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Abstract
The generalized Schwarz algorithm for a class of elliptic quasi-variational inequalities
related to impulse control problems is studied in this paper. The principal result is to
prove the error estimate in L∞-norm form subdomains with overlapping
nonmatching grids. This approach combines the geometrical convergence and the
uniform convergence.
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1 Introduction
In the present paper, we are concerned with the L∞-convergence of the standard finite-
element approximation for the impulse control problem associated with the elliptic quasi-
variational inequality (QVI):

⎧
⎨

⎩

find u ∈ Kg(u) such that

a(u, v – u) ≥ (f , v – u), ∀v ∈ Kg(u).
(1.1)

Here, f is a right hande side in L∞(�), such that f ≥ 0, Kg(u) is the implicit convex set
defined by

Kg(u) =
{

v ∈ H1(�)/v = g on ∂�, 0 ≤ v ≤ Mu in �
}

, (1.2)

where � is a bounded convex domain of RN with suffciently smooth boundary ∂� and M
is a nonlinear operator from L∞(�) into itself defined by

Mu(x) = k + inf u(x + ξ ), x ∈ �, ξ ≥ 0, x + ξ ∈ �, k > 0. (1.3)

The function Mu is called the obstacle of impulse control, see [1].
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(·,·) is the scalar product in L2(�), and a(·, ·) is the bilinear form assumed to be continuous
and strongly coercive

a(u, v) =
∫

�

(
∑

1≤l,k≤N

alk(x)
∂u
∂xl

∂v
∂xk

+
∑

1≤k≤N

ak(x)
∂u
∂xk

+ a0(x)uv

)

dx (1.4)

Let Vh be the finite-element space consisting of continuous piecewise-linear functions and
rh be the usual interpolation operator. We define the discrete counterpart of (1.1) by

⎧
⎨

⎩

find uh ∈ Kgh(uh) satisfying

a(uh, vh – uh) ≥ (f , vh – uh), ∀vh ∈ Kgh(uh),
(1.5)

where

Kgh(uh) = {vh ∈ Vh/vh = πhg on ∂�, 0 ≤ vh ≤ rhMuh in �}.. (1.6)

The existence, uniqueness and regularity of the continuous solution{(1.1) and the dis-
crete solution (1.5)} have been studied and established in the past years (see [1]).

Naturally, the structure of problem (1.1) is analogous to that of the classical obstacle
problem where the obstacle is replaced by an implicit one depending upon the solution
sought. The terminology “quasivariational inequality” being chosen is a result of this re-
mark. This QVI arises in impulse-control problems: an introduction to impulse control
with numerous examples and applications can be found in [1].

To estimate an error of the solution, we apply the generalized parallel Schwarz algo-
rithm. We consider a domain that is the union of m overlapping subdomains where each
subdomain has its own generated triangulation, under a discrete maximum principle [7],
we show that the discretization on each subdomain converges quasioptimally in the L∞-
norm. This approach has already been proved for variational and quasivariational inequal-
ities when the domain was split into two subdomains using the alternating Schwarz algo-
rithm we refer the reader to [2, 3, 6, 8–10]

The paper consists of two parts. In the first we show the monotonicity and stability
properties of the discrete solution, then we state the continuous and the discrete Schwarz
sequence for quasivariational inequalities and define their respective finite-element coun-
terparts in the context of overlapping nonmatching grids in the second part we prove a
fundamental lemma for m auxiliary sequences and we establish a main result concern-
ing the error estimate of solution in L∞-norm, taking into account the combination of
geometrical convergence and the error estimate of Cortey-Dumont [5].

2 Schwarz algorithm for quasivariational inequalities
2.1 Assumptions and notations
Let uh be the discrete solution of QVI

⎧
⎪⎪⎨

⎪⎪⎩

a(uh, v – uh) ≥ (f , v – uh),∀v ∈ Vh

uh = πhg on ∂�, uh ≤ rhMuh, in �

vh = πhg on ∂�, vh ≤ rhMuh, in �

(2.1)
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and let ũh be the discrete solution of QVI

⎧
⎪⎪⎨

⎪⎪⎩

a(ũh, v – ũh) ≥ (f , v – ũh), ∀v ∈ Vh,

ũh = πhg̃ on ∂�, ũh ≤ rhMuh, in �,

v = πhg̃ on ∂�, v ≤ rhMuh, in �,

(2.2)

where g̃ is a regular function defined on ∂�.
Let us write σh(g, Muh) the solution of the problem (2.1), where σh is a mapping L∞(�)

into itself. We establish the monotonicity and stability properties of the solution.

