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Abstract
In this paper, we introduce an intermixed algorithm with viscosity technique for
finding a common solution of the combination of mixed variational inequality
problems and the fixed-point problem of a nonexpansive mapping in a real Hilbert
space. Moreover, we propose the mathematical tools related to the combination of
mixed variational inequality problems in the second section of this paper. Utilizing
our mathematical tools, a strong convergence theorem is established for the
proposed algorithm. Furthermore, we establish additional conclusions concerning
the split-feasibility problem and the constrained convex-minimization problem
utilizing our main result. Finally, we provide numerical experiments to illustrate the
convergence behavior of our proposed algorithm.

Keywords: Mixed variational inequality problems; Intermixed algorithm; Strong
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1 Introduction
Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let T : C → C
be a nonlinear mapping. A point x ∈ C is called a fixed point of T if Tx = x. The set of
fixed points of T is the set Fix(T) := {x ∈ C : Tx = x}. A mapping T of C into itself is called
nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

Note that the mapping I – T is demiclosed at zero iff x ∈ Fix(T) whenever xn ⇀ x and
xn – Txn → 0 (see, [1]). It is widely known that if T : H → H is nonexpansive, then I – T
is demiclosed at zero. A mapping g : C → C is said to be a contraction if there exists a
constant α ∈ (0, 1) such that

∥
∥g(x) – g(y)

∥
∥ ≤ α‖x – y‖, ∀x, y ∈ C.

Let A : C → H be a mapping and f : H → R ∪ {+∞} be a proper, convex, and lower
semicontinuous function on H . Now, we consider the mixed variational inequality prob-
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lem: Find a point x∗ ∈ C such that

〈

y – x∗, Ax∗〉 + f (y) – f
(

x∗) ≥ 0, (1.1)

for all y ∈ C. The set of solutions of problem (1.1) is denoted by VI(C, A, f ). The problem
(1.1) was originally considered by Lescarret [2] and Browder [3] in relation to its various
application in mathematical physics. General equilibrium and oligopolistic equilibrium
problems, which can be stated as mixed variational inequality problems, were studied by
Konnov and Volotskaya [4]. The fixed-point problems and resolvent equations are well
known to be equivalent to mixed variational inequality problems. In 1997, Noor, [5] pro-
posed and analyzed a new iterative method for solving mixed variational inequality prob-
lems using the resolvent equations technique as follows:

⎧

⎪⎪⎨

⎪⎪⎩

zn = xn – ρAxn,

wn = zn – Jρf zn + ρAJρf zn,

xn+1 = xn – γ wn, ∀n ≥ 1,

(1.2)

where A is a monotone and Lipschitz continuous operator, ρ > 0 is a constant, Jρf = (I +
ρ∂f )–1 is the resolvent operator and I is the identity operator. In 2008, Noor et al. [6]
introduced an iterative algorithm to solve the mixed variational inequalities as follows:

xn+1 = (1 – αn)xn + αnJρf [xu – ρAxn], ∀n ≥ 1, (1.3)

where 0 ≤ αn ≤ 1 and A is strongly monotone and Lipschitz continuous. In recent years,
several researchers have increasingly investigated the problem (1.1) in various directions,
for example [5, 7–16] and the references therein.

Note that if C is a closed convex subset of H and f (x) = δC(x), for all x ∈ C, where δC is the
indicator function of C defined by δC(x) = 0 if x ∈ C, and δC(x) = ∞ otherwise, then the
mixed variational inequality problem (1.1) reduces to the following classical variational
inequality problem: find a point x∗ ∈ C such that

〈

y – x∗, Ax∗〉 ≥ 0, ∀y ∈ C. (1.4)

The set of solutions of problem (1.4) is denoted by VI(C, A). The variational inequality
problem was introduced and studied by Stampacchia in 1966 [17]. The solution of the
variational inequality problem is well known to be equivalent to the following fixed-point
equation for finding a point x∗ ∈ C such that

x∗ = PC(I – γ A)x∗,

where γ > 0 is an arbitrary constant and PC is the metric projection from H onto C (see
[18]). This problem is useful in economics, engineering, and mathematics. Many non-
linear analysis problems, such as optimization, optimal control problems, saddle-point
problems, and mathematical programming, are included as special cases; see, for example,
[19–22]. Furthermore, there have been various methods invented for solving the problem
(1.4) and fixed-point problems, for example [23–33] and the references therein.
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The intermixed algorithm introduced by Yao et al. [34] is currently one of the most effec-
tive methods for solving the fixed-point problem of a nonlinear mapping. This algorithm
has the following features: the definition of the sequence {xn} is involved in the sequence
{yn} and the definition of the sequence {yn} is also involved in the sequence {xn}. They
studied the intermixed algorithm for two strict pseudocontractions S and T as follows:
For arbitrarily given x1 ∈ C, y1 ∈ C, let the sequences {xn} and {yn} be generated iteratively
by

⎧

⎨

⎩

xn+1 = (1 – βn)xn + βnPC[αnf (yn) + (1 – k – αn)xn + kTxn], ∀n ≥ 1,

yn+1 = (1 – βn)yn + βnPC[αng(xn) + (1 – k – αn)yn + kSyn], ∀n ≥ 1,
(1.5)

where S, T : C → C are λ-strictly pseudocontraction mappings, f : C → H is a ρ1-
contraction and g : C → H is a ρ2-contraction, k ∈ (0, 1 – λ) is a constant and {αn}, {βn}
are two real-number sequences in (0, 1). They also proved that the proposed algorithms
independently converge strongly to the fixed points of two strict pseudocontractions.

In 2012, Kangtunyakarn [35] modified the set of variational inequality problems as fol-
lows:

VI
(

C, aA + (1 – a)B
)

=
{

x ∈ C :
〈

y – x,
(

aA + (1 – a)B
)

x
〉 ≥ 0,∀y ∈ C

}

,

∀a ∈ (0, 1), (1.6)

where A and B are the mappings of C into H . If A = B, then the problem (1.6) reduces to
the classical variational inequality problem. Moreover, he also gave a new iterative method
for solving the proposed problem in Hilbert spaces.

In this article, motivated and inspired by Kangtunyakarn [35], we introduce a problem
that is modified by a mixed variational inequality problem as follows: The combination of
mixed variational inequality problems is to find x∗ ∈ C such that

〈

y – x∗,
(

aA + (1 – a)B
)

x∗〉 + f (y) – f
(

x∗) ≥ 0, (1.7)

for all y ∈ C and a ∈ (0, 1), where A, B : C → H are mappings. The set of all solutions to
this problem is denoted by VI(C, aA + (1 – a)B, f ). In particular, if A = B, then the problem
(1.7) reduces to the mixed variational inequality problem (1.1).

Question. Can we design an intermixed algorithm for solving the combination of mixed
variational inequality problems (1.7) above?

In this paper, we give a positive answer to this question. Motivated and inspired by the
works in the literature, and by the ongoing research in these directions, we introduce a new
intermixed algorithm with viscosity technique for finding a solution of the combination
of mixed variational inequality problems and the fixed-point problem of a nonexpansive
mapping in a real Hilbert space. Moreover, we propose the mathematical tools related to
the combination of mixed variational inequality problems (1.7) in the second section of
this paper. Utilizing our mathematical tools, a strong convergence theorem is established
for the proposed algorithm. Furthermore, we establish additional conclusions concerning
the split-feasibility problem and the constrained convex-minimization problem utilizing
our main result. Finally, we provide numerical experiments to illustrate the convergence
behavior of our proposed algorithm.
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This paper is organized as follows. In Sect. 2, we first recall some basic definitions and
lemmas. In Sect. 3, we prove and analyze the strong convergence of the proposed al-
gorithm. In Sect. 4, we also consider the relaxation version of the proposed method. In
Sect. 5, some numerical experiments are provided.

2 Preliminary
Let C be a nonempty, closed, and convex subset of a Hilbert space H . The notation I stands
for the identity operator on a Hilbert space. Let {xn} be a sequence in H . Weak and strong
convergence of {xn} to x ∈ H are denoted by xn ⇀ x and xn → x, respectively.

Definition 2.1 A mapping A : C → H is called
(i) monotone if

〈Ax – Ay, x – y〉 ≥ 0 for all x, y ∈ C;

(ii) L-Lipschitz continuous if there exists L > 0 such that

‖Ax – Ay‖ ≤ L‖x – y‖ for all x, y ∈ C;

(iii) α-inverse strongly monotone if there exists α > 0 such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖2 for all x, y ∈ C;

(iv) firmly nonexpansive if

‖Ax – Ay‖2 ≤ 〈x – y, Ax – Ay〉 for all x, y ∈ C.

Throughout this paper, the domain of any function f : H →R∪{+∞}, denoted by dom f ,
is defined as dom f := {x ∈ H : f (x) < +∞}. The domain of continuity of f is cont f = {x ∈
H : f (x) ∈R and f is continuous at x}.

Definition 2.2 ([36]) Let f : H →R be a function. Then,
(i) f is proper if {x ∈ H : f (x) < ∞} = ∅;

(ii) f is lower semicontinuous if {x ∈ H : f (x) ≤ a} is closed for each a ∈R;
(iii) f is convex if f (tx + (1 – t)y) ≤ tf (x) + (1 – t)f (y) for every x, y ∈ H and t ∈ [0, 1];
(iv) f is Gâteaux differentiable at x ∈ H if there is ∇f (x) ∈ H such that

lim
t→0

f (x + ty) – f (x)
t

=
〈

y,∇f (x)
〉

for each y ∈ H ;
(v) f is Fréchet differentiable at x ∈ H if there is ∇f (x) such that

lim
y→0

f (x + y) – f (x) – 〈∇f (x), y〉
‖y‖ = 0.

Let f : H → R ∪ {+∞} be a proper, convex, and lower semicontinuous function on H .
The subset

∂f (x) =
{

z ∈ H : 〈z, y – x〉 + f (x) ≤ f (y),∀y ∈ H
}
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is called a subdifferential of f at x ∈ H . The function f is said to be subdifferentiable at x if
∂f (x) = ∅. The element of ∂f (x) is called the subgradient of f at x. It is well known that the
subdifferential ∂f is a maximal monotone operator.

