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Abstract
In this article, we introduce a class of functions U(p) with integral representation
defined over a measure space with σ -finite measure. The main purpose of this paper
is to extend the Minkowski and related inequalities by considering general kernels. As
a consequence of our general results, we connect our results with various variants for
the fractional integrals operators. Such applications have wide use and importance in
the field of applied sciences.
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1 Introduction
Fractional calculus is generally referred to as the calculus of noninteger order. In the last
few decades, the concept of fractional calculus has been comprehensively studied by var-
ious mathematicians [1–6]. Studying different aspects of the subject has stimulated many
mathematicians to put their continued efforts into different time scales. Continuously,
researchers have given the generalizations of fractional integrals by using different tech-
niques. It is always interesting and motivating for us to provide the generalization of in-
equalities that cover all possible results, which are proven till now for different fractional
integrals.

Recently, various inequalities have been given in the sense of generalizations and im-
provements for different fractional integrals. We state some of them here; the variants
of Minkowski, Wirtinger, Hardy, Opial, Ostrowski, Hermite–Hadamard, Lyenger, Grüss,
Cebyšev, and Pólya–Szegö [7–15]. Such applications of fractional integral operators com-
pelled us to show the generalization of the reverse Minkowski inequality [7–9] involving
general kernels.

Let (�,�,π ) be a measure space with a positive σ -finite measure, p : � × � → R be a
nonnegative function, and

�(�) =
∫

�

p(�,χ ) dπ (χ ), � ∈ �. (1.1)

Throughout this paper, we suppose �(�) > 0 a.e. on �.
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Let U(p) denote the class of functions L : � →R with the representation

L(�) =
∫

�

p(�,χ )L(χ ) dπ (χ ),

where L : � → R is a measurable function.

Definition 1.1 ([15]) Let f ∈ L1([a, b]) (the Lebesgue measure). The left-sided and right-
sided Riemann–Liouville fractional integrals Iα

a+ f and Iα
b– f of order α > 0 are defined by

Iα
a+ f (�) =

1

(α)

∫ �

a
f (χ )(� – χ )α–1 dχ , (� > a)

and

Iα
b– f (�) =

1

(α)

∫ b

�

f (χ )(χ – �)α–1 dχ , (� < b),

where 
(α) is the usual gamma function defined by


(α) =
∫ ∞

0
exxα–1 dx, Re(α) > 0.

Definition 1.2 ([16]) Let f ∈ L1([a, b]) (the Lebesgue measure). The left-sided and right-
sided Riemann–Liouville k-fractional integrals Iα,k

a+ f and Iα,k
b– f of order α > k are defined

by

Iα,k
a+ f (�) =

1
k
k(α)

∫ �

a
f (χ )(� – χ )

α
k –1 dχ , (� > a)

and

Iα,k
b– f (�) =

1
k
k(α)

∫ b

�

f (χ )(χ – �)
α
k –1 dχ , (� < b),

where 
k(α) is the k-gamma function defined by


k(α) =
∫ ∞

0
e– xk

k xα–1 dx, Re(α) > 0.

A more general form of Definition 1.2 is given in the next definition.

Definition 1.3 Let k > 0, (a, b)(–∞ ≤ a < b ≤ ∞) be a finite or infinite interval of the real
line R and α > 0. Also, let g be an increasing and positive monotone on (a, b]. The left- and
right-sided fractional integrals of a function f with respect to another function g of order
α, k > 0 in [a, b] are given by

Iα,k
a+;gf (�) =

1
k
k(α)

∫ �

a

g′(χ )f (χ ) dχ

[g(�) – g(χ )]1– α
k

, � > a

and

Iα,k
b–;gf (�) =

1
k
k(α)

∫ b

�

g′(χ )f (χ ) dχ

[g(χ ) – g(�)]1– α
k

, � < b.
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Definition 1.4 ([4]) Let (a, b)(0 ≤ a < b ≤ ∞) be a finite or infinite interval of the half-
axis R+. Also, let α > 0,σ > 0, and η ∈R. We consider the left- and right-sided integrals of
order α ∈R defined by

Iα
a+;σ ;ηf (�) =

σ�–σ (α+η)


(α)

∫ �

a

χση+σ–1f (χ ) dχ

(�σ – χσ )1–α
(1.2)

and

Iα
b–;σ ;ηf (�) =

σ�ση


(α)

∫ b

�

tσ (1–η–α)–1f (χ ) dχ

(χσ – xσ )1–α
, (1.3)

respectively. Integrals (1.2) and (1.3) are called Erdélyi–Kober-type fractional integrals.

Consider the space Xp
c (a, b)(c ∈ R, 1 ≤ p ≤ ∞) of those complex-valued Lebesgue mea-

surable functions f on [a, b] for which ‖f ‖Xp
c (a,b) < ∞, where the norm is defined by

‖f ‖Xp
c (a,b) =

∫ b

a

∣∣χ cf (χ )
∣∣p dχ

χ
< ∞.

Definition 1.5 ([17]) Let [a, b] ⊂ R be a finite interval. Then, the left- and right-sided
Katugampola fractional integrals of order α > 0 of f ∈ Xp

c (a, b) are defined by

ρIα
a+ f (�) =

ρ1–α


(α)

∫ �

a

tρ–1f (χ ) dχ

(�ρ – χρ)1–α

and

ρIα
b– f (�) =

ρ1–α


(α)

∫ �

a

χρ–1f (χ ) dχ

(χρ – �ρ)1–α
,

with a < � < b and ρ > 0, if the integrals exist.