Lemma 2.1 Let g and g̃ be two given functions and uh = σh(g, Muh), ũh = σh(g̃, Muh) the
corresponding discrete solutions of (2.1) (resp. (2.2)). If g ≥ g̃, then σh(g, Muh) ≥ σh(g̃, Muh).

Proof let vh = min(0, uh – ũh). In the region where vh is negative (vh < 0), we have

0 ≤ uh < ũh ≤ rhMuh

which means that the obstacle rhMuh is not active for uh.
So, for that vh, we have

a(uh, vh) = (f , vh) (2.3)

we suppose wh = ũh + vh, so wh ≤ rhMuh, then

a(ũh, vh) ≥ (f , vh) (2.4)

Subtracting (2.3) and (2.4) from each other, we obtain

a(ũh – uh, vh) ≥ 0

or

a(vh, vh) = a(uh – ũh, vh) = –a(ũh – uh, vh) ≤ 0

so

a(vh, vh) ≤ 0

as a(., .) is strongly coercive, then vh = 0, so

uh ≥ ũh

This completes the demonstration. �

Proposition 2.2 Under the notations and conditions of the preceding lemma, we have

‖uh – ũh‖L∞(�) ≤ ‖g – g̃‖L∞(∂�). (2.5)
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Proof Setting

φ = ‖g – g̃‖L∞(∂�).

We have

g – g̃ ≤ ‖g – g̃‖L∞(∂�)

thus,

g ≤ g̃ + φ.

By Lemma 2.1, it follows that

σh(g, Muh) = σh(g̃ + φ, Muh + φ),

however,

σh(g̃ + φ, Muh + φ) = σh(g̃, Muh) + φ,

from where

σh(g, Muh) – σh(g̃, Muh) ≤ φ.

Similarly, by interchanging the roles of g and g̃ , we also obtain

σh(g̃, Muh) – σh(g, Muh) ≤ φ.

This complete the proof. �

Theorem 2.3 ([5]) Under the preceding notations and conditions, there exists a constant
c independent of h such that

‖u – uh‖L∞(�) ≤ ch2|log h|2. (2.6)

2.2 The continuous Schwarz sequences
We consider the problem: find u ∈ K0(u) such that

a(u, v – u) ≥ (f , v – u) ∀v ∈ K0(u), (2.7)

where K0(u) is defined in (1.2) with g = 0.
We split � into m overlapping subdomains such that

⎧
⎨

⎩

for all distinct i, j, k ∈ {1, . . . , m}, if �i ∩ �j 	= ∅
and �i ∩ �k 	= ∅, then �j ∩ �k = ∅



Bouzoualegh and Saadi Journal of Inequalities and Applications          (2023) 2023:8 Page 5 of 12

and u satisfies the local regularity condition

u/�i ∈ W 2,p(�i); 2 ≤ p < ∞. (2.8)

We set �ij = ∂�i ∩ �j, where ∂�i denotes the boundary of �i.
The intersection of �ij and �ji (i 	= j) is assumed to be empty.
Let

Vij =
{

v ∈ H1(�i)/v = 0 on ∂�i ∩ ∂�
}

, i = 1, m, j = 1, m, (i 	= j).

For w ∈ C0(�ij), we define

V (w)
ij (�i) =

{
v ∈ Vij(�i)/v = w on �ij

}
, i = 1, m, j = 1, m, (i 	= j).

We associate with problem (2.7) the following system: Find ui ∈ V (uj)
ij , a solution of

⎧
⎨

⎩

ai(ui, v – ui) ≥ (fi, v – ui), ∀v ∈ V (uj)
ij ,

ui = uj, on �ij.
(2.9)

For u0
i , u0

j ∈ C0(�) the initial values, we define the Schwarz sequences (un+1
i ) on �i such

that un+1
i ∈ V

(un
j )

ij solves

⎧
⎨

⎩

ai(un+1
i , v – un+1

i ) ≥ (fi, v – un+1
i ) ∀v in V

(un
j )

ij

un+1
i ≤ Mun

i in �i, v ≤ Mun
i in �i,

(2.10)

where

ai(u, v) =
∫

�i

(
∑

1≤l,k≤N

alk(x)
∂u
∂xl

∂v
∂xk

+
∑

1≤k≤N

ak(x)
∂u
∂xk

v + a0(x)uv

)

dx, i = 1, . . . , m.

u0
i = u0 in �i, un+1

i = 0 in �/�i.