Proposition 2.1 ([37] Proposition 17.31) Let f : H → R ∪ {+∞} be a proper and convex
function, and let x ∈ dom f . Then, the following hold:

(i) Suppose that f is Gâteaux differentiable at x. Then ∂f (x) = {∇f (x)}.
(ii) Suppose that x ∈ cont f and that ∂f (x) consists of a single element u. Then, f is

Gâteaux differentiable at x and u = ∇f (x).

Definition 2.3 ([38]) For any maximal operator A, the resolvent operator associated with
A, for any γ > 0, is defined as

Jγ A(x) = (I + γ A)–1(x), ∀x ∈ H ,

where I is the identity operator.

It is well known that an operator A is maximal monotone if and only if its resolvent oper-
ator Jγ A is defined everywhere. It is single valued and nonexpansive. If f is a proper, convex,
and lower-semicontinuous function, then its subdifferential ∂f is a maximal monotone
operator. In this case, we can define the resolvent operator

Jγ f (x) = (I + γ ∂f )–1(x), ∀x ∈ H ,

associated with the subdifferential ∂f and γ > 0 is constant.
Recall that the (nearest point) projection PC from H onto C assigns to each x ∈ H the

unique point PCx ∈ C satisfying the property

‖x – PCx‖ = min
y∈C

‖x – y‖.

Lemma 2.2 ([39]) For a given z ∈ H and u ∈ C,

u = PCz ⇔ 〈u – z, v – u〉 ≥ 0, ∀v ∈ C.

Furthermore, PC is a firmly nonexpansive mapping of H onto C.

Lemma 2.3 ([40]) For given x ∈ H let PC : H → C be a metric projection. Then,
(a) z = PCx if and only if 〈x – z, y – z〉 ≤ 0,∀y ∈ C;
(b) z = PCx if and only if ‖x – z‖2 ≤ ‖x – y‖2 – ‖y – z‖2,∀y ∈ C;
(c) 〈PCx – PCy, x – y〉 ≥ ‖PCx – PCy‖2,∀x, y ∈ H .

Lemma 2.4 ([41]) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 = (1 – αn)sn + δn, ∀n ≥ 1,

where {αn} is a sequence in (0,1) and {δn} is a sequence such that
(i)

∑∞
n=1 αn = ∞;
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(ii) lim supn→∞
δn
αn

≤ 0 or
∑∞

n=1 |δn| < ∞.
Then, limn→∞ sn = 0.

Lemma 2.5 Let C be a nonempty closed convex subset of H and let f : H → R ∪ {+∞}
be a proper, convex, and lower semicontinuous function and let A, B : C → H be α- and
β-inverse strongly monotone operators with ε = min{α,β} and VI(C, A, f ) ∩ VI(C, B, f ) = ∅.
Then,

VI(C, A, f ) ∩ VI(C, B, f ) = VI
(

C, aA + (1 – a)B, f
)

(2.1)

for all a ∈ (0, 1).

Proof Clearly,

VI(C, A, f ) ∩ VI(C, B, f ) ⊆ VI
(

C, aA + (1 – a)B, f
)

. (2.2)

Let x0 ∈ VI(C, aA + (1 – a)B, f ) and x∗ ∈ VI(C, A, f ) ∩ VI(C, B, f ). Hence, we have

〈

y – x0,
(

aA + (1 – a)B
)

x0
〉

+ f (y) – f (x0) ≥ 0, ∀y ∈ C. (2.3)

It follows from x∗ ∈ VI(C, aA + (1 – a)B, f ) that

〈

y – x∗,
(

aA + (1 – a)B
)

x∗〉 + f (y) – f
(

x∗) ≥ 0, ∀y ∈ C. (2.4)

From (2.3), (2.4), and the definition of x∗, x0, we have

〈

x∗ – x0,
(

aA + (1 – a)B
)

x0
〉

+ f
(

x∗) – f (x0) ≥ 0 (2.5)

and

〈

x0 – x∗,
(

aA + (1 – a)B
)

x∗〉 + f (x0) – f
(

x∗) ≥ 0, ∀y ∈ C. (2.6)

By combining (2.5), (2.6), and the definition of A, B, we obtain

0 ≥ 〈

x0 – x∗, a
(

Ax0 – Ax∗) + (1 – a)
(

Bx0 – Bx∗)〉

= a
〈

x0 – x∗, Ax0 – Ax∗〉 + (1 – a)
〈

x0 – x∗, Bx0 – Bx∗〉

≥ aα
∥
∥Ax0 – Ax∗∥∥2 + (1 – a)β

∥
∥Bx0 – Bx∗∥∥2,

which implies that

Ax0 = Ax∗, Bx0 = Bx∗.

Let y ∈ C. From x∗ ∈ VI(C, A, f ) and Ax0 = Ax∗, we have

〈y – x0, Ax0〉 + f (y) – f (x0) =
〈

y – x∗, Ax∗〉 +
〈

x∗ – x0, Ax0
〉
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+ f (y) – f
(

x∗) + f
(

x∗) – f (x0)

≥ 〈

x∗ – x0, Ax0
〉

+ f
(

x∗) – f (x0). (2.7)

From Bx0 = Bx∗, x0 ∈ VI(C, aA + (1 – a)B, f ), x∗ ∈ VI(C, B, f ), we obtain

〈

x∗ – x0, aAx0
〉

+ af
(

x∗) – af (x0) =
〈

x∗ – x0, aAx0 + (1 – a)Bx0
〉

–
〈

x∗ – x0, (1 – a)Bx0
〉

+ af
(

x∗) – af (x0)

=
〈

x∗ – x0, aAx0 + (1 – a)Bx0
〉

+ f
(

x∗) – f (x0)

– f
(

x∗) + f (x0) –
〈

x∗ – x0, (1 – a)Bx0
〉

+ af
(

x∗) – af (x0)

≥ 〈

x0 – x∗, (1 – a)Bx∗〉 + (1 – a)f (x0)

– (1 – a)f
(

x∗)

= (1 – a)
(〈

x0 – x∗, Bx∗〉 + f (x0) – f
(

x∗))

≥ 0.

Since a ∈ (0, 1), we have

〈

x∗ – x0, Ax0
〉

+ f
(

x∗) – f (x0) ≥ 0. (2.8)

From (2.7) and (2.8), we have

〈y – x0, Ax0〉 + f (y) – f (x0) ≥ 0. (2.9)

This implies that

x0 ∈ VI(C, A, f ). (2.10)

Using the same method as (2.10), we have

x0 ∈ VI(C, B, f ). (2.11)

From (2.10) and (2.11), we obtain x0 ∈ VI(C, A, f ) ∩ VI(C, B, f ). Hence, we can conclude
that

VI
(

C, aA + (1 – a)B, f
) ⊆ VI(C, A, f ) ∩ VI(C, B, f ). (2.12)

From (2.2) and (2.12), we obtain

VI(C, A, f ) ∩ VI(C, B, f ) = VI
(

C, aA + (1 – a)B, f
)

. (2.13)
�

Lemma 2.6 Let f : H →R∪{+∞} be a proper, convex, and lower semicontinuous function
on H . Let A : C → H be a mapping. Then, Fix(Jγ f (I – γ A)) = VI(C, A, f ), where Jγ f : H → H
defined as Jγ f = (I + γ ∂f )–1 is the resolvent operator, I is the identity operator and γ > 0 is
a constant.
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Proof Let z ∈ H , then

z ∈ Fix
(

Jγ f (I – γ A)
) ⇔ z = Jγ f (I – γ A)z

⇔ z = (I + γ ∂f )–1(I – γ A)z

⇔ (I – γ A)z ∈ (I + γ ∂f )z

⇔ –Az ∈ ∂f (z)

⇔ 〈–Az, y – z〉 ≤ f (y) – f (z), ∀y ∈ C

⇔ z ∈ VI(C, A, f ). (2.14)

Next, we will show that Jγ f is a firmly nonexpansive mapping.
Let p = Jγ f (x) = (I + γ ∂f )–1x and q = Jγ f (y) = (I + γ ∂f )–1y. It follows that x ∈ (I + γ ∂f )p

and y ∈ (I + γ ∂f )q.
From the definition of ∂f (p) and ∂f (q), we have

x – p
γ

∈ ∂f (p) and
y – q
γ

∈ ∂f (q).

This implies that
〈

x – p
γ

, c – p
〉

≤ f (c) – f (p) and
〈

y – q
γ

, c – q
〉

≤ f (c) – f (q)

for all c ∈ H . Then,
〈

x – p
γ

, q – p
〉

≤ f (q) – f (p) (2.15)

and
〈

y – q
γ

, p – q
〉

≤ f (p) – f (q). (2.16)

By combining (2.15) and (2.16), we obtain
〈

x – p
γ

–
y – q
γ

, q – p
〉

≤ 0, (2.17)

which implies that

〈x – y + q – p, q – p〉 ≤ 0. (2.18)

Then, we have

‖q – p‖2 ≤ 〈y – x, q – p〉.

From the definition of p, q, we have

∥
∥Jγ f (y) – Jγ f (x)

∥
∥

2 ≤ 〈

Jγ f (y) – Jγ f (x), y – x
〉

.

Therefore, Jγ f is a firmly nonexpansive mapping. �
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Remark 2.7 From Lemma 2.5 and Lemma 2.6, we have

VI(C, A, f ) ∩ VI(C, B, f ) = VI
(

C, aA + (1 – a)B, f
)

= Fix(Jγ f
(

I – γ
(

aA + (1 – a)B
))

(2.19)

for all γ > 0 and a ∈ (0, 1).

3 Main results
In this section, we introduce a new intermixed algorithm with viscosity technique using
Lemmas 2.5 and 2.6 as an important tool for finding a solution of the combination of mixed
variational inequality problems and the fixed-point problem of a nonexpansive mapping
in a real Hilbert space and establish its strong convergence under some mild conditions.

