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Abstract
The Gaussian product-inequality (GPI) conjecture is one of the most famous
inequalities associated with Gaussian distributions and has attracted much attention.
In this note, we investigate the quantitative versions of the two-dimensional Gaussian
product inequalities. For any centered, nondegenerate, and two-dimensional
Gaussian random vector (X1,X2) with E[X2

1 ] = E[X2
2 ] = 1 and the correlation coefficient

ρ , we prove that for any real numbers α1,α2 ∈ (–1, 0) or α1,α2 ∈ (0,∞), it holds that

E
[|X1|α1 |X2|α2

]
– E

[|X1|α1
]
E
[|X2|α2

] ≥ f (α1,α2,ρ) ≥ 0,

where the function f (α1,α2,ρ) will be given explicitly by the Gamma function and is
positive when ρ �= 0. When –1 < α1 < 0 and α2 > 0, Russell and Sun (Statist. Probab.
Lett. 191:109656, 2022) proved the “opposite Gaussian product inequality”, of which
we will also give a quantitative version. These quantitative inequalities are derived by
employing the hypergeometric functions and the generalized hypergeometric
functions.
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1 Introduction
The Gaussian product-inequality (GPI) conjecture is one of the most famous inequali-
ties associated with Gaussian distributions, which states that for any d-dimensional, real-
valued, and centered Gaussian random vector (X1, . . . , Xd),

E

[ d∏

j=1

X2m
j

]

≥
d∏

j=1

E
[
X2m

j
]
, m ∈N. (1.1)
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In [12], Li and Wei proposed the following improved version of the GPI conjecture:

E

[ d∏

j=1

|Xj|αj

]

≥
d∏

j=1

E
[|Xj|αj

]
, (1.2)

where αj, j = 1, 2, . . . , d, are nonnegative real numbers.
Up to now, the GPI (1.1) and the GPI (1.2) are still open, however, some special cases have

been proved by using various tools. Frenkel [6] proved (1.1) with m = 1 (or (1.2) for the case
αj = 2) by using algebraic methods. Malicet et al. [13] gave an analytic proof to Frenkel’s
result among other issues, such as giving new lower bounds on homogeneous polynomials
(see [13, Theorem 1.5]), and presenting a new result supporting the U-conjecture (see [13,
Theorem 1.7], the U-conjecture is still open). Wei [21] proved a stronger version of (1.2)
for αj ∈ (–1, 0) as follows:

E

[ d∏

j=1

|Xj|αj

]

≥ E

[ k∏

j=1

|Xj|αj

]

E

[ d∏

j=k+1

|Xj|αj

]

, ∀1 ≤ k ≤ d – 1. (1.3)

From Karlin and Rinott [10], we know that (1.1) and (1.2) hold for X = (X1, . . . , Xd) when
the density of |X| = (|X1|, |X2|, . . . , |Xd|) satisfies the so-called condition MTP2, and for any
nondegenerate, 2-dimensional, and centered Gaussian random vector (X1, X2), (|X1|, |X2|)
has an MTP2 density. Thus, (1.1) and (1.2) hold for d = 2.

Lan et al. [11] used the hypergeometric functions to prove the following 3-dimensional
GPI: for any m1, m2 ∈N and any centered Gaussian random vector (X1, X2, X3),

E
[
X2m1

1 X2m2
2 X2m2

3
] ≥ E

[
X2m1

1
]
E
[
X2m2

2
]
E
[
X2m2

3
]
. (1.4)

Russell and Sun [20] proved the following 3-dimensional GPI: for any m2, m3 ∈N and any
centered Gaussian random vector (X1, X2, X3),

E
[
X2

1 X2m2
2 X2m3

3
] ≥ E

[
X2

1
]
E
[
X2m2

2
]
E
[
X2m3

3
]
. (1.5)

Herry et al. [9] proved the following 3-dimensional GPI: for any m1, m2, m3 ∈ N and any
centered Gaussian random vector (X1, X2, X3),

E
[
X2m1

1 X2m2
2 X2m3

3
] ≥ E

[
X2m1

1
]
E
[
X2m2

2
]
E
[
X2m3

3
]
. (1.6)