2.3 Geometrical convergence
Theorem 2.4 The sequences (un+1

1 , un+1
2 , . . . , un+1

m ), n ≥ 0 produced by the generalized
Schwarz algorithm converge geometrically to the solution (u1, u2, . . . , um) of the problem
(2.9). More precisely, there exist m constants k1, k2, . . . , km ∈ (0, 1), ∀i = 1, m – 1, j = 2, m
and i < j such that

∥
∥ui – un+1

i
∥
∥

L∞(�i)
≤ kn

i kn
j
∥
∥u – u0∥∥

L∞(�ij)
,

∥
∥uj – un+1

j
∥
∥

L∞(�j)
≤ kn

i kn
j
∥
∥u – u0∥∥

L∞(�ji)

(2.11)

and we consider a continuous function wi ∈ L∞(�i) in �i \ (�i ∩ ∂�)
such that

	wi = 0, in �i,
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where

wi =

⎧
⎨

⎩

0, on ∂�i/∂�i ∩ �,

1, on ∂�i ∩ �,

and

ki = sup
{

wj(x)/x ∈ ∂�i ∩ �, i 	= j
} ∈ (0, 1), ∀i, j = 1, m. (2.12)

Proof From the maximum principle, we have

∥
∥ui – un+1

i
∥
∥

L∞(�i)
≤ ∥

∥ui – un+1
j

∥
∥

L∞(�ij)

and

∥
∥ui – un+1

i
∥
∥

L∞(�i)
≤ ∥

∥uj – un
j
∥
∥

L∞(�ij)
≤ ∥

∥wiuj – wiun
j
∥
∥

L∞(�ij)

≤ ∥
∥wiuj – wiun

j
∥
∥

L∞(�j)
≤ ∥

∥wiuj – wiun
j
∥
∥

L∞(�ji)

≤ ‖wi‖L∞(�ji)
∥
∥uj – un

j
∥
∥

L∞(�ji)
≤ ‖wi‖L∞(�ji)

∥
∥wjuj – wjun

j
∥
∥

L∞(�ji)

≤ ‖wi‖L∞(�ji)
∥
∥wjui – wjun–1

i
∥
∥

L∞(�ji)

≤ ‖wi‖L∞(�ji)
∥
∥wjui – wiun

i
∥
∥

L∞(�i)

≤ ‖wi‖L∞(�ji)
∥
∥wjui – wjun–1

i
∥
∥

L∞(�ij)

≤ ‖wi‖L∞(�ji)‖wj‖L∞(�ij)
∥
∥ui – un–1

i
∥
∥

L∞(�ij)
,

Using (2.12), hence

∥
∥ui – un+1

i
∥
∥

L∞(�i)
≤ kikj

∥
∥ui – un–1

i
∥
∥

L∞(�ij)
,

By induction, we obtain

∥
∥ui – un+1

i
∥
∥

L∞(�i)
≤ kn

i kn
j
∥
∥ui – u0

i
∥
∥

L∞(�ij)

≤ kn
i kn

j
∥
∥u – u0∥∥

L∞(�ij)
,

where u0
i = u0 on �ij, u0

i = 0 on ∂�i ∩ ∂�.
Similary, we have

∥
∥uj – un

j
∥
∥

L∞(�j)
≤ ∥

∥uj – un
j
∥
∥

L∞(�ji)

≤ ∥
∥ui – un

i
∥
∥

L∞(�ji)
≤ ∥

∥wjui – wjun
i
∥
∥

L∞(�ji)

≤ ∥
∥wjui – wjun

i
∥
∥

L∞(�i)
≤ ∥

∥wjui – wjun
i
∥
∥

L∞(�ij)

≤ ‖wj‖L∞(�ij)
∥
∥ui – un

i
∥
∥

L∞(�ij)
≤ ‖wj‖L∞(�ij)

∥
∥wiuj – wiun–1

j
∥
∥

L∞(�ij)