Theorem 3.1 Let C be a nonempty, closed, and convex subset of H . For every i = 1, 2, let
fi : H → R∪{+∞} be a proper, convex, and lower semicontinuous function, let Ai, Bi : C →
H be δA

i - and δB
i -inverse strongly monotone operators, respectively, with δi = min{δA

i , δB
i }

and let Ti : C → C be nonexpansive mappings. Assume that �i = Fix(Ti) ∩ VI(C, Ai, fi) ∩
VI(C, Bi, fi) = ∅, for all i = 1, 2. Let g1, g2 : H → H be σ1- and σ2-contraction mappings with
σ1,σ2 ∈ (0, 1) and σ = max{σ1,σ2}. Let the sequences {xn}, {yn} be generated by x1, y1 ∈ C
and

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = b2yn + (1 – b2)T2yn,

yn+1 = (1 – βn)wn + βnPC(αng2(xn)

+ (1 – αn)J2
γ f (yn – γ2(a2A2 + (1 – a2)B2)yn)),

zn = b1xn + (1 – b1)T1xn,

xn+1 = (1 – βn)zn + βnPC(αng1(yn)

+ (1 – αn)J1
γ f (xn – γ1(a1A1 + (1 – a1)B1)xn)), ∀n ≥ 1,

(3.1)

where {βn}, {αn} ⊆ [0, 1], γi ∈ (0, 2δi), ai, bi ∈ (0, 1), and Ji
γ f : H → H defined as Ji

γ f = (I +
γi∇fi)–1 is the resolvent operator for all i = 1, 2. Assume that the following conditions hold:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) 0 < l ≤ βn ≤ l for all n ∈N and for some l, l > 0;

(iii)
∑∞

n=1 |αn+1 – αn| < ∞,
∑∞

n=1 |βn+1 – βn| < ∞.
Then, {xn} and {yn} converge strongly to x∗ = P�1 g1(y∗) and y∗ = P�2 g2(x∗), respectively.

Proof First, we show that {xn} and {yn} are bounded.
We claim that J i

γ f (I – γi(aiAi + (1 – ai)Bi))) is nonexpansive for all i = 1, 2. To show this
let x, y ∈ C, then

∥
∥J i

γ f
(

I – γi
(

aiAi + (1 – ai)Bi
))

)x – J i
γ f

(

I – γi
(

aiAi + (1 – ai)Bi
))

)y
∥
∥

2

≤ ∥
∥
(

I – γi
(

aiAi + (1 – ai)Bi
))

)x –
(

I – γi
(

aiAi + (1 – ai)Bi
))

)y
∥
∥

2

=
∥
∥x – y – γi

((

aiAi + (1 – ai)Bi
)

x –
(

aiAi + (1 – ai)Bi
)

y
)∥
∥

2

=
∥
∥x – y – γi

(

ai(Aix – Aiy) + (1 – ai)(Bix – Biy)
)∥
∥

2
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= ‖x – y‖2 – 2γi
〈

ai(Aix – Aiy) + (1 – ai)(Bix – Biy), x – y
〉

+ γ 2
i
∥
∥ai(Aix – Aiy) + (1 – ai)(Bix – Biy)

∥
∥

2

≤ ‖x – y‖2 – 2γiai〈Aix – Aiy, x – y〉 – 2γi(1 – ai)〈Bix – Biy, x – y〉
+ γ 2

i ai‖Aix – Aiy‖2 + (1 – ai)γ 2
i ‖Bix – Biy‖2

≤ ‖x – y‖2 – 2γiaiδ
A
i ‖Aix – Aiy‖2 – 2γi(1 – ai)δB

i ‖Bix – Biy‖2

+ γ 2
i ai‖Aix – Aiy‖2 + (1 – ai)γ 2

i ‖Bix – Biy‖2

≤ ‖x – y‖2 – 2γiaiδi‖Aix – Aiy‖2 – 2γi(1 – ai)δi‖Bix – Biy‖2

+ γ 2
i ai‖Aix – Aiy‖2 + (1 – ai)γ 2

i ‖Bix – Biy‖2

≤ ‖x – y‖2 + aiγi(γi – 2δi)‖Aix – Aiy‖2 + (1 – ai)γi(γi – 2δi)‖Bix – Biy‖2

≤ ‖x – y‖2. (3.2)

Assume that x∗ ∈ �1 and y∗ ∈ �2.
From the definition of zn and the nonexpansiveness of T1, we have

∥
∥zn – x∗∥∥ =

∥
∥b1xn + (1 – b1)T1xn – x∗∥∥

≤ b1
∥
∥xn – x∗∥∥ + (1 – b1)

∥
∥T1xn – x∗∥∥

≤ b1
∥
∥xn – x∗∥∥ + (1 – b1)

∥
∥xn – x∗∥∥

=
∥
∥xn – x∗∥∥. (3.3)

Similarly, we have ‖wn – x∗‖ ≤ ‖yn – x∗‖.
Putting Ki = J i

γ f (I – γi(aiAi + (1 – ai)Bi))) for all i = 1, 2, from the definition of xn, the
nonexpansiveness of Ki for all i = 1, 2, and (3.3), we have

∥
∥xn+1 – x∗∥∥ =

∥
∥(1 – βn)zn + βnPC

(

αng1(yn) + (1 – αn)K1xn
)

– x∗∥∥

≤ (1 – βn)
∥
∥zn – x∗∥∥ + βn

∥
∥αng1(yn) + (1 – αn)K1xn – x∗∥∥

≤ (1 – βn)
∥
∥xn – x∗∥∥ + βn

(

αn
∥
∥g1(yn) – x∗∥∥ + (1 – αn)

∥
∥K1xn – x∗∥∥)

≤ (1 – βn)
∥
∥xn – x∗∥∥ + βn

(

αn
∥
∥g1(yn) – x∗∥∥ + (1 – αn)

∥
∥xn – x∗∥∥)

= (1 – αnβn)
∥
∥xn – x∗∥∥ + αnβn

∥
∥g1(yn) – x∗∥∥

≤ (1 – αnβn)
∥
∥xn – x∗∥∥ + αnβn

(∥
∥g1(yn) – g1

(

y∗)∥∥ +
∥
∥g1

(

y∗) – x∗∥∥)

≤ (1 – αnβn)
∥
∥xn – x∗∥∥ + αnβnσ1

∥
∥yn – y∗∥∥ + αnβn

∥
∥g1

(

y∗) – x∗∥∥

≤ (1 – αnβn)
∥
∥xn – x∗∥∥ + αnβnσ

∥
∥yn – y∗∥∥ + αnβn

∥
∥g1

(

y∗) – x∗∥∥. (3.4)

Similarly, we obtain

∥
∥yn+1 – y∗∥∥ ≤ (1 – αnβn)

∥
∥yn – y∗∥∥ + αnβnσ

∥
∥xn – x∗∥∥ + αnβn

∥
∥g2

(

x∗) – y∗∥∥. (3.5)

Combining (3.4) and (3.5), we have

∥
∥xn+1 – x∗∥∥ +

∥
∥yn+1 – y∗∥∥ ≤ (1 – αnβn)

∥
∥xn – x∗∥∥ + αnβnσ

∥
∥yn – y∗∥∥
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+ αnβn
∥
∥g1

(

y∗) – x∗∥∥

+ (1 – αnβn)
∥
∥yn – y∗∥∥ + αnβnσ

∥
∥xn – x∗∥∥

+ αnβn
∥
∥g2

(

x∗) – y∗∥∥

= (1 – αnβn)
(∥
∥xn – x∗∥∥ +

∥
∥yn – y∗∥∥)

+ αnβnσ
(∥
∥xn – x∗∥∥ +

∥
∥yn – y∗∥∥)

+ αnβn
(∥
∥g1

(

y∗) – x∗∥∥ +
∥
∥g2

(

x∗) – y∗∥∥)

=
(

1 – αnβn(1 – σ )
)(∥

∥xn – x∗∥∥ +
∥
∥yn – y∗∥∥)

+ αnβn
(∥
∥g1

(

y∗) – x∗∥∥ +
∥
∥g2

(

x∗) – y∗∥∥)

.

We can deduce from induction that

∥
∥xn – x∗∥∥ +

∥
∥yn – y∗∥∥ ≤ max

{
∥
∥x1 – x∗∥∥ +

∥
∥y1 – y∗∥∥,

‖g1(y∗) – x∗‖ + ‖g2(x∗) – y∗‖
1 – σ

}

,

for every n ∈ N. This implies that {xn} and {yn} are bounded. This implies that {zn}, {wn}
are also bounded.

Next, we show that ‖xn+1 – xn‖ → 0 and ‖yn+1 – yn‖ → 0 as n → ∞.
Setting Qn = PC(αng1(yn) + (1 – αn)K1xn) and Q∗

n = PC(αng2(xn) + (1 – αn)K2yn). By the
nonexpansiveness of Ki for i = 1, 2, we have

‖Qn – Qn–1‖ =
∥
∥PC

(

αng1(yn) + (1 – αn)K1xn
)

– PC
(

αn–1g1(yn–1) + (1 – αn–1)K1xn–1
)∥
∥

≤ ∥
∥
(

αng1(yn) + (1 – αn)K1xn
)

–
(

αn–1g1(yn–1) + (1 – αn)K1xn–1
)∥
∥

=
∥
∥αng1(yn) – αng1(yn–1) + αng1(yn–1) + (1 – αn)K1xn – (1 – αn)K1xn–1

+ (1 – αn)K1xn–1 – αn–1g1(yn–1) – (1 – αn–1)K1xn–1
∥
∥

=
∥
∥αn

(

g1(yn) – g1(yn–1)
)

+ (αn – αn–1)g1(yn–1) + (1 – αn)(K1xn – K1xn–1)

+ (αn–1 – αn)K1xn–1
∥
∥

≤αn
∥
∥g1(yn) – g1(yn–1)

∥
∥ + |αn – αn–1|

∥
∥g1(yn–1)

∥
∥

+ (1 – αn)‖K1xn – K1xn–1‖
+ |αn – αn–1|‖K1xn–1‖

≤ αnσ1‖yn – yn–1‖ + |αn – αn–1|
∥
∥g1(yn–1)

