∗) – q∗∥∥)

+ γt
∥
∥xt – q∗∥∥

+ (1 – γt – βtζ )
(∥
∥xt – q∗∥∥ + βtM1

)
+ βt

∥
∥(I – ρF)q∗∥∥

≤ [
1 – βt(ζ – ν)

]∥
∥xt – q∗∥∥ + βt

(
M1 +

∥
∥f

(
q∗) – q∗∥∥ +

∥
∥(I – ρF)q∗∥∥)

=
[
1 – βt(ζ – ν)

]∥
∥xt – q∗∥∥ + βt(ζ – ν)

M1 + ‖f (q∗) – q∗‖ + ‖(I – ρF)q∗‖
ζ – ν

≤ max

{
∥
∥xt – q∗∥∥,

M1 + ‖f (q∗) – q∗‖ + ‖(I – ρF)q∗‖
ζ – ν

}

.

Thus, ‖xt –q∗‖ ≤ max{‖x1 –q∗‖, M1+‖f (q∗)–q∗‖+‖(I–ρF)q∗‖
ζ–ν

} for all t ≥ 1. Thus, {xt} is bounded,
and so are the sequences {vt}, {wt}, {yt}, {zt}, {f (xt)}, {Fzt}, {Stxt}. �

Lemma 3.5 Let {vt}, {wt}, {xt}, {yt}, {zt} be the sequences generated by Algorithm 3.1. Sup-
pose that xt – xt+1 → 0, wt – xt → 0, wt – yt → 0, and vt – zt → 0. Then ωw({xt}) ⊂ � with
ωw({xt}) = {z ∈H1 : xtk ⇀ z for some {xtk } ⊂ {xt}}.

Proof Take an arbitrary fixed z ∈ ωw({xt}). Then ∃{xtk } ⊂ {xt} such that xtk ⇀ z ∈ H1.
Thanks to wt – xt → 0, by which ∃{wtk } ⊂ {wt} such that wtk ⇀ z ∈H1. In what follows, we
claim that z ∈ �. In fact, from Algorithm 3.1, we get wt –xt = Stxt –xt +αt(Stxt –Stxt–1) ∀t ≥
1, and hence

‖Stxt – xt‖ =
∥
∥wt – xt – αt(Stxt – Stxt–1)

∥
∥

≤ ‖wt – xt‖ + αt‖Stxt – Stxt–1‖
≤ ‖wt – xt‖ + βt

αt

βt
‖xt – xt–1‖.

Using Remark 3.1 and the assumption wt – xt → 0, we have

lim
t→∞‖xt – Stxt‖ = 0. (3.19)

Also, from yt = PC(wt – λtAwt), we have 〈wt – λtAwt – yt , yt – y〉 ≥ 0 ∀y ∈ C, and hence

1
λt

〈wt – yt , v – yt〉 + 〈Awt , yt – wt〉 ≤ 〈Awt , v – wt〉 ∀v ∈ C. (3.20)

Observe that λt ≥ min{λ1, μ

L }. So, from (3.20), we get lim infk→∞〈Awtk , y – wtk 〉 ≥ 0 ∀y ∈ C.
In the meantime, observe that 〈Ayt , y – yt〉 = 〈Ayt – Awt , y – wt〉 + 〈Awt , y – wt〉 + 〈Ayt , wt –
yt〉. Since wt – yt → 0, we obtain Awt – Ayt → 0, which together with (3.20) arrives at
lim infk→∞〈Aytk , v – ytk 〉 ≥ 0 ∀v ∈ C.

For i = 1, 2, . . . , N ,

‖xt – St+ixt‖ ≤ ‖xt – xt+i‖ + ‖xt+i – St+ixt+i‖ + ‖St+ixt+i – St+ixt‖
≤ 2‖xt – xt+i‖ + ‖xt+i – St+ixt+i‖.

Hence, from (3.19) and the assumption xt – xt+1 → 0, we get limt→∞ ‖xt – St+ixt‖ = 0 for
i = 1, 2, . . . , N . This immediately implies that

lim
t→∞‖xt – Slxt‖ = 0 for l = 1, 2, . . . , N . (3.21)
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Pick {ςk} ⊂ (0, 1), ςk ↓ 0. For all k ≥ 1, let mk be the smallest positive integer such that

〈Aytk , y – ytk 〉 + ςk ≥ 0 ∀k ≥ mk . (3.22)