≤ ‖wj‖L∞(�ij)
∥
∥wiuj – wiun–1

j
∥
∥

L∞(�j)
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≤ ‖wj‖L∞(�ij)
∥
∥wiuj – wiun–1

j
∥
∥

L∞(�ji)

≤ ‖wi‖L∞(�ji)‖wj‖L∞(�ij)
∥
∥uj – un–1

j
∥
∥

L∞(�ji)
≤ kikj

∥
∥ui – un

j
∥
∥

L∞(�ji)
,

then,

∥
∥uj – un+1

j
∥
∥

L∞(�j)
≤ kn

i kn
j
∥
∥uj – u0

j
∥
∥

L∞(�ji)

≤ kn
i kn

j
∥
∥u – u0∥∥

L∞(�ji)
,

where u0
j = u0 on �ji, u0

j = 0 on ∂�j ∩ ∂�. �

2.4 The discretization
Let τ hij be a standard regular and quasiuniform finite-element triangulation in �i, hij being
the meshsizes.

We assume that every two triangulations are mutually independent on �i ∩ �j, in the
sense that a triangle belonging to one triangulation does not necessarily belong to the
other, i = 1, m, j = 1, m, (i 	= j)

Let Vhij = Vhij (�i) be the space of continuous piecewise-linear functions on τ hij that van-
ish on ∂� ∩ ∂�i. For given ω ∈ C(�ij), we set

V (w)
hij

=
{

v ∈ Vhij (�i) : v = 0 on ∂� ∩ ∂�i; v = πhij (w) on �ij
}

,

where πhij denotes a suitable interpolation operator on �ij.
Now, we define the discrete Schwarz sequences and we suppose that the matrices of

discretizations of problem (2.10) are M-matrices (see [4]).

Let u0
hi

= rhij u0, un+1
ihij

∈ V
(un

jhij
)

hij
such that

⎧
⎨

⎩

ai(un+1
ihij

, v – un+1
ihij

) ≥ (fi, v – un+1
ihij

) ∀v ∈ V
(un

jhji
)

hij
,

un+1
ihij

≤ rhij Mun
ihij

in τ hij , v ≤ rhij Mun
ihij

in τ hij ,
(2.13)

where rhij is a usual restriction operator in �i and u0
ihij

= u0
hij

in �i, i = 1, m, j = 1, m, (i 	= j).

3 Error analysis
The aim of this section is to show the main result of this paper. To that end, we start by
introducing two discrete auxiliary sequences and prove a fundamental lemma.

3.1 Auxiliary Schwarz sequences

For ω0
hij

= u0
hij

, we define the sequences ωn+1
ihij

∈ V
(un

j )
hij

such that

⎧
⎨

⎩

ai(ωn+1
ihij

, v – ωn+1
ihij

) ≥ (fi, v – ωn+1
ihij

) ∀vV
(un

j )
hij

,

ωn+1
ihij

≤ rhij Mun
ihij

in τ hij , v ≤ rhij Mun
ihij

in τ hij .
(3.1)



Bouzoualegh and Saadi Journal of Inequalities and Applications          (2023) 2023:8 Page 8 of 12

Lemma 3.1 For i = 1, m – 1, j = 2, m and i < j
for n ∈N is an even number such that n = 2q

∥
∥u2q+1

i – u2q+1
ih

∥
∥

i ≤
q∑

p=0

∥
∥u2p+1

i – ω
2p+1
ih

∥
∥

i +
q∑

p=0

∥
∥u2p

j – ω
2p
jh

∥
∥

j,

∥
∥u2q+1

j – u2q+1
jh

∥
∥

j ≤
q∑

p=0

∥
∥u2p+1

j – ω
2p+1
jh

∥
∥

j +
q∑

p=0

∥
∥u2p

i – ω
2p
ih

∥
∥

i

(3.2)

for n ∈N is an odd number such that n = 2q + 1

∥
∥u2q+2

i – u2q+2
ih

∥
∥

i ≤
q+1∑

p=0

∥
∥u2p

i – ω
2p
ih

∥
∥

i +
q∑

p=0

∥
∥u2p+1

j – ω
2p+1
jh

∥
∥

j,

∥
∥u2q+2

j – u2q+2
jh

∥
∥

j ≤
q+1∑

p=0

∥
∥u2p

j – ω
2p
jh

∥
∥

j +
q∑

p=0

∥
∥u2p+1

i – ω
2p+1
ih

∥
∥

i.