∥
∥ + (1 – αn)‖xn – xn–1‖

+ |αn – αn–1|‖K1xn–1‖
≤ αnσ‖yn – yn–1‖ + |αn – αn–1|

∥
∥g1(yn–1)

∥
∥ + (1 – αn)‖xn – xn–1‖

+ |αn – αn–1|‖K1xn–1‖. (3.6)

From the definition of zn and the nonexpansiveness of T1, we have

‖zn – zn–1‖ =
∥
∥b1xn + (1 – b1)T1xn – b1xn–1 – (1 – b1)T1xn–1

∥
∥

≤ ∥
∥b1(xn – xn–1) + (1 – b1)(T1xn – T1xn–1)

∥
∥
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≤ b1‖xn – xn–1‖ + (1 – b1)‖T1xn – T1xn–1‖
≤ b1‖xn – xn–1‖ + (1 – b1)‖xn – xn–1‖
= ‖xn – xn–1‖. (3.7)

Similarly, we obtain

‖wn – wn–1‖ ≤‖xn – xn–1‖. (3.8)

From the definition of xn, (3.6), and (3.7), we have

‖xn+1 – xn‖ =
∥
∥(1 – βn)zn + βnQn –

(

(1 – βn–1)zn–1 + βn–1Qn–1
)∥
∥

≤ (1 – βn)‖zn – zn–1‖ + |βn–1 – βn|‖zn–1‖
+ βn‖Qn – Qn–1‖ + |βn – βn–1|‖Qn–1‖

≤ (1 – βn)‖xn – xn–1‖ + |βn–1 – βn|‖zn–1‖
+ βn

(

αnσ‖yn – yn–1‖ + |αn – αn–1|
∥
∥g1(yn–1)

∥
∥

+ (1 – αn)‖xn – xn–1‖ + |αn – αn–1|‖K1xn–1‖
)

+ |βn – βn–1|‖Qn–1‖
= (1 – βn)‖xn – xn–1‖ + |βn–1 – βn|‖zn–1‖

+ βnαnσ‖yn – yn–1‖ + βn|αn – αn–1|
∥
∥g1(yn–1)

∥
∥

+ βn(1 – αn)‖xn – xn–1‖ + βn|αn – αn–1|‖K1xn–1‖
+ |βn – βn–1|‖Qn–1‖

≤ (1 – αnβn)‖xn – xn–1‖ + |βn–1 – βn|
(‖zn–1‖ + ‖Qn–1‖

)

+ αnβnσ‖yn – yn–1‖ + |αn – αn–1|
(∥
∥g1(yn–1)

∥
∥ + ‖K1xn–1‖

)

. (3.9)

Using the same method as derived in (3.9), we have

‖yn+1 – yn‖ ≤ (1 – αnβn)‖yn – yn–1‖ + |βn–1 – βn|
(‖wn–1‖ +

∥
∥Q∗

n–1
∥
∥
)

+ αnβnσ‖xn – xn–1‖ + |αn – αn–1|
(∥
∥g2(xn–1)

∥
∥ + ‖K2yn–1‖

)

. (3.10)

From (3.9) and (3.10), we have

‖xn+1 – xn‖ + ‖yn+1 – yn‖ ≤ (

1 – (1 – σ )βnαn
)

(‖xn – xn–1‖ + ‖yn – yn–1‖
+ |βn–1 – βn|

(‖zn–1‖ + ‖wn–1‖ + ‖Qn‖ +
∥
∥Q∗

n
∥
∥
)

+ |αn – αn–1|
(∥
∥g1(yn–1)

∥
∥ + ‖K1xn–1‖

+
∥
∥g2(xn–1)

∥
∥ + ‖K2xn–1‖

)

.

Applying Lemma 2.4 and the condition (iii), we can conclude that

lim
n→∞‖xn+1 – xn‖ = 0 and lim

n→∞‖yn+1 – yn‖ = 0. (3.11)
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Next, we show that ‖xn – Un‖ → 0 as n → ∞, where Un = αng1(yn) + (1 – αn)K1xn, ‖yn –
Vn‖ → 0, where Vn = αng2(xn) + (1 – αn)K2yn as n → ∞, ‖xn – T1xn‖ → 0 as n → ∞ and
‖yn – T2yn‖ → 0 as n → ∞.

Let x∗ ∈ �1 and y∗ ∈ �2. From the definition of zn, we obtain

∥
∥zn – x∗∥∥2 ≤ b1

∥
∥xn – x∗∥∥2 + (1 – b1)

∥
∥T1xn – x∗∥∥2 – b1(1 – b1)‖xn – T1xn‖2

≤ b1
∥
∥xn – x∗∥∥2 + (1 – b1)

∥
∥xn – x∗∥∥2 – b1(1 – b1)‖xn – T1xn‖2

≤ ∥
∥xn – x∗∥∥2 – b1(1 – b1)‖xn – T1xn‖2. (3.12)

In a similar way, we have

∥
∥wn – x∗∥∥2 ≤ ∥

∥yn – x∗∥∥2 – b2(1 – b2)‖yn – T2yn‖2. (3.13)

From the definition of xn, (3.3), and (3.12), we obtain

∥
∥xn+1 – x∗∥∥2 =

∥
∥(1 – βn)zn + βnPCUn – x∗∥∥2

= (1 – βn)
∥
∥zn – x∗∥∥2 + βn

∥
∥PCUn – x∗∥∥2

– (1 – βn)βn‖zn – PCUn‖2

≤ (1 – βn)
(∥
∥xn – x∗∥∥2 – b1(1 – b1)‖xn – T1xn‖2)

+ βn
∥
∥αng1(yn) + (1 – αn)K1xn – x∗∥∥2

– (1 – βn)βn‖zn – PCUn‖2

= (1 – βn)
∥
∥xn – x∗∥∥2 – b1(1 – b1)(1 – βn)‖xn – T1xn‖2

+ βn
∥
∥αn

(

g1(yn) – K1xn
)

+ K1xn – x∗∥∥2

– (1 – βn)βn‖zn – PCUn‖2

≤ (1 – βn)
∥
∥xn – x∗∥∥2 – b1(1 – b1)(1 – βn)‖xn – T1xn‖2 + βn

(∥
∥K1xn – x∗∥∥2

+ 2αn
〈

g1(yn) – K1xn,αng1(yn) + (1 – αn)K1xn – x∗〉)

– (1 – βn)βn‖zn – PCUn‖2

≤ (1 – βn)
∥
∥xn – x∗∥∥2 – b1(1 – b1)(1 – βn)‖xn – T1xn‖2 + βn

(∥
∥K1xn – x∗∥∥2

+ 2αn
∥
∥g1(yn) – K1xn

∥
∥
∥
∥αng1(yn) + (1 – αn)K1xn – x∗∥∥)

– (1 – βn)βn‖zn – PCUn‖2

≤ (1 – βn)
∥
∥xn – x∗∥∥2 – b1(1 – b1)(1 – βn)‖xn – T1xn‖2 + βn

∥
∥xn – x∗∥∥2

+ 2αnβn
∥
∥g1(yn) – K1xn

∥
∥
∥
∥αng1(yn) + (1 – αn)K1xn – x∗∥∥

– (1 – βn)βn‖zn – PCUn‖2

=
∥
∥xn – x∗∥∥2 + 2αnβn

∥
∥g1(yn) – K1xn

∥
∥
∥
∥αng1(yn) + (1 – αn)K1xn – x∗∥∥

– b1(1 – b1)(1 – βn)‖xn – T1xn‖2 – (1 – βn)βn‖zn – PCUn‖2. (3.14)
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It follows from (3.14) that

b1(1 – b1)(1 – βn)‖xn – T1xn‖2 + (1 – βn)βn‖zn – PCUn‖2

≤ ∥
∥xn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2

+ 2αnβn
∥
∥g1(yn) – K1xn

∥
∥
∥
∥αng1(yn) + (1 – αn)K1xn – x∗∥∥

≤ ‖xn – xn+1‖
(∥
∥xn – x∗∥∥ +

∥
∥xn+1 – x∗∥∥)

+ 2αnβn
∥
∥g1(yn) – K1xn

∥
∥
∥
∥αng1(yn) + (1 – αn)K1xn – x∗∥∥.

By (3.11) and the conditions i) and ii), we obtain

lim
n→∞‖PCUn – zn‖ = lim

n→∞‖xn – T1xn‖ = 0. (3.15)

From the definition of yn and applying the same method as (3.15), we have

lim
n→∞‖PCVn – wn‖ = lim

n→∞‖yn – T2yn‖ = 0. (3.16)

From Lemma 2.3, we obtain

∥
∥PCUn – x∗∥∥2 ≤ ∥

∥Un – x∗∥∥2 – ‖Un – PCUn‖2. (3.17)

From the definition of Un, we obtain

∥
∥Un – x∗∥∥2 =

∥
∥αn

(

g1(yn) – x∗) + (1 – αn)
(

K1xn – x∗)∥∥2

≤ αn
∥
∥g1(yn) – x∗∥∥2 + (1 – αn)

∥
∥K1xn – x∗∥∥2

≤ αn
∥
∥g1(yn) – x∗∥∥2 + (1 – αn)

∥
∥xn – x∗∥∥2. (3.18)

From (3.3), (3.17), and (3.18), we obtain

∥
∥xn+1 – x∗∥∥2 =

∥
∥(1 – βn)

(

zn – x∗) + βn
(

PCUn – x∗)∥∥2

≤ (1 – βn)
∥
∥zn – x∗∥∥2 + βn

∥
∥PCUn – x∗∥∥2

≤ (1 – βn)
∥
∥xn – x∗∥∥2 + βn

(∥
∥Un – x∗∥∥2 – ‖Un – PCUn‖2)

≤ (1 – βn)
∥
∥xn – x∗∥∥2

+ βn
(

αn
∥
∥g1(yn) – x∗∥∥2 + (1 – αn)

∥
∥xn – x∗∥∥2 – ‖Un – PCUn‖2)

≤ (1 – αnβn)
∥
∥xn – x∗∥∥2 + βnαn

∥
∥g1(yn) – x∗∥∥2 – βn‖Un – PCUn‖2,

from which it follows that

βn‖Un – PCUn‖2 ≤ (1 – αnβn)
∥
∥xn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2 + αnβn

∥
∥g1(yn) – x∗∥∥2

≤ ∥
∥xn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2 + αnβn

∥
∥g1(yn) – x∗∥∥2

≤ ‖xn – xn+1‖
(∥
∥xn – x∗∥∥ +

∥
∥xn+1 – x∗∥∥)

+ αnβn
∥
∥g1(yn) – x∗∥∥2.
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From ‖xn+1 – xn‖ → 0 as n → ∞ and the conditions (i) and (ii), we have

lim
n→∞‖Un – PCUn‖ = 0. (3.19)

From the definition of Vn and applying the same argument as (3.19), we also obtain

lim
n→∞‖Vn – PCVn‖ = 0. (3.20)

Observe that

zn – xn = (1 – b1)(T1xn – xn). (3.21)

From (3.15) and (3.21), we obtain

lim
n→∞‖zn – xn‖ = 0. (3.22)

Similarly, we also have

lim
n→∞‖wn – yn‖ = 0. (3.23)

Consider

‖xn – Un‖ = ‖xn – zn + zn – PCUn + PCUn – Un‖
≤ ‖xn – zn‖ + ‖zn – PCUn‖ + ‖PCUn – Un‖.