Since {ςk} is nonincreasing, it is clear that {mk} is nondecreasing.
Again from the assumption on A, we know that lim infk→∞ ‖Aytk ‖ ≥ ‖Az‖. If Az = 0, then

z is a solution, i.e., z ∈ VI(C, A). Let Az �= 0. Then we have 0 < ‖Az‖ ≤ lim infk→∞ ‖Aytk ‖.
Without loss of generality, we may assume that Aytk �= 0 ∀k ≥ 1. Noticing {ymk } ⊂ {ytk }
and Aytk �= 0 ∀k ≥ 1, set umk = Aymk

‖Aymk ‖2 , and then 〈Aymk , umk 〉 = 1 ∀k ≥ 1. So, from (3.22),
we get 〈Aymk , y + ςkumk – ymk 〉 ≥ 0 ∀k ≥ 1. By the pseudomonotonicity of A, we obtain
〈A(y + ςkumk ), y + ςkumk – ymk 〉 ≥ 0 ∀k ≥ 1. This immediately yields

〈Ay, y – ymk 〉 ≥ 〈
Ay – A(y + ςkumk ), y + ςkumk – ymk

〉
– ςk〈Ay, umk 〉 ∀k ≥ 1. (3.23)

From xtk ⇀ z and xt – yt → 0 (due to wt – xt → 0 and wt – yt → 0), we obtain
ytk ⇀ z. So, {yt} ⊂ C guarantees z ∈ C. Since {ymk } ⊂ {ytk } and ςk ↓ 0, we have 0 ≤
lim supk→∞ ‖ςkumk ‖ = lim supk→∞

ςk
‖Aymk ‖ ≤ lim supk→∞ ςk

lim infk→∞ ‖Aytk ‖ = 0. Hence, we get ςkumk → 0.
Next, we show that z ∈ �. Indeed, using (3.21), we have xtk – Slxtk → 0 for l = 1, 2, . . . , N .

By Lemma 2.5, I – Sl is demiclosed at zero for l = 1, 2, . . . , N . Thus, from xtk ⇀ z, we get
z ∈ Fix(Sl). Since l is an arbitrary element in the finite set {1, 2, . . . , N}, it follows that z ∈
⋂N

i=1 Fix(Si). Also, letting k → ∞, we have that the right-hand side of (3.23) tends to zero.
Thus, 〈A�y, �y – z〉 = lim infk→∞〈A�y, �y – ymk 〉 ≥ 0 ∀�y ∈ C. By Lemma 2.3 we have z ∈ VI(C, A).
Furthermore, we claim Tz ∈ Fix(S). In fact, noticing zt = vt –σtT∗(I –S)Tvt , from 0 < ε ≤ σt

and vt – zt → 0, we get

ε
∥
∥T∗(I – S)Tvt

∥
∥ ≤ σt

∥
∥T∗(I – S)Tvt

∥
∥ = ‖vt – zt‖ → 0 (t → ∞),

which together with the τ -demimetricness of S leads to

1 – τ

2
∥
∥(I – S)Tvt

∥
∥2 ≤ 〈

(I – S)Tvt , T
(
vt – q∗)〉

≤ ∥
∥T∗(I – S)Tvt

∥
∥
∥
∥vt – q∗∥∥ → 0 (t → ∞).

(3.24)

Noticing xt+1 = βt f (xt) + γtxt + ((1 – γt)I – βtρF)zt , we have

(1 – γt)‖zt – xt‖ =
∥
∥xt+1 – xt – βt

(
f (xt) – ρFzt

)∥
∥

≤ ‖xt+1 – xt‖ + βt
(∥
∥f (xt)

∥
∥ + ‖ρFzt‖

)
.

Since 0 < lim inft→∞(1 – γt), xt – xt+1 → 0 and βt → 0, from the boundedness of {xt} and
{zt}, we get limt→∞ ‖zt – xt‖ = 0, which hence yields

‖vt – xt‖ ≤ ‖vt – zt‖ + ‖zt – xt‖ → 0 (t → ∞).

From xtk ⇀ z, we get vtk ⇀ z. It follows that Tvtk ⇀ Tz. From (3.24) one derives Tz ∈
Fix(S). Therefore, z ∈ ⋂N

i=1 Fix(Si) ∩ � = �. This completes the proof. �
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Theorem 3.1 {xt} generated by Algorithm 3.1 converges strongly to the unique solution
q∗ ∈ � of BSPVIP (1.6) with the CFPP constraint.

Proof First of all, in terms of Lemma 3.4 we obtain that {xt} is bounded. From its proof we
know that there exists a unique solution q∗ ∈ � of BSPVIP (1.6) with the CFPP constraint,
i.e., VIP (3.10) has a unique solution q∗ ∈ �.