Genest and Ouimet [7] proved that if there exists a matrix C ∈ [0, +∞)d×d such
that(X1, X2, . . . , Xd) = (Z1, Z2, . . . , Zd)C in law, where (Z1, Z2, . . . , Zd) is a d-dimensional,
standard Gaussian random vector, the following stronger version of (1.1) holds:

E

[ d∏

j=1

X2mj
j

]

≥ E

[ k∏

j=1

X2mj
j

]

E

[ n∏

j=k+1

X2mj
j

]

, mj ∈ N, j = 1, . . . , n,∀1 ≤ k ≤ n – 1. (1.7)

Russell and Sun [17] proved among other things that (1.7) holds if all the correlation co-
efficients are nonnegative. Edelmann et al. [5] extended (1.7) to the multivarite gamma
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distributions. As to other related work, we refer to Genest and Ouiment [8], Russell and
Sun [18], and Russell and Sun [19].

Recently, De et al. [3] obtained a range of quantitative correlation inequalities, including
the quantitative version of the Gaussian correlation inequality proved by Royen [16], and
the quantitative version of the well-known Fortuin–Kasteleyn–Ginibre (FKG) inequality
for monotone functions over any finite product probability space. A further related work
is De et al. [4].

To our understanding, quantitative correlation inequalities contain more information
than qualitative correlation inequalities, and can imply the latter. A quantitative inequality
with respect to (w.r.t. for short) the corresponding qualitative inequality is like the law of
iterated logarithm w.r.t. the strong law of large numbers. In this note, we consider the
quantitative versions of the two-dimensional Gaussian product inequalities.

For any centered, nondegenerate, and two-dimensional Gaussian random vector (X1, X2)
with the correlation coefficient ρ , without loss of generality, we assume that E[X2

1 ] =
E[X2

2 ] = 1. We will prove that for any real numbers α1,α2 ∈ (–1, 0) or α1,α2 ∈ (0,∞), it
holds that

E
[|X1|α1 |X2|α2

]
– E

[|X1|α1
]
E
[|X2|α2

] ≥ f (α1,α2,ρ) ≥ 0,

where the function f (α1,α2,ρ) will be given explicitly by the Gamma function and is pos-
itive when ρ �= 0. When –1 < α1 < 0 and α2 > 0, Russell and Sun [18] proved the “oppo-
site Gaussian product inequality”, of which we will also give a quantitative version. These
quantitative inequalities are derived by employing the hypergeometric functions and the
generalized hypergeometric functions.

The rest of this note is organized as follows. In Sect. 2, we present the main results and
some corollaries. In Sect. 3, we give the proofs. In Sect. 4, we give some remarks. In Sect. 5,
we give the conclusion and introduce some related questions.

2 Main results
Throughout this note, any Gaussian random variable is assumed to be real-valued, non-
degenerate, and standard. Our main results are as follows.

Theorem 2.1 Let (X1, X2) be centered, bivariate Gaussian random variables with the
correlation coefficient ρ satifying |ρ| < 1. Then, for any real numbers α1,α2 ∈ (–1, 0) or
α1,α2 ∈ (0,∞),

E
[|X1|α1 |X2|α2

]
– E

[|X1|α1
]
E
[|X2|α2

] ≥ f (α1,α2,ρ), (2.1)

where the nonnegative function f (·) is defined by

f (α1,α2,ρ)

:=

⎧
⎨

⎩

2
α1+α2

2 α1α2ρ2

2π
�( α1+1

2 )�( α2+1
2 ), if – 1 < α1,α2 < 0 or 0 < α1,α2 ≤ 2 or α1,α2 > 2,

2
α1+α2

2 α1α2ρ2

4
√

π
�( α1+α2–1

2 ), if α1 > 2, 0 < α2 ≤ 2 or 0 < α1 ≤ 2,α2 > 2.
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When the real numbers α1 and α2 in Theorem 2.1 have opposite signs, Russell and Sun
[18] proved the following opposite GPI:

E
[|X1|α1 |X2|α2

] ≤ E
[|X1|α1

]
E
[|X2|α2

]
. (2.2)

We have the quantitative version of the GPI (2.2) as follows.

Theorem 2.2 Let (X1, X2) be centered, bivariate Gaussian random variables with the cor-
relation coefficient ρ satifying |ρ| < 1. Let α1 ∈ (–1, 0) and α2 ∈ (0,∞).