Definition 1.6 ([1]) Let β ∈ C and R(β) > 0. We define the left-fractional conformable
integral operator and right-fractional conformable integral operator by

ρ
αJ

αf (�) =
1


(β)

∫ �

a

(
(� – a)α – (χ – a)α

α

)β–1

f (χ )
dχ

(χ – a)1–α

and

ρ
J

α
β f (�) =

1

(β)

∫ b

�

(
(b – �)α – (b – χ )α

α

)β–1

f (χ )
dχ

(b – χ )1–α
,

respectively.

Definition 1.7 ([3]) Let φ be a conformable fractional integral on the interval [p, q] ⊆
(0,∞). The right-sided and left-sided generalized conformable fractional integrals τ

αKβ

p+

and τ
αKβ

q– of order β > 0, τ ∈R,α + τ 
= 0, are defined by

τ
αKβ

p+φ(r) =
1


(β)

∫ r

p

(
rα+τ – wα+τ

α + τ

)β–1
φ(w)

w1–τ–α
dw
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and

τ
αKβ

q–φ(r) =
1


(β)

∫ q

r

(
wα+τ – rα+τ

α + τ

)β–1
φ(w)

w1–τ–α
dw,

respectively, with τ
αK0

p+φ(r) = τ
αK0

q–φ(r) = φ(r).

2 Preliminaries
This section is dedicated to some known results.

Theorem 2.1 ([18]) For p ≥ 1, let there be two positive functions q1 and q2 on [0,∞). If
0 < ν1 ≤ q1(ζ )

q2(ζ ) ≤ ν2 and χ ∈ [κ1,κ2], then

(∫ κ2

κ1

qp
1(χ ) dχ

) 1
p

+
(∫ κ2

κ1

qp
2(χ ) dχ

) 1
p

≤ 1 + ν2(ν1 + 2)
(ν1 + 1)(ν2 + 2)

(∫ κ2

κ1

(q1 + q2)p(χ ) dχ

) 1
p

.

Theorem 2.2 ([18]) For p ≥ 1, let there be two positive functions q1 and q2 on [0,∞). If
0 < ν1 ≤ q1(ζ )

q2(ζ ) ≤ ν2 and χ ∈ [κ1,κ2], then

(∫ κ2

κ1

qp
1(χ ) dχ

) 2
p

+
(∫ κ2

κ1

qp
2(χ ) dχ

) 2
p

≥
(

(1 + ν2)(ν1 + 1)
ν2

– 2
)(∫ κ2

κ1

qp
1(χ ) dχ

) 1
p
(∫ κ2

κ1

qp
2(χ ) dχ

) 1
p

.

Dahmani [8] used the Riemann–Liouville fractional integral to prove the new variant of
the previous theorems.

Theorem 2.3 For p ≥ 1, let there be two positive functions q1 and q2 on [0,∞). If 0 < ν1 ≤
q1(ζ )
q2(ζ ) ≤ ν2 and χ ∈ [κ1,κ2], then

(∫ κ2

κ1

y
�K ζ

κ+
1

qp
1(χ ) dχ

) 1
p

+
(∫ κ2

κ1

y
�K ζ

κ+
1

qp
2(χ ) dχ

) 1
p

≤ 1 + ν2(ν1 + 2)
(ν1 + 1)(ν2 + 2)

(∫ κ2

κ1

y
�K ζ

κ+
1

(q1 + q2)p(χ ) dχ

) 1
p

.

Theorem 2.4 For p ≥ 1, let there be two positive functions q1 and q2 on [0,∞). If 0 < ν1 ≤
q1(ζ )
q2(ζ ) ≤ ν2 and χ ∈ [κ1,κ2], then

(∫ κ2

κ1

y
�K ζ

κ+
1

qp
1(χ ) dχ

) 2
p

+
(∫ κ2

κ1

y
�K ζ

κ+
1

qp
2(χ ) dχ

) 2
p

≥
(

(1 + ν2)(ν1 + 1)
ν2

– 2
)(∫ κ2

κ1

y
�K ζ

κ+
1

qp
1(χ ) dχ

) 1
p
(∫ κ2

κ1

y
�K ζ

κ+
1

qp
2(χ ) dχ

) 1
p

.

Recently, Rashid et al. [19] used the generalized fractional conformable integrals to prove
the new inequalities that generalize the previous results of [8] and [18]. It is motivating for
us to give the generalization of the results presented in [19] for general kernels with a
measure space.
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3 Reverse Minkowski inequalities involving general kernels
Theorem 3.1 Let (�,�,π ) be a measure space with positive σ -finite measure. For p ≥ 1,
let there be two positive functions q1 and q2 on [0,∞) such that q1, q2 ∈ U(p). If 0 < ν1 ≤
q1(ζ )
q2(ζ ) ≤ ν2 for ν1,ν2 ∈R

+ and for all � ∈ [κ1,χ ], (Lqp
1(χ )) < ∞ and (Lqp

2(χ )) < ∞, then

(
Lqp

1(χ )
) 1

p +
(
Lqp

2(χ )
) 1

p ≤
(

1 + ν2(ν1 + 1)
ν2

)(
Lqp

1(χ )
) 1

p
(
Lqp

2(χ )
) 1

p . (3.1)

Proof By using the assumption q1(ζ )
q2(ζ ) ≤ ν2 and κ1 ≤ ζ ≤ χ , we obtain

(ν2 + 1)pqp
1(ζ ) ≤ ν

p
2
(
q1(ζ ) + q2(ζ )

)p. (3.2)

Multiplying both sides of the inequality (3.2) by p(χ , ζ ) and integrating with respect to ζ

over measure space �, we obtain

(ν2 + 1)p
∫

�

p(χ , ζ )qp
1(ζ ) dπ (ζ ) ≤ ν

p
2

∫
�

p(χ , ζ )
(
q1(ζ ) + q2(ζ )