Step 1. We claim that

(1 – βtζ – γt)
[(

1 – μ
λt

λt+1

)
(‖wt – yt‖2 + ‖vt – yt‖2) + ε2∥∥T∗(I – S)Tvt

∥
∥2

]

≤ ∥
∥xt – q∗∥∥2 –

∥
∥xt+1 – q∗∥∥2 + βtM4

for some M4 > 0. Also

xt+1 – q∗ = βt
(
f (xt) – q∗) + γt

(
xt – q∗) + (1 – βt – γt)

{
1 – γt

1 – βt – γt

[(

I –
βt

1 – γt
ρF

)

zt

–
(

I –
βt

1 – γt
ρF

)

q∗
]

+
βt

1 – βt – γt
(I – ρF)q∗

}

= βt
(
f (xt) – f

(
q∗)) + γt

(
xt – q∗)

+ (1 – γt)
[(

I –
βt

1 – γt
ρF

)

zt –
(

I –
βt

1 – γt
ρF

)

q∗
]

+ βt(f – ρF)q∗.

Using Lemma 2.2, we get

∥
∥xt+1 – q∗∥∥2 ≤

∥
∥
∥
∥βt

(
f (xt) – f

(
q∗)) + γt

(
xt – q∗) (3.25)

+ (1 – γt)
[(

I –
βt

1 – γt
ρF

)

zt –
(

I –
βt

1 – γt
ρF

)

q∗
]∥
∥
∥
∥

2

+ 2βt
〈
(f – ρF)q∗, xt+1 – q∗〉

≤
[

βtν
∥
∥xt – q∗∥∥ + γt

∥
∥xt – q∗∥∥ + (1 – γt)

(

1 –
βt

1 – γt
ζ

)
∥
∥zt – q∗∥∥

]2

+ 2βt
〈
(f – ρF)q∗, xt+1 – q∗〉

=
[
βtν

∥
∥xt – q∗∥∥ + γt

∥
∥xt – q∗∥∥ + (1 – βtζ – γt)

∥
∥zt – q∗∥∥]2

+ 2βt
〈
(f – ρF)q∗, xt+1 – q∗〉

≤ βtν
∥
∥xt – q∗∥∥2 + γt

∥
∥xt – q∗∥∥2 + (1 – βtζ – γt)

∥
∥zt – q∗∥∥2

+ 2βt
〈
(f – ρF)q∗, xt+1 – q∗〉

≤ βtν
∥
∥xt – q∗∥∥2 + γt

∥
∥xt – q∗∥∥2 + (1 – βtζ – γt)

∥
∥zt – q∗∥∥2

+ βtM2 (3.26)

(due to βtν +γt +(1–βtζ –γt) = 1–βt(ζ –ν) ≤ 1), where supt≥1 2‖(f –ρF)q∗‖‖xt –q∗‖ ≤ M2

for some M2 > 0. Substituting (3.16) for (3.25), by Lemma 3.3 we get

∥
∥xt+1 – q∗∥∥2 ≤ βtν

∥
∥xt – q∗∥∥2 + γt

∥
∥xt – q∗∥∥2 + (1 – βtζ – γt)

[∥
∥vt – q∗∥∥2
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– ε2∥∥T∗(I – S)Tvt
∥
∥2] + βtM2

≤ βtν
∥
∥xt – q∗∥∥2 + γt

∥
∥xt – q∗∥∥2 + (1 – βtζ – γt)

[
∥
∥wt – q∗∥∥2

–
(

1 – μ
λt

λt+1

)
(‖wt – yt‖2 + ‖vt – yt‖2)

– ε2∥∥T∗(I – S)Tvt
∥
∥2

]

+ βtM2. (3.27)

Also, from (3.18) we have

∥
∥wt – q∗∥∥2 ≤ (∥

∥xt – q∗∥∥ + βtM1
)2

=
∥
∥xt – q∗∥∥2 + βt

(
2M1

∥
∥xt – q∗∥∥ + βtM2

1
)

≤ ∥
∥xt – q∗∥∥2 + βtM3,

(3.28)

where supt≥1(2M1‖xt – q∗‖ + βtM2
1) ≤ M3 for some M3 > 0. Combining (3.27) and (3.28),

we obtain

∥
∥xt+1 – q∗∥∥2 ≤ βtν

∥
∥xt – q∗∥∥2 + γt

∥
∥xt – q∗∥∥2

+ (1 – βtζ – γt)
[∥
∥xt – q∗∥∥2 + βtM3

]