(3.3)

Proof Let us reason by recurrence. For n = 0, (q = 0): according to Proposition 2.2, we have

∥
∥u1

i – u1
ih
∥
∥

i ≤ ∥
∥u1

i – ω1
ih
∥
∥

1 +
∥
∥ω1

ih – u1
ih
∥
∥

i

≤ ∥
∥u1

i – ω1
ih
∥
∥

i +
∣
∣πhu0

j – πhu0
jh
∣
∣
ij

≤ ∥
∥u1

i – ω1
ih
∥
∥

i +
∣
∣u0

j – u0
jh
∣
∣
ij

≤ ∥
∥u1

i – ω1
ih
∥
∥

i +
∥
∥u0

j – u0
jh
∥
∥

j,
∥
∥u1

j – u1
jh
∥
∥

j ≤
∥
∥u1

j – ω1
jh
∥
∥

j +
∥
∥ω1

jh – u1
jh
∥
∥

j

≤ ∥
∥u1

j – ω1
jh
∥
∥

j +
∣
∣πhu0

i – πhu0
ih
∣
∣
ji

≤ ∥
∥u1

j – ω1
jh
∥
∥

j +
∣
∣u0

i – u0
ih
∣
∣
ji

≤ ∥
∥u1

j – ω1
jh
∥
∥

j +
∥
∥u0

i – u0
ih
∥
∥

i,

hence,

∥
∥u1

i – u1
ih
∥
∥

i ≤
0∑

p=0

∥
∥u2p+1

i – ω
2p+1
ih

∥
∥

i +
0∑

p=0

∥
∥u2p

j – ω
2p
jh

∥
∥

j,

∥
∥u1

j – u1
jh
∥
∥

j ≤
0∑

p=0

∥
∥u2p+1

j – ω
2p+1
jh

∥
∥

j +
0∑

p=0

∥
∥u2p

i – ω
2p
ih

∥
∥

i

by recurrence. For n = 1, (q = 0): using proposition 2.2, we have

∥
∥u2

i – u2
ih
∥
∥

i ≤ ∥
∥u2

i – ω2
ih
∥
∥

i +
∥
∥ω2

ih – u2
ih
∥
∥

i

≤ ∥
∥u2

i – ω2
ih
∥
∥

i +
∣
∣πhu1

j – πhu1
jh
∣
∣
ij

≤ ∥
∥u2

i – ω2
ih
∥
∥

i +
∣
∣u1

j – u1
jh
∣
∣
ij

≤ ∥
∥u2

i – ω2
ih
∥
∥

i +
∥
∥u1

j – u1
jh
∥
∥

j
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≤ ∥
∥u2

i – ω2
ih
∥
∥

i +
∥
∥u1

j – ω1
jh
∥
∥

j +
∥
∥u0

i – u0
ih
∥
∥

i,
∥
∥u2

j – u2
jh
∥
∥

j ≤
∥
∥u2

j – ω2
jh
∥
∥

j +
∥
∥ω2

jh – u2
jh
∥
∥

j

≤ ∥
∥u2

j – ω2
jh
∥
∥

j +
∣
∣πhu1

i – πhu1
ih
∣
∣
ji

≤ ∥
∥u2

j – ω2
jh
∥
∥

ij +
∣
∣u1

i – u1
ih
∣
∣
ji

≤ ∥
∥u2

j – ω2
jh
∥
∥

j +
∥
∥u1

i – u1
ih
∥
∥

i

≤ ∥
∥u2

j – ω2
jh
∥
∥

j +
∥
∥u1

i – ω1
ih
∥
∥

i +
∥
∥u0

j – ω0
jh
∥
∥

j,

hence,

∥
∥u1

i – u1
ih
∥
∥

i ≤
1∑

p=0

∥
∥u2p

i – ω
2p
ih

∥
∥

i +
0∑

p=0

∥
∥u2p+1

j – ω
2p+1
jh

∥
∥

j,

∥
∥u1

j – u1
jh
∥
∥

j ≤
1∑

p=0

∥
∥u2p

j – ω
2p
jh

∥
∥

j +
0∑

p=0

∥
∥u2p+1

i – ω
2p+1
ih

∥
∥

i.