)p dπ (ζ ),

which can be written as

(
Lqp

1(χ )
) 1

p ≤ ν2

ν2 + 1
(
L
(
q1(χ ) + q2(χ )

)p) 1
p . (3.3)

On the other hand, we have 0 < ν1 ≤ q1(ζ )
q2(ζ ) , it follows that

(
1 +

1
ν1

)p

qp
2(ζ ) ≤

(
1
ν1

)p(
q1(ζ ) + q2(ζ )

)p. (3.4)

One can readily see that

(
1 +

1
ν1

)p ∫
�

p(χ , ζ )qp
2(ζ ) dπ (ζ ) ≤

(
1
ν1

)p ∫
�

p(χ , ζ )
(
q1(ζ ) + q2(ζ )

)p dπ (ζ ),

or

(
Lqp

2(χ )
) 1

p ≤
(

1
ν1 + 1

)(
L
(
q1(χ ) + q2(χ )

)p) 1
p . (3.5)

Adding (3.3) and (3.5) produces the desired inequality (3.1). �

Corollary 3.2 Applying Theorem 3.1 with � = (a, b), dπ (ζ ) = dζ and

p(χ , ζ ) =

⎧⎨
⎩

g′(ζ )

k
k (α)(g(χ )–g(ζ ))1– α
k

for a ≤ ζ ≤ χ ;

0 for χ < ζ ≤ b.
(3.6)

Substituting (Lqp
1(χ ))

1
p = (Iα,k

a+;gqp
1(χ ))

1
p and (Lqp

2(χ ))
1
p = (Iα,k

a+;gqp
2(χ ))

1
p , we obtain the fol-

lowing inequality

(
Iα,k

a+;gqp
1(χ )

) 1
p +

(
Iα,k

a+;gqp
2(χ )

) 1
p ≤

(
1 + ν2(ν1 + 1)

ν2

)(
Iα,k

a+;gqp
1(χ )

) 1
p
(
Iα,k

a+;gqp
2(χ )

) 1
p . (3.7)
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Example 3.3 Taking g(χ ) = χ in Corollary 3.2, the corresponding p(χ , ζ ) defined by (3.6)
takes the form

p(χ , ζ ) =

⎧⎨
⎩

1
k
k (α)(χ–ζ )1– α

k
for a ≤ ζ ≤ χ ;

0 for χ < ζ ≤ b
(3.8)

and (3.1) becomes

(
Iα

a+qp
1(χ )

) 1
p +

(
Iα

a+qp
2(χ )

) 1
p ≤

(
1 + ν2(ν1 + 1)

ν2

)(
Iα

a+qp
1(χ )

) 1
p
(
Iα

a+qp
2(χ )

) 1
p .

Example 3.4 Taking g(χ ) = log(χ ) and k = 1 in Corollary 3.2, the corresponding p(χ , ζ )
defined by (3.6) takes the form

p(χ , ζ ) =

⎧⎨
⎩

1
ζk
k (α)(logχ–log ζ )1– α

k
for a ≤ ζ ≤ χ ;

0 for χ < ν ≤ b
(3.9)

and (3.1) becomes the well-known Hadamard fractional integrals, i.e.,

(
Jα
a+ qp

1(χ )
) 1

p +
(
Jα
a+ qp

2(χ )
) 1

p ≤
(

1 + ν2(ν1 + 1)
ν2

)(
Jα
a+ qp

1(χ )
) 1

p
(
Jα
a+ qp

2(χ )
) 1

p .

Corollary 3.5 Applying Theorem 3.1 with � = (a, b), dπ (ζ ) = dζ and

p(χ , ζ ) =

⎧⎨
⎩

1

(α)

σχ–σ (α+η)

(χσ –ζσ )1–α ζ ση+σ–1 for a ≤ ζ ≤ χ ;

0 for χ < ζ ≤ b.
(3.10)

Substituting (Lqp
1(χ ))

1
p = (Iα

a+;σ ;ηqp
1(χ ))

1
p and (Lqp

2(χ ))
1
p = (Iα

a+;σ ;ηqp
2(χ ))

1
p , we obtain the in-

equality for the Erdélyi–Kober-type fractional integral, i.e.,

(
Iα

a+;σ ;ηqp
1(χ )

) 1
p +

(
Iα

a+;σ ;ηqp
2(χ )

) 1
p

≤
(

1 + ν2(ν1 + 1)
ν2

)(
Iα

a+;σ ;ηqp
1(χ )

) 1
p
(
Iα

a+;σ ;ηqp
2(χ )

) 1
p . (3.11)

Remark 3.6 Taking β > 0,g(λ) = λβ

β
and k = 1 in Corollary 3.2, we obtain the inequality for

the Katugampola fractional integrals in the literature [17], i.e.,

(ρIα
a+ qp

1(χ )
) 1

p +
(ρIα

a+ qp
2(χ )

) 1
p ≤

(
1 + ν2(ν1 + 1)

ν2

)(ρIα
a+ qp

1(χ )
) 1

p
(ρIα

a+ qp
2(χ )

) 1
p .

Remark 3.7 Taking β > 0,g(λ) = (λ–a)β
β

and k = 1 in Corollary 3.2, we obtain the inequal-
ity for the conformable fractional integral operators defined by Jarad et al. [1] and the
inequality takes the form

(β

α
J

αqp
1(χ )

) 1
p +

(β

α
J

αqp
2(χ )

) 1
p ≤

(
1 + ν2(ν1 + 1)

ν2

)(β

α
J

αqp
1(χ )

) 1
p
(β

α
J

αqp
2(χ )

) 1
p .
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Remark 3.8 Taking β > 0,g(λ) = λμ+ν

μ+ν
and k = 1 in Corollary 3.2, we obtain the inequality

for the conformable fractional integral operators defined by Khan [3] and the inequality
takes the form

(τ

α
Kβ

p+ qp
1(χ )

) 1
p +

(τ

α
Kβ

p+ qp
2(χ )

) 1
p ≤

(
1 + ν2(ν1 + 1)

ν2

)(τ

α
Kβ

p+ qp
1(χ )

) 1
p
(τ

α
Kβ

p+ qp
2(χ )

) 1
p .