– (1 – βtζ – γt)
[(

1 – μ
λt

λt+1

)
(‖wt – yt‖2 + ‖vt – yt‖2)

+ ε2∥∥T∗(I – S)Tvt
∥
∥2

]

+ βtM2

≤ [
1 – βt(ζ – ν)

]∥
∥xt – q∗∥∥2 – (1 – βtζ – γt)

[(

1 – μ
λt

λt+1

)
(‖wt – yt‖2

+ ‖vt – yt‖2) + ε2∥∥T∗(I – S)Tvt
∥
∥2

]

+ βtM4

≤ ∥
∥xt – q∗∥∥2 – (1 – βtζ – γt)

[(

1 – μ
λt

λt+1

)
(‖wt – yt‖2 + ‖vt – yt‖2)

+ ε2∥∥T∗(I – S)Tvt
∥
∥2

]

+ βtM4,

where M4 := M2 + M3. This immediately implies that

(1 – βtζ – γt)
[(

1 – μ
λt

λt+1

)
(‖wt – yt‖2 + ‖vt – yt‖2) + ε2∥∥T∗(I – S)Tvt

∥
∥2

]

≤ ∥
∥xt – q∗∥∥2 –

∥
∥xt+1 – q∗∥∥2 + βtM4.

(3.29)

Step 2. We claim that

∥
∥xt+1 – q∗∥∥2 ≤ [

1 – βt(ζ – ν)
]∥
∥xt – q∗∥∥2 + βt(ζ – ν)

[
2

ζ – ν

〈
(f – ρF)q∗, xt+1 – q∗〉

+
M

ζ – ν
· αt

βt
· ‖xt – xt–1‖

]
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for some M > 0. Indeed, we have

∥
∥wt – q∗∥∥2 ≤ [∥

∥xt – q∗∥∥ + αt‖xt – xt–1‖
]2

≤ ∥
∥xt – q∗∥∥2 + αt‖xt – xt–1‖

[
2
∥
∥xt – q∗∥∥ + αt‖xt – xt–1‖

]
.

(3.30)

Combining (3.18), (3.25), and (3.30), we have

∥
∥xt+1 – q∗∥∥2 ≤ βtν

∥
∥xt – q∗∥∥2 + γt

∥
∥xt – q∗∥∥2

+ (1 – βtζ – γt)
∥
∥zt – q∗∥∥2 + 2βt

〈
(f – ρF)q∗, xt+1 – q∗〉

≤ βtν
∥
∥xt – q∗∥∥2 + γt

∥
∥xt – q∗∥∥2 + (1 – βtζ – γt)

∥
∥wt – q∗∥∥2

+ 2βt
〈
(f – ρF)q∗, xt+1 – q∗〉

≤ βtν
∥
∥xt – q∗∥∥2 + γt

∥
∥xt – q∗∥∥2 + (1 – βtζ – γt)

{∥
∥xt – q∗∥∥2

+ αt‖xt – xt–1‖
[
2
∥
∥xt – q∗∥∥ + αt‖xt – xt–1‖

]}

+ 2βt
〈
(f – ρF)q∗, xt+1 – q∗〉

≤ [
1 – βt(ζ – ν)

]∥
∥xt – q∗∥∥2 + αt‖xt – xt–1‖

[
2
∥
∥xt – q∗∥∥ + αt‖xt – xt–1‖

]

+ 2βt
〈
(f – ρF)q∗, xt+1 – q∗〉

≤ [
1 – βt(ζ – ν)

]∥
∥xt – q∗∥∥2 + αt‖xt – xt–1‖M

+ 2βt
〈
(f – ρF)q∗, xt+1 – q∗〉

=
[
1 – βt(ζ – ν)

]∥
∥xt – q∗∥∥2 + βt(ζ – ν) ·

[
2〈(f – ρF)q∗, xt+1 – q∗〉

ζ – ν

+
M

ζ – ν
· αt

βt
· ‖xt – xt–1‖

]

, (3.31)

where supt≥1{2‖xt – q∗‖ + αt‖xt – xt–1‖} ≤ M.
Step 3. We show that {xt} converges strongly to q∗ ∈ �. Put �t = ‖xt – q∗‖2.
Case 1. Assume that integer t0 ≥ 1 with {�t}t≥t0 is nonincreasing. Then limt→∞ �t = d <

+∞, limt→∞(�t – �t+1) = 0. By (3.29), one obtains

(1 – βtζ – γt)
[(

1 – μ
λt

λt+1

)
(‖wt – yt‖2 + ‖vt – yt‖2) + ε2∥∥T∗(I – S)Tvt

∥
∥2

]

≤ ∥
∥xt – q∗∥∥2 –

∥
∥xt+1 – q∗∥∥2 + βtM4 = �t – �t+1 + βtM4.