(i) When 0 < α2 ≤ 2,

2
α1+α2

2 α1α2ρ
2

2π
�

(
α1 + 1

2

)
�

(
α2 + 1

2

)
F
(

1 –
α1

2
, 1 –

α2

2
;

3
2

; 1
)

≤ E
[|X1|α1 |X2|α2

]
– E

[|X1|α1
]
E
[|X2|α2

]

≤ 2
α1+α2

2 α1α2ρ
2

2π
�

(
α1 + 1

2

)
�

(
α2 + 1

2

)
≤ 0, (2.3)

where F(·) is the hypergeometric function defined by

F(a, b; c; z) :=
+∞∑

n=0

(a)n(b)n

(c)n
· zn

n!
, |z| ≤ 1, (2.4)

and, for α ∈R,

(α)n :=

⎧
⎨

⎩
α(α + 1) . . . (α + n – 1), n ≥ 1,

1, n = 0,α �= 0.

(ii) When α2 > 2,

2
α1+α2

2 α1α2ρ
2

2π
�

(
α1 + 1

2

)
�

(
α2 + 1

2

)

≤ E
[|X1|α1 |X2|α2

]
– E

[|X1|α1
]
E
[|X2|α2

]

≤ min

{
2

α1+α2
2 α1α2ρ

2

2π
�

(
α1 + 1

2

)
�

(
α2 + 1

2

)
F
(

1 –
α1

2
, 1 –

α2

2
;

3
2

; 1
)

, 0
}

.

(2.5)

By Theorem 2.1, we have the following corollaries.

Corollary 2.3 Let α1,α2 ∈ {1, 2} in Theorem 2.1, then we have

E
[|X1||X2|

]
– E

[|X1|
]
E
[|X2|

] ≥ ρ2

π
,

E
[|X1|X2

2] – E
[|X1|

]
E
[
X2

2] ≥
√

2ρ2
√

π
,

E
[
X1

2X2
2] – E

[
X1

2]E
[
X2

2] ≥ 2ρ2.
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Corollary 2.4 Under the conditions of Theorem 2.1, suppose that α2 = 1, and α1 is an
integer satisfying α1 = m > 2. Then,

E
[|X1|m|X2|

]
– E

[|X1|m
]
E
[|X2|

] ≥
⎧
⎨

⎩

(m–2)!!mρ2√
2π

, if m is even,
(m–2)!!mρ2

2 , if m is odd.

Corollary 2.5 Under the conditions of Theorem 2.1, suppose that α1 and α2 are integers
and α1 = m, α2 = n with m, n ∈ (2,∞),

(i) if m, n are both even integers, then

E
[
X1

mX2
n] – E

[
X1

m]
E
[
X2

n] ≥ (m – 1)!!(n – 1)!!mnρ2

2
;

(ii) if m, n are both odd integers, then

E
[|X1|m|X2|n

]
– E

[|X1|m
]
E
[|X2|n

] ≥ (m – 1)!!(n – 1)!!mnρ2

π
;

(iii) if one of m and n is odd and the other is even, then

E
[|X1|m|X2|n

]
– E

[|X1|m
]
E
[|X2|n

] ≥ (m – 1)!!(n – 1)!!mnρ2
√

2π
.

3 Proofs
In this section, we will give the proofs of Theorems 2.1 and 2.2. First, we recall some prop-
erties of hypergeometric functions and generalized hypergeometric functions in Sect. 3.1.
The proofs of Theorems 2.1 and 2.2 will be presented in Sects. 3.2 and 3.3, respectively.

3.1 Preliminaries
Definition 3.1 (see Andrews et al. [1, Chap. 2] or Rainville [15, Chap. 5]) The generalized
hypergeometric function pFq(a1, . . . , ap; b1, . . . , bq; z) is defined by

pFq(a1, . . . , ap; b1, . . . , bq; z) :=
+∞∑

k=0

(a1)n . . . (ap)n

(b1)n . . . (bq)n
· zn

n!
, (3.1)

where

(α)n :=

⎧
⎨

⎩
α(α + 1) . . . (α + n – 1), n ≥ 1,

1, n = 0,α �= 0.