Theorem 3.9 Let (�,�,π ) be a measure space with positive σ -finite measure. For p ≥ 1,
let there be two positive functions q1 and q2 on [0,∞) such that q1, q2 ∈ U(p). If 0 < ν1 ≤
q1(ζ )
q2(ζ ) ≤ ν2 for ν1,ν2 ∈R

+ and for all � ∈ [κ1,χ ],Lqp
1(χ ),Lqp

2(χ ) < ∞, then

(
Lqp

1(χ )
) 1

p +
(
Lqp

2(χ )
) 1

p ≤
(

(1 + ν2)(ν1 + 1)
ν2

– 2
)(

Lqp
1(χ )

) 1
p
(
Lqp

2(χ )
) 1

p . (3.12)

Proof Taking the product of (3.3) and (3.5) yields that

(
(ν1 + 1)(ν2 + 1)

ν2
– 2

)(
Lqp

1(χ )
) 1

p
(
Lqp

2(χ )
) 1

p ≤ [(
L(q1 + q2)p(χ )

) 1
p
]2. (3.13)

Using Minkowski’s inequality on the right-hand side of (3.13), we obtain

[(
L(q1 + q2)p(χ )

) 1
p
]2 ≤ [(

Lqp
1(χ )

) 1
p +

(
Lqp

2(χ )
) 1

p
]2

≤ (
Lqp

1(χ )
) 2

p +
(
Lqp

2(χ )
) 2

p + 2
(
Lqp

1(χ )
) 1

p
(
Lqp

2(χ )
) 1

p . (3.14)

Thus, from (3.13) and (3.14), we obtain (3.12) as desired. �

Corollary 3.10 Applying Theorem 3.9 with � = (a, b), dπ (ζ ) = dζ and p(χ , ζ ) defined by
(3.6). Substituting (Lqp

1(χ ))
1
p = (Iα,k

a+;gqp
1(χ ))

1
p , and (Lqp

2(χ ))
1
p = (Iα,k

a+;gqp
2(χ ))

1
p , we obtain the

following inequality

(
Iα,k

a+;gqp
1(χ )

) 1
p +

(
Iα,k

a+;gqp
2(χ )

) 1
p

≤
(

(1 + ν2)(ν1 + 1)
ν2

– 2
)(

Iα,k
a+;gqp

1(χ )
) 1

p
(
Iα,k

a+;gqp
2(χ )

) 1
p . (3.15)

Example 3.11 Taking g(χ ) = χ in Corollary 3.10, p(χ , ζ ) defined by (3.8) and (3.12) be-
comes

(
Iα,k

a+ qp
1(χ )

) 1
p +

(
Iα,k

a+ qp
2(χ )

) 1
p ≤

(
(1 + ν2)(ν1 + 1)

ν2
– 2

)(
Iα,k

a+ qp
1(χ )

) 1
p
(
Iα,k

a+ qp
2(χ )

) 1
p .

Example 3.12 Taking g(χ ) = log(χ ) and k = 1 in Corollary 3.10 and p(χ , ζ ) defined by
(3.9), (3.12) becomes

(
Jα
a+ qp

1(χ )
) 1

p +
(
Jα
a+ qp

2(χ )
) 1

p ≤
(

(1 + ν2)(ν1 + 1)
ν2

– 2
)(

Jα
a+ qp

1(χ )
) 1

p
(
Jα
a+ qp

2(χ )
) 1

p .

Remark 3.13 Applying Theorem 3.9 with � = (a, b), dπ (ζ ) = dζ and p(χ , ζ ) defined by
(3.10). Substituting (Lqp

1(χ ))
1
p = (Iα

a+;σ ;ηqp
1(χ ))

1
p and (Lqp

2(χ ))
1
p = (Iα

a+;σ ;ηqp
2(χ ))

1
p , we obtain



Iqbal et al. Journal of Inequalities and Applications          (2023) 2023:6 Page 8 of 23

the inequality for the Erdélyi–Kober-type fractional integral, i.e.,

(
Iα

a+;σ ;ηqp
1(χ )

) 1
p +

(
Iα

a+;σ ;ηqp
2(χ )

) 1
p

≤
(

(1 + ν2)(ν1 + 1)
ν2

– 2
)(

Iα
a+;σ ;ηqp

1(χ )
) 1

p
(
Iα

a+;σ ;ηqp
2(χ )

) 1
p .

Remark 3.14 Taking β > 0, g(χ ) = χβ

β
and k = 1 in Corollary 3.10, we obtain the inequality

for the Katugampola fractional integrals, i.e.,

(ρIα
a+ qp

1(χ )
) 1

p +
(ρIα

a+ qp
2(χ )

) 1
p

≤
(

(1 + ν2)(ν1 + 1)
ν2

– 2
)(ρIα

a+ qp
1(χ )

) 1
p
(ρIα

a+ qp
2(χ )

) 1
p .

Remark 3.15 Taking β > 0,g(χ ) = (χ–a)β
β

and k = 1 in Corollary 3.10, we obtain the in-
equality for the conformable fractional integral and the inequality takes the form

(β

α
J

αqp
1(χ )

) 1
p +

(β

α
J

αqp
2(χ )

) 1
p

≤
(

(1 + ν2)(ν1 + 1)
ν2

– 2
)(β

α
J

αqp
1(χ )

) 1
p
(β

α
J

αqp
2(χ )

) 1
p .