From (3.15) and (3.19), we have

lim
n→∞‖xn – Un‖ = 0. (3.24)

From the definition of yn and applying the same method as (3.24), we also have

lim
n→∞‖yn – Vn‖ = 0. (3.25)

Next, we show that ‖xn – K1xn‖ → 0 as n → ∞ and ‖yn – K2yn‖ → 0 as n → ∞, where
Ki = J i

γ f (I – γi(aiAi + (1 – ai)Bi))) for all i = 1, 2.
Observe that

Un – xn = αn
(

g1(yn) – xn
)

+ (1 – αn)(K1xn – xn),

from which it follows that

(1 – αn)‖K1xn – xn‖ ≤ ‖Un – xn‖ + αn
∥
∥g1(yn) – xn

∥
∥.

From (3.24) and the condition (i), we have

lim
n→∞‖K1xn – xn‖ = lim

n→∞‖J1
γ f

(

I – γ1
(

a1A1 + (1 – a1)B1
))

)xn – xn‖ = 0. (3.26)
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Applying the same argument as (3.26), we also obtain

lim
n→∞‖K2yn – yn‖ = lim

n→∞
∥
∥J2

γ f
(

I – γ1
(

a2A2 + (1 – a2)B2
))

)yn – yn
∥
∥ = 0. (3.27)

Next, we show that lim supn→∞〈g1(y∗) – x∗, Un – x∗〉 ≤ 0, where x∗ = P�1 g1(y∗) and
lim supn→∞〈g2(x∗) – y∗, Vn – y∗〉 ≤ 0, where y∗ = P�2 g2(x∗).

Indeed, take a subsequence {Unk } of {Un} such that

lim sup
n→∞

〈

g1
(

y∗) – x∗, Un – x∗〉 = lim sup
k→∞

〈

g1
(

y∗) – x∗, Unk – x∗〉.

Since {xn} is bounded, without loss of generality, we may assume that xnk ⇀ p as k → ∞.
From (3.24), we obtain Unk ⇀ p as k → ∞.

Next, we show that p ∈ �1 = Fix(T1) ∩ VI(C, A1, f1) ∩ VI(C, B1, f1).
Since K1 is nonexpansive, then I – K1 is demiclosed at zero. From (3.26) and by the

demiclosedness of I – K1 at zero, we obtain that p ∈ Fix(K1) = Fix(J1
γ f (I – γ1(a1A1 + (1 –

a1)B1)))). By Remark 2.7, we have p ∈ VI(C, A1, f1) ∩ VI(C, B1, f1).
Since T1 is nonexpansive, then I – T1 is demiclosed at zero. From (3.15) and by the

demiclosedness of I – T1 at zero, we obtain that p ∈ Fix(T1). Therefore, p ∈ �1 = Fix(T1) ∩
VI(C, A1, f1) ∩ VI(C, B1, f1).

Since Unk ⇀ p as k → ∞, p ∈ �1 and Lemma 2.2, we can derive that

lim sup
n→∞

〈

g1
(

y∗) – x∗, Un – x∗〉 = lim sup
k→∞

〈

g1
(

y∗) – x∗, Unk – x∗〉

=
〈

g1
(

y∗) – x∗, p – x∗〉

≤ 0. (3.28)

Similarly, take a subsequence {Vnk } of {Vn} such that

lim sup
n→∞

〈

g2
(

x∗) – y∗, Vn – y∗〉 = lim
k→∞

〈

g2
(

x∗) – y∗, Vnk – y∗〉.

Since {yn} is bounded, without loss of generality, we may assume that ynk ⇀ q as k → ∞.
From (3.25), we obtain Vnk ⇀ q as k → ∞.

Following the same method as (3.28), we easily obtain that

lim sup
n→∞

〈

g2
(

x∗) – y∗, Vn – y∗〉 ≤ 0. (3.29)

Finally, we show that {xn} converges strongly to x∗, where x∗ = P�1 g1(y∗) and {yn} converges
strongly to y∗, where y∗ = P�2 g2(x∗).

Let Un = αng1(yn) + (1 – αn)K1xn and Vn = αng2(xn) + (1 – αn)K2yn.
From the definition of xn, we obtain

∥
∥xn+1 – x∗∥∥2 =

∥
∥(1 – βn)zn + βnPC

(

αng1(yn) + (1 – αn)K1xn
)

– x∗∥∥2

≤ (1 – βn)
∥
∥zn – x∗∥∥2 + βn

∥
∥PC

(

αng1(yn) + (1 – αn)K1xn
)

– x∗∥∥2

≤ (1 – βn)
∥
∥xn – x∗∥∥2 + βn

∥
∥αng1(yn) + (1 – αn)K1xn – x∗∥∥2
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= (1 – βn)
∥
∥xn – x∗∥∥2

+ βn
∥
∥αn

(

g1(yn) – x∗) + (1 – αn)
(

K1xn – x∗)∥∥2

≤ (1 – βn)
∥
∥xn – x∗∥∥2

+ βn
(

(1 – αn)
∥
∥K1xn – x∗∥∥2 + 2αn

〈

g1(yn) – x∗, Un – x∗〉)

≤ (1 – βn)
∥
∥xn – x∗∥∥2

+ βn(1 – αn)
∥
∥xn – x∗∥∥2 + 2αnβn

〈

g1(yn) – x∗, Un – x∗〉

= (1 – αnβn)
∥
∥xn – x∗∥∥2 + 2αnβn

〈

g1(yn) – x∗, Un – x∗〉

= (1 – αnβn)
∥
∥xn – x∗∥∥2

+ 2αnβn
(〈

g1(yn) – g1
(

y∗), Un – x∗〉 +
〈

g1
(

y∗) – x∗, Un – x∗〉)

≤ (1 – αnβn)
∥
∥xn – x∗∥∥2

+ 2αnβn
(∥
∥g1(yn) – g1

(

y∗)∥∥∥
∥Un – x∗∥∥ +

〈

g1
(

y∗) – x∗, Un – x∗〉)

≤ (1 – αnβn)
∥
∥xn – x∗∥∥2

+ 2αnβn
∥
∥g1(yn) – g1

(

y∗)∥∥(‖Un – xn+1‖ +
∥
∥xn+1 – x∗∥∥)

+ 2αnβn
〈

g1
(

y∗) – x∗, Un – x∗〉

≤ (1 – αnβn)
∥
∥xn – x∗∥∥2

+ 2αnβnσ
∥
∥yn – y∗∥∥‖Un – xn+1‖ + 2αnβnσ

∥
∥yn – y∗∥∥∥

∥xn+1 – x∗∥∥

+ 2αnβn
〈

g1
(

y∗) – x∗, Un – x∗〉

≤ (1 – αnβn)
∥
∥xn – x∗∥∥2

+ 2αnβnσ
∥
∥yn – y∗∥∥‖Un – xn+1‖ + αnβnσ

(∥
∥yn – y∗∥∥2 +

∥
∥xn+1 – x∗∥∥2)

+ 2αnβn
〈

g1
(

y∗) – x∗, Un – x∗〉,

which yields that

∥
∥xn+1 – x∗∥∥2 ≤ 1 – αnβn

1 – αnβnσ

∥
∥xn – x∗∥∥2 +

2αnβnσ

1 – αnβnσ

∥
∥yn – y∗∥∥‖Un – xn+1‖

+
αnβnσ

1 – αnβnσ

∥
∥yn – y∗∥∥2 +

2αnβn

1 – αnβnσ

〈

g1
(

y∗) – x∗, Un – x∗〉

=
(

1 –
αnβn – αnβnσ

1 – αnβnσ

)
∥
∥xn – x∗∥∥2 +

2αnβnσ

1 – αnβnσ

∥
∥yn – y∗∥∥‖Un – xn+1‖

+
αnβnσ

1 – αnβnσ

∥
∥yn – y∗∥∥2 +

2αnβn

1 – αnβnσ

〈

g1
(

y∗) – x∗, Un – x∗〉

=
(

1 –
αnβn(1 – σ )
1 – αnβnσ

)
∥
∥xn – x∗∥∥2 +

2αnβnσ

1 – αnβnσ

∥
∥yn – y∗∥∥‖Un – xn+1‖

+
αnβnσ

1 – αnβnσ

∥
∥yn – y∗∥∥2 +

2αnβn

1 – αnβnσ

〈

g1
(

y∗) – x∗, Un – x∗〉. (3.30)



Khuangsatung and Kangtunyakarn Journal of Inequalities and Applications          (2023) 2023:1 Page 18 of 30

Similarly, as previously stated, we have

∥
∥yn+1 – y∗∥∥2 ≤

(

1 –
αnβn(1 – σ )
1 – αnβnσ

)
∥
∥yn – y∗∥∥2 +

2αnβnσ

1 – αnβnσ

∥
∥xn – x∗∥∥‖Vn – yn+1‖

+
αnβnσ

1 – αnβnσ

∥
∥xn – x∗∥∥2 +

2αnβn

1 – αnβnσ

〈

g2
(

x∗) – y∗, Vn – y∗〉. (3.31)