Since limt→∞(1 – μ λt
λt+1

) = 1 – μ > 0, lim inft→∞(1 – γt) > 0, βt → 0, and �t – �t+1 → 0, one
has

lim
t→∞‖wt – yt‖ = lim

t→∞‖vt – yt‖ = lim
t→∞

∥
∥T∗(I – S)Tvt

∥
∥ = 0. (3.32)

Noticing zt = vt – σtT∗(I – S)Tvt and the boundedness of {σt}, from (3.32) we get

‖vt – zt‖ = σt
∥
∥T∗(I – S)Tvt

∥
∥ → 0 (t → ∞), (3.33)
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and hence

‖wt – zt‖ ≤ ‖wt – yt‖ + ‖yt – vt‖ + ‖vt – zt‖ → 0 (t → ∞). (3.34)

Moreover, noticing xt+1 – q∗ = γt(xt – q∗) + (1 – γt)(zt – q∗) + βt(f (xt) – ρFzt), we obtain
from (3.18) that

∥
∥xt+1 – q∗∥∥2 =

∥
∥γt

(
xt – q∗) + (1 – γt)

(
zt – q∗) + βt

(
f (xt) – ρFzt

)∥
∥2

≤ ∥
∥γt

(
xt – q∗) + (1 – γt)

(
zt – q∗)∥∥2

+ 2
〈
βt

(
f (xt) – ρFzt

)
, xt+1 – q∗〉

≤ γt
∥
∥xt – q∗∥∥2 + (1 – γt)

∥
∥zt – q∗∥∥2 – γt(1 – γt)‖xt – zt‖2

+ 2
∥
∥βt

(
f (xt) – ρFzt

)∥
∥
∥
∥xt+1 – q∗∥∥

≤ γt
∥
∥xt – q∗∥∥2 + (1 – γt)

∥
∥zt – q∗∥∥2 – γt(1 – γt)‖xt – zt‖2

+ 2βt
(∥
∥f (xt)

∥
∥ + ‖ρFzt‖

)∥
∥xt+1 – x∗∥∥

≤ γt
(∥
∥xt – q∗∥∥ + βtM1

)2 + (1 – γt)
(∥
∥xt – q∗∥∥ + βtM1

)2

– γt(1 – γt)‖xt – zt‖2 + 2βt
(∥
∥f (xt)

∥
∥ + ‖ρFzt‖

)∥
∥xt+1 – q∗∥∥

=
(∥
∥xt – q∗∥∥ + βtM1

)2 – γt(1 – γt)‖xt – zt‖2

+ 2βt
(∥
∥f (xt)

∥
∥ + ‖ρFzt‖

)∥
∥xt+1 – q∗∥∥

=
∥
∥xt – q∗∥∥2 + βtM1

[
2
∥
∥xt – q∗∥∥ + βtM1

]

– γt(1 – γt)‖xt – zt‖2 + 2βt
(∥
∥f (xt)

∥
∥ + ‖ρFzt‖

)∥
∥xt+1 – q∗∥∥,

which immediately leads to

γt(1 – γt)‖xt – zt‖2 ≤ ∥
∥xt – q∗∥∥2 –

∥
∥xt+1 – q∗∥∥2

+ βtM1
[
2
∥
∥xt – q∗∥∥ + βtM1

]
+ 2βt

(∥
∥f (xt)

∥
∥

+ ‖ρFzt‖
)∥
∥xt+1 – q∗∥∥

≤ �t – �t+1 + βtM1
[
2�

1
2
t + βtM1

]

+ 2βt
(∥
∥f (xt)

∥
∥ + ‖ρFzt‖

)
�

1
2
t+1.

Since 0 < lim inft→∞ γt ≤ lim supt→∞ γt < 1, βt → 0, �t – �t+1 → 0, and limt→∞ �t = d <
+∞, from the boundedness of {xt}, {zt}, we infer that

lim
t→∞‖xt – zt‖ = 0.

So, it follows from (3.34) that

‖wt – xt‖ ≤ ‖wt – zt‖ + ‖zt – xt‖ → 0 (t → ∞). (3.35)
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Also, from Algorithm 3.1 we obtain that

‖xt+1 – xt‖ =
∥
∥βt f (xt) + (1 – γt)(zt – xt) – βtρFzt

∥
∥

≤ (1 – γt)‖zt – xt‖ + βt
∥
∥f (xt) – ρFzt

∥
∥

≤ ‖zt – xt‖ + βt
(∥
∥f (xt)

∥
∥ + ‖ρFzt‖

) → 0 (t → ∞).