Remark 3.16 Taking β > 0,g(χ ) = χμ+ν

μ+ν
and k = 1 in Corollary 3.10, we obtain the inequal-

ity for the conformable fractional integral, i.e.,

(τ

α
Kβ

p+ qp
1(χ )

) 1
p +

(τ

α
Kβ

p+ qp
2(χ )

) 1
p

≤
(

(1 + ν2)(ν1 + 1)
ν2

– 2
)(τ

α
Kβ

p+ qp
1(χ )

) 1
p
(τ

α
Kβ

p+ qp
2(χ )

) 1
p .

4 Certain associated inequalities involving a general kernel
This section is dedicated to certain associated inequalities involving a general kernel with
application for fractional calculus operators.

Theorem 4.1 Let (�,�,π ) be a measure space with positive σ -finite measure. For p, q ≥
1 with 1

p + 1
q = 1. Suppose that there are two positive functions q1 and q2 on [0,∞) and

q1, q2 ∈ U(p) such that χ > κ1 and Lqp
1(χ ),Lqp

2(χ ),Lq
1
p
1 (χ )q

1
q
2 (χ ) < ∞. If 0 < ν1 ≤ q1(ζ )

q2(ζ ) ≤ ν2

for ν1,ν2 ∈ R
+ and for all � ∈ [κ1,χ ], then

(
Lqp

1(χ )
) 1

p
(
Lqq

2(χ )
) 1

q ≤
(

ν2

ν1

) 1
pq (

Lq
1
p
1 (χ )q

1
q
2 (χ )

)
. (4.1)

Proof By using the assumption q1(ζ )
q2(ζ ) ≤ ν2 and κ1 ≤ η ≤ 1

p , we have

q
1
q
2 (ζ ) ≥ ν

– 1
q

2 (ζ )q
1
q
1 (ζ ). (4.2)
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Taking the products of both sides of (4.2) by q
1
p
1 (ζ ), it follows that

q
1
p
1 (ζ )q

1
q
2 (ζ ) ≥ ν

– 1
q

2 (ζ )q1(ζ ).

One obtains after some settings

∫
�

p(χ , ζ )q
1
p
1 (ζ )q

1
q
2 (ζ ) dπ (ζ ) ≥

∫
�

p(χ , ζ )ν
–1
q

2 (ζ )q1(ζ ) dπ (ζ ),

which implies that

ν
–1
pq

2 (ζ )
(
Lq1(χ )

) 1
p ≤ (

Lq
1
p
1 (χ )q

1
q
2 (χ )

) 1
p . (4.3)

In contrast to the above ν1q2(ζ ) ≤ q1(ζ ), we have

ν
1
p

1 (ζ )q
1
p
2 (ζ ) ≤ q

1
p
1 (ζ ). (4.4)

Taking the products of both sides of (4.4) by q
1
q
2 (ζ ), it follows that after some necessary

settings

ν
1

pq
1

(
Lq2(χ )

) 1
q ≤ (

Lq
1
p
1 (χ )Lq

1
q
2 (χ )

) 1
q . (4.5)

Multiplying (4.3) and (4.5), we obtain the desired inequality. �

Corollary 4.2 Applying Theorem 4.1 with � = (a, b), dπ (ζ ) = dζ and p(χ , ζ ) defined by
(3.6). Substituting (Lqp

1(χ ))
1
p = (Iα,k

a+;gqp
1(χ ))

1
p and (Lqp

2(χ ))
1
p = (Iα,k

a+;gqp
2(χ ))

1
p , we obtain the

following inequality

(
Iα,k

a+;gqp
1(χ )

) 1
p
(
Iα,k

a+;gqq
2(χ )

) 1
q ≤

(
ν2

ν1

) 1
pq (

Iα,k
a+;gq

1
p
1 (χ )q

1
q
2 (χ )

)
. (4.6)

Remark 4.3 Applying Corollary 4.2 with g(χ ) = χ and the corresponding p(χ , ζ ) defined
by (3.6), we obtain the inequality for Riemann–Liouville fractional integrals, i.e.,

(
Iα,k

a+ qp
1(χ )

) 1
p
(
Iα,k

a+ qq
2(χ )

) 1
q ≤

(
ν2

ν1

) 1
pq (

Iα,k
a+ q

1
p
1 (χ )q

1
q
2 (χ )

)
.

Example 4.4 Taking g(χ ) = log(χ ) and k = 1 in Corollary 4.2 and p(χ , ζ ) defined by (3.9),
(4.1) reduces to

(
Jα
a+ qp

1(χ )
) 1

p
(
Jα
a+ qq

2(χ )
) 1

q ≤
(

ν2

ν1

) 1
pq (

Jα
a+ q

1
p
1 (χ )q

1
q
2 (χ )

)
.

Remark 4.5 Applying Theorem 4.1 with � = (a, b), dπ (ζ ) = dζ and p(χ , ζ ) defined by
(3.10). Substituting (Lqp

1(χ ))
1
p = (Iα

a+;σ ;ηqp
1(χ ))

1
p and (Lqp

2(χ ))
1
p = (Iα

a+;σ ;ηqp
2(χ ))

1
p , we obtain

the inequality for the Erdélyi–Kober-type fractional integral, i.e.,

(
Iα

a+;σ ;ηqp
1(χ )

) 1
p
(
Iα

a+;σ ;ηqq
2(χ )

) 1
q ≤

(
ν2

ν1

) 1
pq (

Iα
a+;σ ;ηq

1
p
1 (χ )q

1
q
2 (χ )

)
.