From (3.30) and (3.31), we deduce that

∥
∥xn+1 – x∗∥∥2 +

∥
∥yn+1 – y∗∥∥2

≤
(

1 –
αnβn(1 – σ )
1 – αnβnσ

)
(∥
∥xn – x∗∥∥2 +

∥
∥yn – y∗∥∥2)

+
2αnβnσ

1 – αnβnσ

(∥
∥yn – y∗∥∥‖Un – xn+1‖ +

∥
∥xn – x∗∥∥‖Vn – yn+1‖

)

+
αnβnσ

1 – αnβna
(∥
∥xn – x∗∥∥2 +

∥
∥yn – y∗∥∥2)

+
2αnβn

1 – αnβnσ

(〈

g1
(

y∗) – x∗, Un – x∗〉 +
〈

g2
(

x∗) – y∗, Vn – y∗〉)

=
(

1 –
αnβn(1 – 2σ )

1 – αnβnσ

)
(∥
∥xn – x∗∥∥2 +

∥
∥yn – y∗∥∥2)

+
2αnβnσ

1 – αnβnσ

(∥
∥yn – y∗∥∥‖Un – xn+1‖ +

∥
∥xn – x∗∥∥‖Vn – yn+1‖

)

+
2αnβn

1 – αnβnσ

(〈

g1
(

y∗) – x∗, Un – x∗〉 +
〈

g2
(

x∗) – y∗, Vn – y∗〉). (3.32)

By (3.11), (3.24), (3.25), (3.28), (3.29), the condition (i), and Lemma 2.4, we have
limn→∞(‖xn – x∗‖ + ‖yn – y∗‖) = 0. This implies that the sequence {xn}, {yn} converges
to x∗ = P�1 g1(y∗), y∗ = P�2 g2(x∗), respectively.

This completes the proof. �

As a direct proof of Theorem 3.1, we obtain the following results.

Corollary 3.2 Let C be a nonempty, closed, and convex subset of H . For every i = 1, 2, let
fi : H → R∪{+∞} be a proper, convex, and lower semicontinuous function, let Ai, Bi : C →
H be δA

i - and δB
i -inverse strongly monotone operators, respectively, with δi = min{δA

i , δB
i }.

Assume that VI(C, Ai, fi) ∩ VI(C, Bi, fi) = ∅, for all i = 1, 2. Let g1, g2 : H → H be σ1- and σ2-
contraction mappings with σ1,σ2 ∈ (0, 1) and σ = max{σ1,σ2}. Let the sequences {xn}, {yn}
be generated by x1, y1 ∈ C and

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yn+1 = (1 – βn)yn + βnPC(αng2(xn)

+ (1 – αn)J2
γ f (yn – γ2(a2A2 + (1 – a2)B2)yn))

xn+1 = (1 – βn)xn + βnPC(αng1(yn)

+ (1 – αn)J1
γ f (xn – γ1(a1A1 + (1 – a1)B1)xn)), ∀n ≥ 1,

(3.33)

where {βn}, {αn} ⊆ [0, 1], γi ∈ (0, 2δi), ai ∈ (0, 1) and Ji
γ f = (I + γi∇fi)–1 is the resolvent oper-

ator for all i = 1, 2. Assume that the following conditions hold:
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(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) 0 < l ≤ βn ≤ l for all n ∈N and for some l, l > 0;

(iii)
∑∞

n=1 |αn+1 – αn| < ∞,
∑∞

n=1 |βn+1 – βn| < ∞.
Then, {xn} and {yn} converge strongly to x∗ = PVI(C,A1,f1)∩VI(C,B1,f1)g1(y∗) and y∗ =
PVI(C,A2,f2)∩VI(C,B2,f2)g2(x∗), respectively.

Proof If T1 ≡ T2 ≡ I in Theorem 3.1, Hence, from Theorem 3.1, we obtain the desired
result. �

Corollary 3.3 Let C be a nonempty, closed, and convex subset of H . Let f : H →R∪{+∞}
be a proper, convex, and lower semicontinuous function. Let A, B : C → H be δA- and δB-
inverse strongly monotone operators, respectively, with δ = min{δA, δB} and let T : C → C
be nonexpansive mapping. Assume that � = Fix(T) ∩ VI(C, A, f ) ∩ VI(C, B, f ) = ∅. Let g :
H → H be a σ -contraction mapping with σ ∈ (0, 1). Let the sequence {xn} be generated by
x ∈ C and

⎧

⎪⎪⎨

⎪⎪⎩

zn = bxn + (1 – b)Txn

xn+1 = (1 – βn)zn + βnPC(αng(xn)

+ (1 – αn)Jγ f (xn – γ (aA + (1 – a)B)xn)), ∀n ≥ 1,

(3.34)

where {βn}, {αn} ⊆ [0, 1], γ ∈ (0, 2δ), a, b ∈ (0, 1) and Jγ f = (I + γ∇f )–1 is the resolvent oper-
ator. Assume that the following conditions hold:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) 0 < l ≤ βn ≤ l for all n ∈N and for some l, l > 0;

(iii)
∑∞

n=1 |αn+1 – αn| < ∞,
∑∞

n=1 |βn+1 – βn| < ∞.
Then, {xn} converges strongly to x∗ = P�g(x∗).

Proof If g ≡ g1 ≡ g2, f ≡ f1 ≡ f2, T ≡ T1 ≡ T2, A ≡ A1 ≡ A2, B ≡ B1 ≡ B2, wn = zn, and
xn = yn in Theorem 3.1. Hence, from Theorem 3.1, we obtain the desired result. �

Remark 3.4 We remark here that Corollary 3.3 is modified from Algorithm 3.2 in [6] in
the following aspects:

1. From a strongly monotone and Lipschitz continuous operator to two inverse strongly
monotone operators.

2. We add a nonexpansive mapping and a contraction mapping in our iterative
algorithm.

4 Applications
In this section, we reduce our main problem to the following split-feasibility problem and
constrained convex-minimization problem:

4.1 The split-feasibility problem
Let C and Q be nonempty, closed, and convex subsets of Hilbert spaces H1 and H2, re-
spectively. The split-feasibility problem (SFP) is to find a point

x ∈ C such that Ax ∈ Q, (4.1)
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where A : H1 → H2 is a bounded linear operator. The set of all solutions (SFP) is denoted
by  = {x ∈ C; Ax ∈ Q}. The split-feasibility problem is the first example of the split-inverse
problem, which was first introduced by Censor and Elfving [42] in Euclidean spaces. Many
mathematical problems, such as the constrained least-squares problem, the linear split-
feasibility problem, and the linear programming problem, can be solved using the split-
feasibility problem paradigm, and it can be used in real-world applications, for example, in
signal processing, in image recovery, in intensity-modulated therapy, in pattern recogni-
tion, etc., see [43–46]. Consequently, the split-feasibility problem has been widely studied
by many authors, see [47–52] and the references therein.

Proposition 4.1 ([48]) Given x∗ ∈H1, the following statements are equivalent.
(i) x∗ solves the ;

(ii) PC(I – λA∗(I – PQ)A)x∗ = x∗, where A∗ is the adjoint of A;
(iii) x∗ solves the variational inequality problem of finding x∗ ∈ C such that

〈∇G
(

x∗), x – x∗〉 ≥ 0, ∀x ∈ C, (4.2)

where ∇G = A∗(I – PQ)A.

If C is a closed and convex subset of H and the function f is the indicator function of C
then it is well known that Jγ f = PC , the projection operator of H , onto the closed convex
set C and putting Ai = Bi for all i = 1, 2 in Theorem 3.1. Consequently, the following result
can be obtained from Theorem 3.1.

Theorem 4.2 Let H1 and H2 be real Hilbert spaces and let C, Q be nonempty, closed,
and convex subsets of real Hilbert space s H1 and H2, respectively. Let A1, A2 : H1 → H2 be
bounded linear operators, where A∗

1, A∗
2 are adjoints of A1 and A2, respectively, where L1 and

L2 are special radii of A∗
1A1 and A∗

2A2. Let Ti : C → C be nonexpansive mappings. Assume
that �i = Fix(Ti) ∩ i = ∅, for all i = 1, 2. Let g1, g2 : H → H be σ1- and σ2-contraction
mappings with σ1,σ2 ∈ (0, 1) and σ = max{σ1,σ2}. Let the sequences {xn}, {yn} be generated
by x1, y1 ∈ C and

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = b2yn + (1 – b2)T2yn

yn+1 = (1 – βn)wn + βnPC(αng2(xn) + (1 – αn)PC(I – γ2∇G2)yn)

zn = b1xn + (1 – b1)T1xn

xn+1 = (1 – βn)zn + βnPC(αng1(yn) + (1 – αn)PC(I – γ1∇G1)xn), ∀n ≥ 1,

(4.3)

where ∇Gi = A∗
i (I – PQ)Ai, γi ∈ (0, 2

Li
), {βn}, {αn} ⊆ [0, 1], bi ∈ (0, 1) for all i = 1, 2. Assume

that the following conditions hold:
(i) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(ii) 0 < l ≤ βn ≤ l for all n ∈N and for some l, l > 0;
(iii)

∑∞
n=1 |αn+1 – αn| < ∞,

∑∞
n=1 |βn+1 – βn| < ∞.

Then, {xn} and {yn} converges strongly to x∗ = P�1 g1(y∗) and y∗ = P�2 g2(x∗), respectively.