In particular, when p = 2 and q = 1, 2F1(a1, a2; b1; z) is called the hypergeometric function
that is written as F(a, b; c; z) in short (see (2.4)).

Theorem 3.2 (see Andrews et al. [1, Theorem 2.2.5] or Rainville [15, Theorem 21]) If
|z| < 1,

F(a, b; c; z) = (1 – z)c–a–bF(c – a, c – b; c; z). (3.2)
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Theorem 3.3 (see Rainville [15, Theorem 28]) If p ≤ q + 1, Re(b1)> Re(a1)> 0, no one of
b1, b2, . . . , bq is zero or a negative integer, and |z| < 1,

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z)

=
�(b1)

�(a1)�(b1 – a1)

∫ 1

0
t(a1–1)(1 – t)(b1–a1–1)

p–1 Fq–1(a2, . . . , ap; b2, . . . , bq; z). (3.3)

If p ≤ q, the condition |z| < 1 may be omitted.

Theorem 3.4 (see Rainville [15, Theorem 18]) If Re(c – a – b) > 0 and if c is neither zero
nor a negative integer,

F(a, b; c; 1) =
�(c)�(c – a – b)
�(c – a)�(c – b)

. (3.4)

In addition, from Andrews et al. [1, (2.5.1)], we know that the hypergeometric function
satisfies the following differential equation:

d
dz

F(a, b; c; z) =
ab
c

F(a + 1, b + 1; c + 1; z). (3.5)

3.2 Proof of Theorem 2.1
Obviously, we can assume that ρ �= 0. From the density function of a centered Gaussian
random variable and the definition of the Gamma function, we have that for i = 1, 2,

E
[|Xi|αi

]
=

∫ +∞

–∞
1√
2π

|x|αi e– x2
2 dx =

√
2√
π

∫ +∞

0
xαi e– x2

2 dx

=
2

αi
2√
π

∫ +∞

0
y

αi–1
2 e–y dy =

2
αi
2√
π

�

(
αi + 1

2

)
. (3.6)

Then,

E
[|X1|α1

]
E
[|X2|α2

]
=

2
α1+α2

2

π
�

(
α1 + 1

2

)
�

(
α2 + 1

2

)
. (3.7)

Since |ρ| < 1, by Nabeya [14], we know that

E
[|X1|α1 |X2|α2

]
=

2
α1+α2

2

π
�

(
α1 + 1

2

)
�

(
α2 + 1

2

)
F
(

–
α1

2
, –

α2

2
;

1
2

;ρ2
)

, (3.8)

where F(·) is the hypergeometric function defined by (2.4).
It follows from (3.7) and (3.8) that

E
[|X1|α1 |X2|α2

]
– E

[|X1|α1
]
E
[|X2|α2

]

=
2

α1+α2
2

π
�

(
α1 + 1

2

)
�

(
α2 + 1

2

)[
F
(

–
α1

2
, –

α2

2
;

1
2

;ρ2
)

– 1
]

. (3.9)
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Since 2
α1+α2

2
π

�( α1+1
2 )�( α2+1

2 ) > 0 for any –1 < α1,α2 < 0 or α1,α2 > 0, it is enough to find
the lower bound of F(– α1

2 , – α2
2 ; 1

2 ;ρ2) – 1. First, we have that

F
(

–
α1

2
, –

α2

2
;

1
2

;ρ2
)

– 1 =
+∞∑

k=1

(– α1
2 )k(– α2

2 )k

( 1
2 )k

· (ρ2)k

k!

=
+∞∑

k=0

(– α1
2 )k+1(– α2

2 )k+1

( 1
2 )k+1

· (ρ2)k+1

(k + 1)!

=
ρ2α1α2

2

+∞∑

k=0

(1 – α1
2 )k(1 – α2

2 )k(1)k

( 3
2 )k(2)k

· ρ2k

(k)!