We assume that

∥
∥u2q+1

i – u2q+1
ih

∥
∥

i ≤
q∑

p=0

∥
∥u2p+1

i – ω
2p+1
ih

∥
∥

i +
q∑

p=0

∥
∥u2p

j – ω
2p
jh

∥
∥

j,

∥
∥u2q+1

j – u2q+1
jh

∥
∥

j ≤
q∑

p=0

∥
∥u2p+1

j – ω
2p+1
jh

∥
∥

j +
q∑

p=0

∥
∥u2p

i – ω
2p
ih

∥
∥

i,

then, using Proposition 2.2 again, we obtain

∥
∥u2q+2

i – u2q+2
ih

∥
∥

i ≤ ∥
∥u2q+2

i – ω
2q+2
ih

∥
∥

i +
∥
∥ω

2q+2
ih – u2q+2

ih
∥
∥

i

≤ ∥
∥u2q+2

i – ω
2q+2
ih

∥
∥

i +
∣
∣πhu2q+1

j – πhu2q+1
jh

∣
∣
ij

≤ ∥
∥u2q+2

i – ω
2q+2
ih

∥
∥

i +
∣
∣u2q+1

j – u2q+1
jh

∣
∣
ij

≤ ∥
∥u2q+2

i – ω
2q+2
ih

∥
∥

i +
∥
∥uq+1

j – u2q+1
jh

∥
∥

j

≤ ∥
∥u2(q+1)

i – u2(q+1)
ih

∥
∥

i +
q∑

p=0

∥
∥u2p+1

j – ω
2p+1
jh

∥
∥

j +
q∑

p=0

∥
∥u2p

i – ω
2p
ih

∥
∥

i.

Then,

∥
∥u2q+1

i – u2q+1
ih

∥
∥

i ≤
q+1∑

p=0

∥
∥u2p

i – ω
2p
ih

∥
∥

i +
q∑

p=0

∥
∥u2p+1

j – ω
2p+1
jh

∥
∥

j,

∥
∥u2q+2

j – u2q+2
jh

∥
∥

j ≤
∥
∥u2q+2

j – ω
2q+2
jh

∥
∥

j +
∥
∥ω

2q+2
jh – u2q+2

jh
∥
∥

j

≤ ∥
∥u2q+2

j – ω
2q+2
jh

∥
∥

j +
∣
∣πhu2q+1

i – πhu2q+1
ih

∣
∣
ji

≤ ∥
∥u2q+2

j – ω
2q+2
jh

∥
∥

j +
∣
∣u2q+1

i – u2q+1
ih

∣
∣
ji

≤ ∥
∥u2q+2

j – ω
2q+2
jh

∥
∥

j +
∥
∥u2q+1

i – u2q+1
ih

∥
∥

i
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≤ ∥
∥u2(q+1)

j – u2(q+1)
jh

∥
∥

j +
q∑

p=0

∥
∥u2p+1

i – ω
2p+1
ih

∥
∥

i +
q∑

p=0

∥
∥u2p

j – ω
2p
jh

∥
∥

j.

Then,

∥
∥u2q+2

j – u2q+2
jh

∥
∥

j ≤
q+1∑

p=0

∥
∥u2p

j – ω
2p
jh

∥
∥

j +
q∑

p=0

∥
∥u2p+1

i – ω
2p+1
ih

∥
∥

i.

Now, we suppose that

∥
∥u2q

i – u2q
ih

∥
∥

i ≤
q∑

p=0

∥
∥u2p

i – ω
2p
ih

∥
∥

i +
q–1∑

p=0

∥
∥u2p+1

j – ω
2p+1
jh

∥
∥

j,

∥
∥u2q

j – u2q
jh

∥
∥

j ≤
q∑

p=0

∥
∥u2p

j – ω
2p
jh

∥
∥

j +
q–1∑

p=0

∥
∥u2p+1

i – ω
2p+1
ih

∥
∥

i

and using Proposition 2.2, we obtain

∥
∥u2q+1

i – u2q+1
ih

∥
∥

i ≤ ∥
∥u2q+1

i – ω
2q+1
ih

∥
∥

i +
∥
∥ω

2q+1
ih – u2q+1

ih
∥
∥

i

≤ ∥
∥u2q+1

i – ω
2q+1
ih

∥
∥

i +
∣
∣πhu2q

j – πhu2q
jh

∣
∣
ij

≤ ∥
∥u2q+1

i – ω
2q+1
ih

∥
∥

i +
∣
∣u2q

j – u2q
jh

∣
∣
ij

≤ ∥
∥u2q+1

i – ω
2q+1
ih

∥
∥

i +
∥
∥uq

j – u2q
jh

∥
∥

j

≤ ∥
∥u2q+1

i – u2q+1
ih

∥
∥

i +
q∑

p=0

∥
∥u2p

j – ω
2p
jh

∥
∥

j +
q–1∑

p=0

∥
∥u2p+1

i – ω
2p+1
ih

∥
∥

i.