(3.36)

In addition, the boundedness of {xt} means there is {xtk } ⊂ {xt} such that

lim sup
t→∞

〈
(f – ρF)q∗, xt – q∗〉 = lim

k→∞
〈
(f – ρF)q∗, xtk – q∗〉. (3.37)

Since {xt} is bounded, we may assume that xtk ⇀ z̃. We get from (3.37)

lim sup
t→∞

〈
(f – ρF)q∗, xt – q∗〉 = lim

k→∞
〈
(f – ρF)q∗, xtk – q∗〉

=
〈
(f – ρF)q∗, z̃ – q∗〉.

(3.38)

Since xt – xt+1 → 0, wt – xt → 0, wt – yt → 0, and vt – zt → 0, by Lemma 3.5 we deduce
that z̃ ∈ ωw({xt}) ⊂ �. Hence, from (3.10) and (3.38), one gets

lim sup
t→∞

〈
(f – ρF)q∗, xt – q∗〉 =

〈
(f – ρF)q∗, z̃ – q∗〉 ≤ 0, (3.39)

which together with (3.36) leads to

lim sup
t→∞

〈
(f – ρF)q∗, xt+1 – q∗〉

= lim sup
t→∞

[〈
(f – ρF)q∗, xt+1 – xt

〉
+

〈
(f – ρF)q∗, xt – q∗〉]

≤ lim sup
t→∞

[∥
∥(f – ρF)q∗∥∥‖xt+1 – xt‖ +

〈
(f – ρF)q∗, xt – q∗〉] ≤ 0.

(3.40)

Note that {βt(ζ – ν)} ⊂ [0, 1],
∑∞

t=1 βt(ζ – ν) = ∞, and

lim sup
t→∞

[
2〈(f – ρF)q∗, xt+1 – q∗〉

ζ – ν
+

M
ζ – ν

· αt

βt
· ‖xt – xt–1‖

]

≤ 0.

By Lemma 2.4 and (3.31), limt→∞ ‖xt – q∗‖2 = 0.
Case 2. Suppose that ∃{�tk } ⊂ {�t} such that �tk < �tk +1 ∀k ∈ N , where N is the set of

all positive integers. Define the mapping φ : N →N by

φ(t) := max{k ≤ t : �k < �k+1}.

By Lemma 2.6, we get

�φ(t) ≤ �φ(t)+1 and �t ≤ �φ(t)+1.
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From (3.29) we have

(1 – βφ(t)ζ – γφ(t))
[(

1 – μ
λφ(t)

λφ(t)+1

)
(‖wφ(t) – yφ(t)‖2 + ‖vφ(t) – yφ(t)‖2)

+ ε2∥∥T∗(I – S)Tvφ(t)
∥
∥2

]

≤ ∥
∥xφ(t) – q∗∥∥2 –

∥
∥xφ(t)+1 – q∗∥∥2 + βφ(t)M4

= �φ(t) – �φ(t)+1 + βφ(t)M4,

(3.41)

which immediately yields

lim
t→∞‖wφ(t) – yφ(t)‖ = lim

t→∞‖vφ(t) – yφ(t)‖ = lim
t→∞

∥
∥T∗(I – S)Tvφ(t)

∥
∥ = 0.

Similar to Case 1,

lim
t→∞‖vφ(t) – zφ(t)‖ = lim

t→∞‖wφ(t) – xφ(t)‖ = lim
t→∞‖xφ(t)+1 – xφ(t)‖ = 0,

lim sup
t→∞

〈
(f – ρF)q∗, xφ(t)+1 – q∗〉 ≤ 0. (3.42)

By (3.31),

βφ(t)(ζ – ν)�φ(t) ≤ �φ(t) – �φ(t)+1 + βφ(t)(ζ – ν)
[

2〈(f – ρF)q∗, xφ(t)+1 – q∗〉
ζ – ν

+
M

ζ – ν
· αφ(t)

βφ(t)
· ‖xφ(t) – xφ(t)–1‖

]

≤ βφ(t)(ζ – ν)
[

2〈(f – ρF)q∗, xφ(t)+1 – q∗〉
ζ – ν

+
M

ζ – ν
· αφ(t)

βφ(t)
· ‖xφ(t) – xφ(t)–1‖

]

,

and so

lim sup
t→∞

�φ(t)

≤ lim sup
t→∞

[
2〈(f – ρF)q∗, xφ(t)+1 – q∗〉

ζ – ν
+

M
ζ – ν

· αφ(t)

βφ(t)
· ‖xφ(t) – xφ(t)–1‖

]

≤ 0.