Proof Let x, y ∈ C and ∇Gi = A∗
i (I – PQ)Ai, for all i = 1, 2. First, we show that ∇Gi is 1

Li
-

inverse strongly monotone for all i = 1, 2.
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Consider,

∥
∥∇Gi(x) – ∇Gi(y)

∥
∥

2 =
∥
∥A∗

i (I – PQ)Aix – A∗
i (I – PQ)Aiy

∥
∥

2

≤ Li
∥
∥(I – PQ)Aix – (I – PQ)Aiy

∥
∥

2. (4.4)

From the property of PC , we have

∥
∥(I – PQ)Aix – (I – PQ)Aiy

∥
∥

2

=
〈

(I – PQ)Aix – (I – PQ)Aiy, (I – PQ)Aix – (I – PQ)Aiy
〉

=
〈

(I – PQ)Aix – (I – PQ)Aiy, Aix – Aiy
〉

–
〈

(I – PQ)Aix – (I – PQ)Aiy, PQAix – PQAiy
〉

=
〈

A∗
i (I – PQ)Aix – A∗

i (I – PQ)Aiy, x – y
〉

–
〈

(I – PQ)Aix – (I – PQ)Aiy, PQAix – PQAiy
〉

=
〈

A∗
i (I – PQ)Aix – A∗

i (I – PQ)Aiy, x – y
〉

–
〈

(I – PQ)Aix, PQAix – PQAiy
〉

+
〈

(I – PQ)Aiy, PQAix – PQAiy
〉

≤ 〈

A∗
i (I – PQ)Aix – A∗

i (I – PQ)Aiy, x – y
〉

. (4.5)

Substituting (4.5) into (4.4), we have

∥
∥∇Gi(x) – ∇Gi(y)

∥
∥

2 ≤ Li
〈

A∗
i (I – PQ)Aix – A∗

i (I – PQ)Aiy, x – y
〉

= Li
〈∇Gi(x) – ∇Gi(y), x – y

〉

.

It follows that

〈∇Gi(x) – ∇Gi(y), x – y
〉 ≥ 1

Li

∥
∥∇Gi(x) – ∇Gi(y)

∥
∥

2.

Then, ∇Gi is 1
LAi

-inverse strongly monotone, for all i = 1, 2. Hence, we can conclude The-
orem 4.2 from Proposition 4.1 and Theorem 3.1. �

4.2 The constrained convex-minimization problem
Let C be a nonempty, closed, and convex subset of H . Consider that the constrained
convex-minimization problem is to find x∗ ∈ C such that

Q
(

x∗) = min
x∈C

Q(x), (4.6)

where Q : H →R is a continuously differentiable function. Assume that (4.6) is consistent
(i.e., it has a solution) and we use � to denote its solution set. It is known that the gra-
dient projection algorithm (GPA) plays an important role in solving constrained convex-
minimization problems. It is well known that a necessary condition of optimality for a
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point x∗ ∈ C to be a solution of the minimization problem (4.6) is that x∗ solves the varia-
tional inequality:

x∗ ∈ C,
〈∇Q

(

x∗), x – x∗〉 ≥ 0, ∀x ∈ C. (4.7)

That is, � = VI(C,∇Q), where � = ∅. The following theorem is derived from these results.

Theorem 4.3 Let C be a nonempty, closed, and convex subset of H . For every i = 1, 2, let
Qi : H → R be a continuous differentiable function with ∇Qi, that is 1

LQi
-inverse strongly

monotone. Let Ti : C → C be nonexpansive mappings. Assume that �i = Fix(Ti) ∩ �i = ∅,
for all i = 1, 2. Let g1, g2 : H → H be σ1- and σ2-contraction mappings with σ1,σ2 ∈ (0, 1)
and σ = max{σ1,σ2}. Let the sequences {xn}, {yn} be generated by x1, y1 ∈ C and

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = b2yn + (1 – b2)T2yn

yn+1 = (1 – βn)wn + βnPC(αng2(xn) + (1 – αn)PC(I – γ2∇Q2)yn))

zn = b1xn + (1 – b1)T1xn

xn+1 = (1 – βn)zn + βnPC(αng1(yn) + (1 – αn)PC(I – γ1∇Q1)xn), ∀n ≥ 1,

(4.8)

where {βn}, {αn} ⊆ [0, 1], γi ∈ (0, 2
LQi

), bi ∈ (0, 1) for all i = 1, 2. Assume that the following
conditions hold:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) 0 < l ≤ βn ≤ l for all n ∈N and for some l, l > 0;

(iii)
∑∞

n=1 |αn+1 – αn| < ∞,
∑∞

n=1 |βn+1 – βn| < ∞.
Then, {xn} and {yn} converges strongly to x∗ = P�1 g1(y∗) and y∗ = P�2 g2(x∗), respectively.

Proof By using Theorem 4.2, we obtain the conclusion. �

5 Numerical experiments
In this section, we give examples to support our main theorem. In the following examples,
we choose αn = 1

3n , βn = n+1
6n , a1 = 0.50, a2 = 0.25, b1 = 0.40, and b2 = 0.45. The stopping

criterion used for our computation is ‖xn+1 – xn‖ < 10–5 and ‖yn+1 – yn‖ < 10–5.

Example 5.1 Let R be the set of real numbers and let C = [1, 10]. Then, we obtain PCx =
max{min{x, 10}, 1}, for all x ∈ C. For every i = 1, 2, let Ai, Bi : C → R defined by A1(x) =
3x
5 – 3

5 , A2(x) = 2x
5 – 2

5 , B1(x) = 2x
3 – 2

3 , and B2(x) = x
6 – 1

6 , for all x ∈ C. For every i = 1, 2,
let fi : R → R defined by f1(x) = x2, f2(x) = 2x2 for all x ∈ R. Then, we have J1

γ f , J2
γ f : R → R

defined by J1
γ f (x) = x

2 and J2
γ f (x) = 5x

9 , respectively. For every i = 1, 2, let Ti : C → C defined
by T1(x) = x

2 + 1
2 and T2(x) = x

3 + 2
3 , for all x ∈ C. For every i = 1, 2, let gi : R →R be defined

by g1(x) = x
5 and g2(x) = x

4 , for all x ∈ R. Let the sequences {xn}, {yn} be generated by x1,
y1 ∈ C and

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = 0.45yn + 0.55T2yn

yn+1 = (1 – n+1
6n )wn + n+1

6n PC( 1
3n g2(xn) + (1 – 1

3n )J2
γ f (yn – 0.2(0.25A2 + 0.75B2)yn))

zn = 0.4xn + 0.6T1xn

xn+1 = (1 – n+1
6n )zn + n+1

6n PC( 1
3n g1(yn) + (1 – 1

3n )J1
γ f (xn – 0.5(0.5A1 + 0.5B1)xn)).
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Table 1 The values of {xn} and {yn} with initial values x1 = 10, y1 = 8 in Example 5.1

n xn yn ‖xn+1 – xn‖ ‖yn+1 – yn‖
1 10 8 – –
2 5.83889 4.84877 4.16111E+00 3.15123E+00
3 3.77942 3.18014 2.05946E+00 1.66863E+00
4 2.59307 2.21325 1.18635E+00 9.66891E-01
5 1.88283 1.64025 7.10245E-01 5.72994E-01
...

...
...

...
...

21 1.00012 1.00002 8.54581E-05 1.56096E-05
22 1.00007 1.00001 4.93196E-05 8.15171E-06
23 1.00004 1.00000 2.84787E-05 4.25928E-06
24 1.00002 1.00000 1.64526E-05 2.22654E-06
25 1.00001 1.00000 9.50912E-06 1.16443E-06

Figure 1 The convergence behavior of {xn} and {yn} with x1 = 10, y1 = 8 in Example 5.1

Figure 2 Error plotting of ‖xn+1 – xn‖ and ‖yn+1 – yn‖ in Example 5.1, the y-axis is illustrated on a logscale

According to the definition of Ai, Bi, Ti, fi, for all i = 1, 2, we obtain 1 ∈ Fix(Ti) ∩ VI(C,
Ai, fi),∩VI(C, Bi, fi). From Theorem 3.1, we can conclude that the sequences {xn} and {yn}
converge strongly to 1.

The numerical and graphical results of Example 5.1 are shown in Table 1 and Figs. 1
and 2.

Next, we consider the problem in the infinite-dimensional Hilbert space.
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Example 5.2 Let H = L2([0, 1]) with the inner product defined by

〈x, y〉 :=
∫ 1

0
x(t)y(t) dt, ∀x, y ∈ H

and the induced norm by

‖x‖ :=
(∫ 1

0

∣
∣x(t)

∣
∣
2 dt

) 1
2

, ∀x ∈ H .

Let C := {x ∈ L2([0, 1]) : ‖x‖ ≤ 1} be the unit ball. Then, we have

PC
(

x(t)
)

=

⎧

⎨

⎩

x(t) if ‖x(t)‖ ≤ 1,
x(t)

‖x(t)‖ if ‖x(t)‖ > 1.
(5.1)

For every i = 1, 2, let Ai, Bi : C → H be defined by A1(x(t)) = x(t), A2(x(t)) = 3x(t)
2 , B1(x(t)) =

2x(t), and B2(x(t)) = 5x(t)
3 , for all t ∈ [0, 1], x ∈ C. For every i = 1, 2, let fi : H →R be defined

by f1(x(t)) = 3x(t)2

2 , f2(x(t)) = x(t)2

2 for all t ∈ [0, 1], x ∈ H . Then, we have J1
γ f , J2

γ f : H → H
defined by J1

γ f (x(t)) = 4x(t)
7 and J2

γ f (x(t)) = 5x(t)
6 , for all t ∈ [0, 1], respectively. For every i =

1, 2, let Ti : C → C be defined by T1(x(t)) = x(t)
2 and T2(x(t)) = x(t)

3 , for all t ∈ [0, 1], x ∈ C.
For every i = 1, 2, let gi : H → H be defined by g1(x(t)) = x(t)

9 and g2(x(t)) = x(t)
16 , for all t ∈

[0, 1], x ∈ H . Let the sequences {xn}, {yn} be generated by x1, y1 ∈ C and

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = 0.45yn + 0.55T2yn,

yn+1 = (1 – n+1
6n )wn

+ n+1
6n PC( 1

3n g2(xn) + (1 – 1
3n )J2

γ f (yn – 0.2(0.25A2 + 0.75B2)yn)),

zn = 0.4xn + 0.6T1xn,

xn+1 = (1 – n+1
6n )zn

+ n+1
6n PC( 1

3n g1(yn) + (1 – 1
3n )J1

γ f (xn – 0.25(0.5A1 + 0.5)B1)xn)).