Iqbal et al. Journal of Inequalities and Applications          (2023) 2023:6 Page 10 of 23

Example 4.6 Taking β > 0,g(χ ) = χβ

β
and k = 1 in Corollary 4.2, we obtain the inequality

for the Katugampola fractional integrals [17] and the inequality takes the form

(ρIα
a+ qp

1(χ )
) 1

p
(ρIα

a+ qq
2(χ )

) 1
q ≤

(
ν2

ν1

) 1
pq (ρIα

a+ q
1
p
1 (χ )q

1
q
2 (χ )

)
.

Remark 4.7 Taking β > 0,g(χ ) = (χ–a)β
β

and k = 1 in Corollary 4.2, we obtain the inequality
for the conformable fractional integral, i.e.,

(β

α
J

αqp
1(χ )

) 1
p
(β

α
J

αqq
2(χ )

) 1
q ≤

(
ν2

ν1

) 1
pq (β

α
J

αq
1
p
1 (χ )q

1
q
2 (χ )

)
.

Remark 4.8 Taking β > 0,g(χ ) = χμ+ν

μ+ν
and k = 1 in Corollary 4.2, we obtain the inequality

for the conformable fractional integral, i.e.,

(τ

α
Kβ

p+ qp
1(χ )

) 1
p
(τ

α
Kβ

p+ qq
2(χ )

) 1
q ≤

(
ν2

ν1

) 1
pq (τ

α
Kβ

p+ q
1
p
1 (χ )q

1
q
2 (χ )

)
.

Theorem 4.9 Let (�,�,π ) be a measure space with positive σ -finite measure. For p, q ≥
1 with 1

p + 1
q = 1. Suppose that there are two positive functions q1 and q2 on [0,∞) and

q1, q2 ∈ U(p) such that χ > κ1, (Lqp
1(χ )) < ∞ and (Lqp

2(χ )) < ∞. If 0 < ν1 ≤ q1(ζ )
q2(ζ ) ≤ ν2 for

ν1,ν2 ∈R
+ and for all � ∈ [κ1,χ ], then

(
Lq1(χ )q2(χ )

) ≤ 2p–1ν
p
2

p(ν2 + 1)p(χ )
(
L
(
qp

1(χ ) + qp
2(χ )

))

+
2q–1

p(ν1 + 1)p

(
L
(
qq

1(χ ) + qq
2(χ )

))
. (4.7)

Proof By using the assumption q1(ζ )
q2(ζ ) ≤ ν2,κ1 ≤ η ≤ χ and

(ν2 + 1)pqp
1(ζ ) ≤ ν

p
2
(
q1(ζ ) + q2(ζ )

)p,

which implies that

(ν2 + 1)p
∫

�

p(χ , ζ )qp
1(ζ ) dπ (ζ ) ≤ ν

p
2

∫
�

p(χ , ζ )
(
q1(ζ ) + q2(ζ )

)p dπ (ζ ).

This can be written as

(
Lqp

1(χ )
) 1

p ≤ ν2

ν2 + 1
(
L
(
q1(χ ) + q2(χ )

)p) 1
p . (4.8)

Now,

(ν1 + 1)qqq
2(ζ ) ≤ (

q1(ζ ) + q2(ζ )
)q.

Similarly,

(ν1 + 1)q
∫

�

p(χ , ζ )qq
1(ζ ) dπ (ζ ) ≤ ν

q
1

∫
�

p(χ , ζ )
(
q1(ζ ) + q2(ζ )

)q dπ (ζ ),
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which can be written as

(
Lqq

2(χ )
) ≤ 1

(ν1 + 1)q

(
L
(
q1(χ ) + q2(χ )

)q). (4.9)

Now, taking into account Young’s inequality

q1(ζ )q2(ζ ) ≤ qp
1(ζ )
p

+
qq

2(ζ )
q

. (4.10)

Multiplying both sides of (4.10) with p(χ , ζ ) and integrating with respect to ζ over measure
space �, we obtain that

Lq1(χ )q2(χ ) ≤ Lqp
1(χ )
p

+
Lqq

2(χ )
q

. (4.11)

Putting (4.8) and (4.9) into (4.10), we obtain

Lq1(χ )q2(χ ) ≤ Lqp
1(χ )
p

+
Lqq

2(χ )
q

≤ ν
p
2 (L(q1(χ ) + q2(χ ))p)

p(ν2 + 1)p +
(L(q1(χ ) + q2(χ ))q)

q(ν1 + 1)q . (4.12)

Using the inequality

(φ + ψ)s ≤ 2s–1(φs + ψ s), s,φ,ψ > 0,

we obtain

L
(
q1(ζ ) + q2(ζ )

)p ≤ 2s–1
L
(
qp

1(ζ ) + qp
2(ζ )

)
, (4.13)

and

L
(
q1(χ ) + q2(χ )

)q ≤ 2s–1
L
(
qq

1(χ ) + qq
2(χ )

)
. (4.14)

The required result can be obtained by collective use of (4.12), (4.13), and (4.14). �

Corollary 4.10 Applying Theorem 4.9 with � = (a, b), dπ (ζ ) = dζ and p(χ , ζ ) defined by
(3.6). Substituting (Lqp

1(χ ))
1
p = (Iα,k

a+;gqp
1(χ ))

1
p and (Lqp

2(χ ))
1
p = (Iα,k

a+;gqp
2(χ ))

1
p , we obtain the

following inequality

(
Iα,k

a+;gq1(χ )q2(χ )
) ≤ 2p–1ν

p
2

p(ν2 + 1)p(χ )
(
Iα,k

a+;g
(
qp

1(χ ) + qp
2(χ )

))

+
2q–1

p(ν1 + 1)p

(
Iα,k

a+;g
(
qq

1(χ ) + qq
2(χ )

))
. (4.15)

Example 4.11 Applying Corollary 4.10 with g(χ ) = χ , k = 1 and the corresponding p(χ , ζ )
defined by (3.6), we have

(
Iα

a+q1(χ )q2(χ )
) ≤ 2p–1ν

p
2

p(ν2 + 1)p(χ )
(
Iα

a+
(
qp

1(χ ) + qp
2(χ )

))
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+
2q–1

p(ν1 + 1)p

(
Iα

a+
(
qq

1(χ ) + qq
2(χ )

))
.