Thus, limt→∞ ‖xφ(t) – q∗‖2 = 0. Also note that

∥
∥xφ(t)+1 – q∗∥∥2 –

∥
∥xφ(t) – q∗∥∥2 = 2

〈
xφ(t)+1 – xφ(t), xφ(t) – q∗〉

+ ‖xφ(t)+1 – xφ(t)‖2

≤ 2‖xφ(t)+1 – xφ(t)‖
∥
∥xφ(t) – q∗∥∥

+ ‖xφ(t)+1 – xφ(t)‖2.

(3.43)
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Owing to �t ≤ �φ(t)+1, we get

∥
∥xt – q∗∥∥2 ≤ ∥

∥xφ(t)+1 – q∗∥∥2

≤ ∥
∥xφ(t) – q∗∥∥2 + 2‖xφ(t)+1 – xφ(t)‖

∥
∥xφ(t) – q∗∥∥

+ ‖xφ(t)+1 – xφ(t)‖2 → 0,

i.e., xt → q∗ as t → ∞. �

Remark 3.2
(i) The results in [21] are extended to develop BSPVIP (1.6) with the CFPP constraint,

i.e., the problem of finding q∗ ∈ � =
⋂N

i=1 Fix(Si) ∩ � such that
〈(ρF – f )q∗, p – q∗〉 ≥ 0 ∀p ∈ �, where � = {z ∈ VI(C, A) : Tz ∈ Fix(S)} with A being
pseudomonotone and Lipschitzian mapping. The results in [21] are extended to
develop our triple-adaptive inertial subgradient extragradient rule for settling
BSPVIP (1.6) with the CFPP constraint, which is on the basis of the subgradient
extragradient method with adaptive step sizes, accelerated inertial approach, hybrid
deepest-descent method, and viscosity approximation technique. In [21] the
following holds:

xt → q∗ ∈ � =
N⋂

i=1

Fix(Si) ∩ VI(C, A) ⇔ ‖xt – xt+1‖ → 0

with q∗ = P�(I – ρF + f )q∗. In our results, Lemma 2.6 implies that

xt → q∗ ∈ � =
N⋂

i=1

Fix(Si) ∩ {
z ∈ VI(C, A) : Tz ∈ Fix(S)

}

with q∗ = P�(I – ρF + f )q∗.
(ii) BSQVIP (1.5) (i.e., the problem of finding q∗ ∈ � such that 〈Fq∗, p – q∗〉 ≥ 0 ∀p ∈ �,

where � = {z ∈ VI(C, A) : Tz ∈ Fix(S)} with A being quasimonotone and
Lipschitzian mapping) in [29] is extended to develop BSPVIP (1.6) with the CFPP
constraint, i.e., the problem of finding q∗ ∈ � =

⋂N
i=1 Fix(Si) ∩ � such that

〈(ρF – f )q∗, p – q∗〉 ≥ 0 ∀p ∈ �, where � = {z ∈ VI(C, A) : Tz ∈ Fix(S)} with A being
pseudomonotone and Lipschitzian mapping.

4 Numerical implementation
In this section, we compare our proposed Algorithm 3.1 with Algorithm 1 of [27] using
the example below. All codes were written in MATLAB R2017a and performed on a PC
Desktop Intel(R) Core(TM) i7-8700U CPU @ 3.20GHz 3.19GHz, RAM 8.00 GB.

Suppose that H1 = H2 = L2([0, 1]) is endowed with the inner product 〈x, y〉 =
∫ 1

0 x(t)y(t) dt, ∀x, y ∈ L2([0, 1]) and the induced norm ‖x‖ :=
∫ 1

0 |x(t)|2 dt, ∀x, y ∈ L2([0, 1]).
Let T : L2([0, 1]) → L2([0, 1]) be defined by

Tx(s) =
∫ 1

0
e–stx(t) dt, ∀x ∈ L2

(
[0, 1]

)
,∀s, t ∈ [0, 1].
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Then T is a bounded linear operator with adjoint

T∗x(s) =
∫ 1

0
e–stx(t) dt, ∀x ∈ L2

(
[0, 1]

)
,∀s, t ∈ [0, 1].