Then,

∥
∥u2q+1

i – u2q+1
ih

∥
∥

i ≤
q∑

p=0

∥
∥u2p+1

i – ω
2p+1
ih

∥
∥

i +
q∑

p=0

∥
∥u2p

j – ω
2p
jh

∥
∥

j,

∥
∥u2q+1

j – u2q+1
jh

∥
∥

j ≤
∥
∥u2q+1

j – ω
2q+1
jh

∥
∥

j +
∥
∥ω

2q+1
jh – u2q+1

jh
∥
∥

j

≤ ∥
∥u2q+1

j – ω
2q+1
jh

∥
∥

j +
∣
∣πhu2q

i – πhu2q
ih

∣
∣
ji

≤ ∥
∥u2q+1

j – ω
2q+1
jh

∥
∥

j +
∣
∣u2q

i – u2q
ih

∣
∣
ji

≤ ∥
∥u2q+1

j – ω
2q+1
jh

∥
∥

j +
∥
∥u2q

i – u2q
ih

∥
∥

i

≤ ∥
∥u2q+1

j – u2q+1
jh

∥
∥

j +
q∑

p=0

∥
∥u2p

i – ω
2p
ih

∥
∥

i +
q–1∑

p=0

∥
∥u2p+1

j – ω
2p+1
jh

∥
∥

j.

Then,

∥
∥u2q+1

j – u2q+1
jh

∥
∥

j ≤
q∑

p=0

∥
∥u2p+1

j – ω
2p+1
jh

∥
∥

j +
q∑

p=0

∥
∥u2p

i – ω
2p
ih

∥
∥

i. �
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3.2 L∞ error estimate
Theorem 3.2 Let h = max(hi, hj), i = 1, m – 1; j = 2, m and i < j. Then, there exists a con-
stant c independent of both h and n such that

∥
∥uM – un+1

Mh
∥
∥

L∞(�M) ≤ ch2|log h|3; M = i, j. (3.4)

Proof For M = i, let k = max(ki, kj) using Theorem 2.4, Lemma 3.1, and Theorem 2.3 we
obtain:

For n ∈N is an even number such that n = 2q

∥
∥ui – un+1

ih
∥
∥

i ≤ ∥
∥ui – un+1

i
∥
∥

i +
∥
∥un+1

i – un+1
ih

∥
∥

i

≤ k2n∣∣u – u0∣∣
ij +

q∑

p=0

∥
∥u2p+1

j – ω
2p+1
jh

∥
∥

j +
q∑

p=0

∥
∥u2p

i – ω
2p
ih

∥
∥

i

≤ k2n∣∣u – u0∣∣
ij + (n + 2)ch2|log h|2.

For n ∈N is an odd number such that n = 2q + 1

∥
∥ui – un+1

ih
∥
∥

i ≤ ∥
∥ui – un+1

i
∥
∥

i +
∥
∥un+1

i – un+1
ih

∥
∥

i

≤ k2n∣∣u – u0∣∣
ij +

q+1∑

p=0

∥
∥u2p

i – ω
2p
ih

∥
∥

i +
q∑

p=0

∥
∥u2p+1

j – ω
2p+1
jh

∥
∥

j

≤ k2n∣∣u – u0∣∣
ij + (n + 3)ch2|log h|2

We suppose that

k2n ≤ h2

and we obtain

∥
∥ui – un+1

ih
∥
∥

i ≤ ch2|log h|3.

For M = j this is similar. �

4 Conclusion
In this work, we have established a error estimate in an L∞-norm of an overlapping
Schwarz algorithm on nonmatching grids for a class of elliptic quasivariational inequali-
ties related to the impulse-control problem. It is important to note that the error estimate
obtained in this paper contains an extra power in |log h| than expected. We will see that
this approach may also be extended to other important problems of QVIs.
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