=
ρ2α1α2

2 3F2

(
1 –

α1

2
, 1 –

α2

2
, 1;

3
2

, 2;ρ2
)

, (3.10)

where pFq(a1, . . . , ap; b1, . . . , bq; z) is the generalized hypergeometric function defined by
(3.1). By the property of the generalized hypergeometric function in (3.3) and (3.10), we
obtain that

F
(

–
α1

2
, –

α2

2
;

1
2

;ρ2
)

– 1 =
ρ2α1α2

2
�(2)

�(1)�(1)

∫ 1

0
F
(

1 –
α1

2
, 1 –

α2

2
;

3
2

;ρ2t
)

dt

=
α1α2

2

∫ ρ2

0
F
(

1 –
α1

2
, 1 –

α2

2
;

3
2

; h
)

dh. (3.11)

Secondly, by (3.5) and the Euler transformation (3.2), we have that

d
dh

F
(

1 –
α1

2
, 1 –

α2

2
;

3
2

; h
)

=
2
3

(
1 –

α1

2

)(
1 –

α2

2

)
F
(

2 –
α1

2
, 2 –

α2

2
;

5
2

; h
)

=
2
3

(
1 –

α1

2

)(
1 –

α2

2

)
(1 – h)

1+α1+α2
2 –2F

(
1
2

+
α1

2
,

1
2

+
α2

2
;

5
2

; h
)

. (3.12)

Therefore, in order to estimate F(– α1
2 , – α2

2 ; 1
2 ;ρ2) – 1, we divide it into the following two

cases.
Case I: When –1 < α1,α2 < 0 or 0 < α1,α2 ≤ 2, or α1,α2 > 2.
In this case, (1 – α1

2 )(1 – α2
2 ) ≥ 0 and α1α2 > 0. Thus, the derivative of d

dh F(1 – α1
2 , 1 –

α2
2 ; 3

2 ; h) in (3.12) is nonnegative. Therefore, by (3.11) we obtain that

F
(

–
α1

2
, –

α2

2
;

1
2

;ρ2
)

– 1 ≥ α1α2

2

∫ ρ2

0
F
(

1 –
α1

2
, 1 –

α2

2
;

3
2

; 0
)

dh =
α1α2

2
· ρ2.

Thus, by the above statements, we obtain that

E
[|X1|α1 |X2|α2

]
– E

[|X1|α1
]
E
[|X2|α2

] ≥ 2
α1+α2

2

π
�

(
α1 + 1

2

)
�

(
α2 + 1

2

)
α1α2

2
· ρ2

=
2

α1+α2
2 α1α2ρ

2

2π
�

(
α1 + 1

2

)
�

(
α2 + 1

2

)
.
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Case II: When α1 > 2 and 0 < α2 ≤ 2 or 0 < α1 ≤ 2 and α2 > 2.
Without loss of generality, it is assumed that α1 > 2 and 0 < α2 ≤ 2. Then, (1 – α1

2 )(1 –
α2
2 ) ≤ 0 and α1α2 > 0. Thus, in this case, by (3.12), we know that

d
dh

F
(

1 –
α1

2
, 1 –

α2

2
;

3
2

; h
)

≤ 0.

Then, F(1 – α1
2 , 1 – α2

2 ; 3
2 ; h) reaches its minimum at h = 1, and the minimum value is

F
(

1 –
α1

2
, 1 –

α2

2
;

3
2

; 1
)

=
�( 3

2 )�( α1+α2
2 – 1

2 )
�( α1

2 + 1
2 )�( α2

2 + 1
2 )

,

where the equality holds by (3.4). Then, from (3.11), we obtain

F
(

–
α1

2
, –

α2

2
;

1
2

;ρ2
)

– 1 ≥ α1α2

2
· ρ2 �( 3

2 )�( α1+α2
2 – 1

2 )
�( α1

2 + 1
2 )�( α2

2 + 1
2 )

.

From (3.9), we obtain

E
[|X1|α1 |X2|α2

]
– E

[|X1|α1
]
E
[|X2|α2

]

≥ 2
α1+α2

2

π
�

(
α1 + 1

2

)
�

(
α2 + 1

2

)
α1α2

2
· ρ2 �( 3

2 )�( α1+α2
2 – 1

2 )
�( α1

2 + 1
2 )�( α2

2 + 1
2 )

=
2

α1+α2
2 α1α2ρ

2

4
√

π
�

(
α1 + α2 – 1

2

)
.

The proof is complete.