Example 4.12 Taking g(χ ) = log(χ ) and k = 1 in Corollary 4.10 and p(χ , ζ ) defined by
(3.9), we have

(β

α
J

αq1(χ )q2(χ )
)

≤ 2p–1ν
p
2

p(ν2 + 1)p(χ )
(β

α
J

α
(
qp

1(χ ) + qp
2(χ )

))
+

2q–1

p(ν1 + 1)p

(β

α
J

α
(
qq

1(χ ) + qq
2(χ )

))
.

Remark 4.13 Applying Theorem 4.9 with � = (a, b), dπ (ζ ) = dζ and p(χ , ζ ) defined by
(3.10). Substituting (Lqp

1(χ ))
1
p = (Iα

a+;σ ;ηqp
1(χ ))

1
p and (Lqp

2(χ ))
1
p = (Iα

a+;σ ;ηqp
2(χ ))

1
p , we obtain

the inequality for the Erdélyi–Kober-type fractional integral, i.e.,

(
Iα

a+;σ ;ηq1(χ )q2(χ )
)

≤ 2p–1ν
p
2

p(ν2 + 1)p(χ )
(
Iα

a+;σ ;η
(
qp

1(χ ) + qp
2(χ )

))
+

2q–1

p(ν1 + 1)p

(
Iα

a+;σ ;η
(
qq

1(χ ) + qq
2(χ )

))
.

Remark 4.14 Taking β > 0,g(χ ) = χβ

β
and k = 1 in Corollary 4.10, we obtain the inequality

for the Katugampola fractional integrals, i.e.,

(ρIα
a+ q1(χ )q2(χ )

)

≤ 2p–1ν
p
2

p(ν2 + 1)p(χ )
(ρIα

a+

(
qp

1(χ ) + qp
2(χ )

))
+

2q–1

p(ν1 + 1)p

(ρIα
a+

(
qq

1(χ ) + qq
2(χ )

))
.

Remark 4.15 Taking β > 0,g(χ ) = (χ–a)β
β

and k = 1 in Corollary 4.10, we obtain the in-
equality for the conformable fractional integral, i.e.,

(β

α
J

αq1(χ )q2(χ )
)

≤ 2p–1ν
p
2

p(ν2 + 1)p(χ )
(β

α
J

α
(
qp

1(χ ) + qp
2(χ )

))
+

2q–1

p(ν1 + 1)p

(β

α
J

α
(
qq

1(χ ) + qq
2(χ )

))
.

Remark 4.16 Taking β > 0,g(χ ) = χμ+ν

μ+ν
and k = 1 in Corollary 4.10, we obtain the inequal-

ity for the generalized conformable fractional, i.e.,

(τ

α
Kβ

p+ q1(χ )q2(χ )
)

≤ 2p–1ν
p
2

p(ν2 + 1)p(χ )
(τ

α
Kβ

p+
(
qp

1(χ ) + qp
2(χ )

))
+

2q–1

p(ν1 + 1)p

(τ

α
Kβ

p+
(
qq

1(χ ) + qq
2(χ )

))
.

Theorem 4.17 Let (�,�,π ) be a measure space with positive σ -finite measure. For p ≥ 1,
suppose that there are two positive functions q1 and q2 on [0,∞) and q1, q2 ∈ U(p) such
that χ > κ1, (Lqp

1(χ )) < ∞ and (Lqp
2(χ )) < ∞. If 0 < ν1 ≤ q1(ζ )

q2(ζ ) ≤ ν2 for ν1,ν2 ∈ R
+ and for

all � ∈ [κ1,χ ], then

ν2 + 1
ν2 – λ

(
L
(
q1(χ ) – λq2(χ )

)) ≤ (
L
(
qp

1(χ )
)) 1

p +
(
L
(
qp

2(χ )
)) 1

p
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≤ ν1 + 1
ν1 – λ

(
L
(
q1(χ ) – λq2(χ )

)) 1
p . (4.16)

Proof Under the assumption 0 < λ < ν1 ≤ q1(ζ )
q2(ζ ) ≤ ν2, we have

ν1 ≤ ν2 ⇒ (ν2 + 1)(ν1 – λ) ≤ (ν1 + 1)(ν2 – λ).

It follows that

ν2 + 1
ν2 – λ

≤ ν1 + 1
ν1 – λ

.

Also, we have

ν1 – λ ≤ q1(ζ ) – λq2(ζ )
q2(ζ )

≤ ν2 – λ,

implying

(q1(ζ ) – λq2(ζ ))p

(ν2 – λ)p ≤ qp
2(ζ ) ≤ (q1(ζ ) – λq2(ζ ))p

(ν1 – λ)p .

Furthermore, we have

1
ν2

≤ q2(ζ )
q1(ζ )

≤ 1
ν1

⇒ ν1 – λ

ν1λ
≤ q1(ζ ) – λq2(ζ )

λq1(ζ )
≤ ν2 – λ

ν2λ
.

It follows that
(

1
ν2 – λ

)p((
q1(ζ ) – λq2(ζ )

)p) 1
p ≤ qp

2(ζ ) ≤
(

1
ν1 – λ

)p((
q1(ζ ) – λq2(ζ )

)p) 1
p .