(5.2)

According to the definition of Ai, Bi, Ti, fi, for all i = 1, 2, then the solution of this problem is
x(t) = 0, where 0 ∈ Fix(Ti)∩VI(C, Ai, fi),∩VI(C, Bi, fi). From Theorem 3.1, we can conclude
that the sequences {xn} and {yn} converge strongly to x(t) = 0.

We test the algorithms for three different starting points and use ‖xn+1 – xn‖ < 10–5 and
‖yn+1 – yn‖ < 10–5 as the stopping criterion.

Case 1: x1 = 0.2t and y1 = 0.8t;
Case 2: x1 = e–2t and y1 = t2;
Case 3: x1 = sin(t) and y1 = cos(t).
The computational and graphical results of Example 5.2 are shown in Tables 2, 3, and 4

and Figs. 3, 4, 5, and 6.
We next give a comparison between Algorithm (5.3) in Corollary 3.3 and Algorithm 3.2

in [6].

Example 5.3 In this example, we use the same mappings and parameters as in Example 5.2.
Putting the sequence {xn} = {yn} and {wn} = {zn}, the mapping A1 ≡ A2 ≡ B1 ≡ B2, f1 ≡ f2,
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Table 2 Computational results of Case 1 for Example 5.2

n xn(t) yn(t) ‖xn+1 – xn‖ ‖yn+1 – yn‖
1 0.2t 0.8t – –
2 0.11908t 0.43917t 0.046718 0.20833
3 0.073412t 0.26038t 0.026368 0.10322
4 0.045862t 0.15731t 0.015906 0.05951
5 0.028847t 0.095819t 0.0098239 0.035499
...

...
...

...
...

18 8.1465 · 10–5t 0.00017912t 2.6556 · 10–5 6.3657 · 10–5
19 5.2082 · 10–5t 0.0001109t 1.6964 · 10–5 3.9387 · 10–5
20 3.3305 · 10–5t 6.8675 · 10–5t 1.0841 · 10–5 2.4377 · 10–5
21 2.1303 · 10–5t 4.2536 · 10–5t 6.9296 · 10–6 1.5091 · 10–5
22 1.3629 · 10–5t 2.6351 · 10–5t 4.4307 · 10–6 9.3446 · 10–6

Table 3 Computational results of Case 2 for Example 5.2

n xn(t) yn(t) ‖xn+1 – xn‖ ‖yn+1 – yn‖
1 e–2t t2 – –
2 0.012346t2 + 0.54603e–2t 0.54722t2 + 0.0069444e–2t 0.22294 0.20126
3 0.0099335t2 + 0.32733e–2t 0.32409t2 + 0.0055344e–2t 0.10874 0.10004
4 0.0069982t2 + 0.20132e–2t 0.19567t2 + 0.0038463e–2t 0.062915 0.057742
5 0.0047329t2 + 0.1253e–2t 0.11913t2 + 0.0025601e–2t 0.03804 0.034466
...

...
...

...
...

20 7.0577 · 10–6t2 + 0.0001383e–2t 8.5148 · 10–5t2 + 2.784 · 10–6e–2t 3.9419 · 10–5 2.3729 · 10–5
21 4.5372 · 10–6t2 + 8.8366 · 10–5e–2t 5.2733 · 10–5t2 + 1.7493 · 10–6e–2t 2.5168 · 10–5 1.4691 · 10–5
22 2.9161 · 10–6t2 + 5.6479 · 10–5e–2t 3.2664 · 10–5t2 + 1.0988 · 10–6e–2t 1.6075 · 10–5 9.0977 · 10–6
23 1.8739 · 10–6t2 + 3.6109 · 10–5e–2t 2.0236 · 10–5t2 + 6.9006 · 10–7e–2t 1.0271 · 10–5 5.635 · 10–6
24 1.204 · 10–6t2 + 2.3091 · 10–5e–2t 1.2538 · 10–5t2 + 4.3325 · 10–7e–2t 6.5643 · 10–6 3.4909 · 10–6

Table 4 Computational results of Case 3 for Example 5.2

n xn(t) yn(t) ‖xn+1 – xn‖ ‖yn+1 – yn‖
1 sin (t) cos (t) – –
2 0.54603 sin (t) + 0.012346cos (t) 0.0069444 sin (t) + 0.54722cos (t) 0.22877 0.38327
3 0.32733 sin (t) + 0.0099335cos (t) 0.0055344 sin (t) + 0.32409cos (t) 0.11585 0.19088
4 0.20132 sin (t) + 0.0069982cos (t) 0.0038463 sin (t) + 0.19567cos (t) 0.067807 0.11022
5 0.1253 sin (t) + 0.0047329cos (t) 0.0025601 sin (t) + 0.11913cos (t) 0.041247 0.065808
...

...
...

...
...

20 0.0001383 sin (t) + 7.0577 · 10–6 cos (t) 2.784 · 10–6 sin (t) + 8.5148 · 10–5 cos (t) 4.3544 · 10–5 4.5346 · 10–5
21 8.8366 · 10–5 sin (t) + 4.5372 · 10–6 cos (t) 1.7493 · 10–6 sin (t) + 5.2733 · 10–5 cos (t) 2.7812 · 10–5 2.8076 · 10–5
22 5.6479 · 10–5 sin (t) + 2.9161 · 10–6 cos (t) 1.0988 · 10–6 sin (t) + 3.2664 · 10–5 cos (t) 1.777 · 10–5 1.7387 · 10–5
23 3.6109 · 10–5 sin (t) + 1.8739 · 10–6 cos (t) 6.9006 · 10–7 sin (t) + 2.0236 · 10–5 cos (t) 1.1357 · 10–5 1.0769 · 10–5
24 2.3091 · 10–5 sin (t) + 1.204 · 10–6 cos (t) 4.3325 · 10–7 sin (t) + 1.2538 · 10–5 cos (t) 7.2602 · 10–6 6.6718 · 10–6

g1 ≡ g2, and T1 ≡ T2 ≡ I , we can rewrite (3.34) as follows:

xn+1 =
(

1 –
n + 1

6n

)

xn +
n + 1

6n
PC

(
1

3n
g1(xn) +

(

1 –
1

3n

)

J1
γ f (xn – 0.25A1xn)

)

. (5.3)

Also, we modify Algorithm 3.2 in [6] by putting A ≡ A1 that is an inverse strongly mono-
tone operator and choose the same mappings and parameters as in Example 5.2. Hence,
we can rewrite as follows:

xn+1 =
1

3n
xn +

(

1 –
1

3n

)

J1
γ f (xn – 0.25A1xn). (5.4)
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Figure 3 The convergence behavior of {xn(t)} and {yn(t)} with x1 = 0.2t and y1 = 0.8t (Case 1) in Example 5.2,
the y-axis is illustrated on a logscale

Figure 4 The convergence behavior of {xn(t)} and {yn(t)} with x1 = e–2t and y1 = t2 (Case 2) in Example 5.2,
the y-axis is illustrated on a logscale

Figure 5 The convergence behavior of {xn(t)} and {yn(t)} with x1 = sin(t) and y1 = cos(t) (Case 3) in
Example 5.2, the y-axis is illustrated on a logscale

The comparison of Algorithm (5.3) and Algorithm (5.4), which is modified from Algo-
rithm 3.2 in [6], in terms of the CPU time and the number of iterations with different
starting points, is reported in Table 5.
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Figure 6 Error plotting of ‖xn+1 – xn‖ and ‖yn+1 – yn‖ in Example 5.2, the y-axis is illustrated on a logscale

Table 5 Numerical values of Algorithm (5.3) and Algorithm (5.4)

Starting point Algorithm (5.3) Algorithm (5.4)

x1 = 0.2t No. of Iter. 93 580
y1 = 0.8t CPU Time (s) 1.709670 8.759806
x1 = e–2t No. of Iter. 80 1821
y1 = t2 CPU Time (s) 10.569948 27.241337
x1 = sin(t) No. of Iter. 80 3145
y1 = cos(t) CPU Time (s) 6.652260 134.727010

Remark 5.4 From our numerical experiments in Examples 5.1, 5.2, and 5.3, we make the
following observations.

1. Table 1 and Figs. 1 and 2 show that {xn} and {yn} converge to 1, where
1 ∈ Fix(Ti) ∩ VI(C, Ai, fi),∩VI(C, Bi, fi), for all i = 1, 2. The convergence of {xn} and
{yn} of Example 5.1 can be guaranteed by Theorem 3.1.

2. Tables 2, 3, and 4 and Figs. 3, 4, 5, and 6 show that {xn} and {yn} converge to x(t) = 0,
where 0 ∈ Fix(Ti) ∩ VI(C, Ai, fi),∩VI(C, Bi, fi), for all i = 1, 2. The convergence of {xn}
and {yn} of Example 5.2 can be guaranteed by Theorem 3.1.

3. From Table 5, we see that the sequence generated by our Algorithm (5.3) has a better
convergence than Algorithm (5.4), which is modified from Algorithm 3.2 in [6], in
terms of the number of iterations and the CPU time.

6 Conclusion
In this paper, we have proposed a new problem, called the combination of mixed vari-
ational inequality problems (1.7). This problem can be reduced to a classical variational
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inequalities problem (1.4). Using the intermixed method with viscosity technique, we in-
troduce a new intermixed algorithm with viscosity technique for finding a solution of the
combination of mixed variational inequality problems and the fixed-point problem of a
nonexpansive mapping in a real Hilbert space. Moreover, we propose Lemmas 2.5 and 2.6
related to the combination of mixed variational inequality problems (1.7) in Sect. 2. Under
some suitable conditions, a strong convergence theorem (Theorem 3.1) is established for
the proposed Algorithm (3.1). We apply our theorem to solve the split-feasibility problem
and the constrained convex-minimization problem. The effectiveness and numerical re-
sults of the proposed method for solving some examples in Hilbert space are illustrated
(see Tables 1, 2, 3, 4, and 5 and Figs. 1, 2, 3, 4, 5, and 6). The obtained results improve and
extend several previously published results in this field.
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