3.3 Proof of Theorem 2.2
From the proof of Theorem 2.1, we know that

E
[|X1|α1 |X2|α2

]
– E

[|X1|α1
]
E
[|X2|α2

]

=
2

α1+α2
2

π
�

(
α1 + 1

2

)
�

(
α2 + 1

2

)[
F
(

–
α1

2
, –

α2

2
;

1
2

;ρ2
)

– 1
]

, (3.13)

F
(

–
α1

2
, –

α2

2
;

1
2

;ρ2
)

– 1 =
α1α2

2

∫ ρ2

0
F
(

1 –
α1

2
, 1 –

α2

2
;

3
2

; h
)

dh, (3.14)

and

d
dh

F
(

1 –
α1

2
, 1 –

α2

2
;

3
2

; h
)

=
2
3

(
1 –

α1

2

)(
1 –

α2

2

)
(1 – h)

1+α1+α2
2 –2F

(
1
2

+
α1

2
,

1
2

+
α2

2
;

5
2

; h
)

.

Case I: 0 < α2 ≤ 2. In this case 1 – α2
2 ≥ 0 and thus

d
dh

F
(

1 –
α1

2
, 1 –

α2

2
;

3
2

; h
)

≥ 0.
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Then, from (3.14), we obtain

α1α2ρ
2

2
F
(

1 –
α1

2
, 1 –

α2

2
;

3
2

; 1
)

≤ F
(

–
α1

2
, –

α2

2
;

1
2

;ρ2
)

– 1 ≤ α1α2ρ
2

2
≤ 0,

which together with (3.13) implies (2.3).
Case II: α2 > 2. In this case, 1 – α2

2 < 0, and thus

d
dh

F
(

1 –
α1

2
, 1 –

α2

2
;

3
2

; h
)

≤ 0.

Then, from (3.14), it can be derived that

α1α2ρ
2

2
≤ F

(
–

α1

2
, –

α2

2
;

1
2

;ρ2
)

– 1 ≤ α1α2ρ
2

2
F
(

1 –
α1

2
, 1 –

α2

2
;

3
2

; 1
)

,

which together with (3.13) implies (2.5).
The proof is complete.

4 Remarks
Remark 4.1 If ρ in Theorem 2.1 satisfies that |ρ| = 1, then X2 = ±X1 in law and thus
E[|X1|α1 |X2|α2 ] = E[|X1|α1+α2 ]. From (3.6) and �( 1

2 ) =
√

π , we know that

E
[|X1|α1 |X2|α2

]
– E

[|X1|α1 |]E
[|X2|α2

]

= E
[|X1|α1+α2

]
– E

[|X1|α1 |]E
[|X2|α2

]

=
2

α1+α2
2√
π

�

(
α1 + α2 + 1

2

)
–

2
α1+α2

2

π
�

(
α1 + 1

2

)
�

(
α2 + 1

2

)

=
2

α1+α2
2

π
�

(
α1 + 1

2

)
�

(
α2 + 1

2

)[
�( α1+α2+1

2 )�( 1
2 )

�( α1+1
2 )�( α2+1

2 )
– 1

]

=
2

α1+α2
2

π
�

(
α1 + 1

2

)
�

(
α2 + 1

2

)[
F
(

–
α1

2
, –

α2

2
;

1
2

; 1
)

– 1
]

,

the last equality follows from (3.4). That is to say, (3.9) still holds in this case. Hence, the
result of Theorem 2.1 still holds if |ρ| = 1 and one of the following two conditions holds:

(i) α1,α2 ∈ (0,∞);
(ii) α1,α2 ∈ (–1, 0) and α1 + α2 ∈ (–1, 0).

Remark 4.2 If ρ in Theorem 2.2 satisfies that |ρ| = 1, then by Remark 4.1 and the proof of
Theorem 2.2 we know that the result of Theorem 2.2 still holds in this case.

5 Conclusions
In this note, we gave several quantitative versions of the two-dimensional Gaussian prod-
uct inequalities, which can imply the corresponding qualitative inequalities and contain
more information. The main results are Theorems 2.1 and 2.2.

We hope that this note is a good starting point in this aspect and can stimulate more
related work. In fact, we can ask the following questions:
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Question 1 How about the quantitative versions of the 3-dimensional Gaussian product
inequalities (1.4), (1.5), and (1.6)?

Question 2 How about the quantitative version of the product inequality (1.7)?

Question 3 How about the quantitative version of the product inequality (1.3)?
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