Let C = {x ∈ L2([0, 1]) : 〈t + 1, x〉 ≤ 1}. Then C is a nonempty closed and convex subset.
The projection PC is given as

PC(x) =

⎧
⎨

⎩

1–〈t+1,x〉
‖y‖2 (t + 1) + x, if 〈t + 1, x〉 > 1,

x, if 〈t + 1, x〉 ≤ 1.

Also, let Q = {x ∈ L2([0, 1]) : ‖x‖ ≤ 2}. Then Q is a nonempty closed and convex subset.
PQ is

PQ(x) =

⎧
⎨

⎩

x if x ∈ Q,
2x
‖x‖ if otherwise.

Let A : L2([0, 1]) → L2([0, 1]) be defined by

Ax(t) := e–‖x‖2
∫ t

0
x(s) ds, ∀x ∈ L2

(
[0, 1]

)
, t ∈ [0, 1].

Then A is pseudomonotone and Lipschitz continuous but not monotone. Also define B :
L2([0, 1]) → L2([0, 1]) by

Bx(t) := max
{

x(t), 0
}

, ∀t ∈ [0, 1].

Take f (x) = x
2 , x ∈ L2([0, 1]), βt = 1

t+1 and F = I .
To test the algorithms, we choose the following parameters for the algorithm: for our

algorithm, we used λ1 = 0.06, ε = 10–4, σ = 0.5, μ = 0.06, α = 10–3, εt = (t + 1)–2, βt =
(t + 1)–1, γt = 2t(5t + 9)–1, ρ = 0.07. For Anh’s algorithm, we choose η = 0.06, γ = 0.05,
μ = 0.07, δt = 10–3, λt = 2t(5t + 1)–1, αt = (t + 1)–1. We used Err = ‖xt+1 – xt‖ < 10–4 as a
stopping criterion for each algorithm. We test the algorithms using the following starting
points:

Case I: x0 = 2t2 + 1, x1 = exp(3t)
Case II: x0 = 2t2 – 2t + 1, x1 = –4(t3 + 2t – 3);
Case III: x0 = t4 – 1, x1 = t5 – 9;
Case IV: x0 = 1

4 t2 + 2t, x1 = 1
3 cos(2t).

The numerical results are shown in Table 1 and Fig. 1.

Algorithm 4.1
Initialization: Let λ1 > 0, ε > 0, σ ≥ 0, μ ∈ (0, 1), α ∈ [0, 1), and x0, x1 ∈H1 be arbitrary.
Iterative steps: Calculate xt+1 as follows:
Step 1. Given the iterates xt–1 and xt (t ≥ 1), choose αt such that 0 ≤ αt ≤ ᾱt , where

ᾱt =

⎧
⎨

⎩

min{α, εt
‖xt–xt–1‖ } if xt �= xt–1,

α otherwise.
(4.1)
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Table 1 Computational result

Algorithm 4.1 Anh’s algorithm

Case I No of Iter. 8 271
CPU time (sec) 2.1034 10.2340

Case II No of Iter. 8 285
CPU time (sec) 3.7897 11.7137

Case III No of Iter. 9 291
CPU time (sec) 3.5364 19.1699

Case IV No of Iter. 7 133
CPU time (sec) 1.6817 7.7101

Figure 1 Numerical results, Top Left: Case I; Top Right: Case II; Bottom Left: Case III; Bottom Right: Case IV

Step 2. Compute wt = xt + αt(xt – xt–1) and yt = PC(wt – λtAwt).
Step 3. Construct Ct := {y ∈H1 : 〈wt – λtAwt – yt , yt – y〉 ≥ 0}, and compute vt = PCt (wt –

λtAyt) and zt = vt –σtT∗(I –S)Tvt , where S = PQ(I –ϕB)–ϕ(B(PQ(I –ϕB))–B) and ϕ ∈ (0, 1).
Step 4. Calculate xt+1 = βt

xt
2 + γtxt + ((1 – γt)I – βtρ)zt and update

λt+1 =

⎧
⎨

⎩

min{μ ‖wt–yt‖2+‖vt–yt‖2

2〈Awt–Ayt ,vt–yt〉 ,λt} if 〈Awt – Ayt , vt – yt〉 > 0,

λt otherwise,
(4.2)

and for any fixed ε > 0, σt is chosen to be the bounded sequence satisfying

0 < ε ≤ σt ≤ (1 – τ )‖Tvt – STvt‖2

‖T∗(Tvt – STvt)‖2 – ε if Tvt �= STvt , (4.3)

otherwise set σt = σ ≥ 0.
Set t := t + 1 and go to Step 1.
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