One can readily see that

(
1

ν2 – λ

)p ∫
�

p(χ , ζ )
(
q1(ζ ) – λq2(ζ )

)p dπ (ζ )

≤
∫

�

p(χ , ζ )qp
2(ζ ) dπ (ζ )

≤
(

1
ν1 – λ

)p ∫
�

p(χ , ζ )
(
q1(ζ ) – λq2(ζ )

)p dπ (ζ ).

This can be written as
(

1
ν2 – λ

)(
L
(
q1(χ ) – λq2(χ )

)p) 1
p ≤ (

Lqp
2(χ )

) 1
p

≤
(

1
ν1 – λ

)
L
(
q1(χ ) – λq2(χ )

) 1
p . (4.17)

Using the same technique, we have

(
1

ν2 – λ

)(
L
(
q1(ζ ) – λq2(ζ )

)p) 1
p ≤ (

Lqp
1(ζ )

) 1
p
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≤
(

1
ν1 – λ

)(
L
(
q1(ζ ) – λq2(ζ )

)p) 1
p . (4.18)

Adding (4.17) and (4.18), we have the desired inequality. �

Corollary 4.18 Applying Theorem 4.9 with � = (a, b), dπ (ζ ) = dζ and p(χ , ζ ) defined by
(3.6). Substituting (Lqp

1(χ ))
1
p = (Iα,k

a+;gqp
1(χ ))

1
p and (Lqp

2(χ ))
1
p = (Iα,k

a+;gqp
2(χ ))

1
p , we obtain the

following inequality

ν2 + 1
ν2 – λ

(
Iα,k

a+;g
(
q1(χ ) – λq2(χ )

)) ≤ (
Iα,k

a+;g
(
qp

1(χ )
)) 1

p +
(
Iα,k

a+;g
(
qp

2(χ )
)) 1

p

≤ ν1 + 1
ν1 – λ

(
Iα,k

a+;g
(
q1(χ ) – λq2(χ )

)) 1
p . (4.19)

Remark 4.19 Applying Corollary 4.18 with g(χ ) = χ , k = 1 and corresponding p(χ , ζ ) de-
fined by (3.6), then we have

ν2 + 1
ν2 – λ

(
Iα

a+
(
q1(χ ) – λq2(χ )

)) ≤ (
Iα

a+
(
qp

1(χ )
)) 1

p +
(
Iα

a+
(
qp

2(χ )
)) 1

p

≤ ν1 + 1
ν1 – λ

(
Iα

a+
(
q1(χ ) – λq2(χ )

)) 1
p .

Example 4.20 Taking g(χ ) = log(χ ) and k = 1 in Corollary 4.18 and p(χ , ζ ) defined by
(3.9), then

ν2 + 1
ν2 – λ

(β

α
J

α
(
q1(χ ) – λq2(χ )

)) ≤ (β

α
J

α
(
qp

1(χ )
)) 1

p +
(β

α
J

α
(
qp

2(χ )
)) 1

p

≤ ν1 + 1
ν1 – λ

(β

α
J

α
(
q1(χ ) – λq2(χ )

)) 1
p .

Remark 4.21 Applying Theorem 4.17 with � = (a, b), dπ (ζ ) = dζ and p(χ , ζ ) defined by
(3.10). Substituting (Lqp

1(χ ))
1
p = (Iα

a+;σ ;ηqp
1(χ ))

1
p and (Lqp

2(χ ))
1
p = (Iα

a+;σ ;ηqp
2(χ ))

1
p , we obtain

the inequality for the Erdélyi–Kober-type fractional integral, i.e.,

ν2 + 1
ν2 – λ

(
Iα

a+;σ ;η
(
q1(χ ) – λq2(χ )

)) ≤ (
Iα

a+;σ ;η
(
qp

1(χ )
)) 1

p +
(
Iα

a+;σ ;η
(
qp

2(χ )
)) 1

p

≤ ν1 + 1
ν1 – λ

(
Iα

a+;σ ;η
(
q1(χ ) – λq2(χ )

)) 1
p .

Remark 4.22 Taking β > 0,g(χ ) = χβ

β
and k = 1 in Corollary 4.18, we obtain the inequality

for the Katugampola fractional integrals, i.e.,

ν2 + 1
ν2 – λ

(ρIα
a+

(
q1(χ ) – λq2(χ )

)) ≤ (ρIα
a+

(
qp

1(χ )
)) 1

p +
(ρIα

a+

(
qp

2(χ )
)) 1

p

≤ ν1 + 1
ν1 – λ

(ρIα
a+

(
q1(χ ) – λq2(χ )

)) 1
p .

Remark 4.23 Taking β > 0,g(χ ) = (χ–a)β
β

and k = 1 in Corollary 4.18, we obtain the in-
equality for conformable fractional integral, i.e.,

ν2 + 1
ν2 – λ

(β

α
J

α
(
q1(χ ) – λq2(χ )

)) ≤ (β

α
J

α
(
qp

1(χ )
)) 1

p +
(β

α
J

α
(
qp

2(χ )
)) 1

p
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≤ ν1 + 1
ν1 – λ

(β

α
J

α
(
q1(χ ) – λq2(χ )

)) 1
p .

Remark 4.24 Taking β > 0,g(χ ) = χμ+ν

μ+ν
and k = 1 in Corollary 4.18, we obtain the inequal-

ity for the generalized conformable fractional, i.e.,

ν2 + 1
ν2 – λ

(τ

α
Kβ

p+
(
q1(χ ) – λq2(χ )

)) ≤ (τ

α
Kβ

p+
(
qp

1(χ )
)) 1

p +
(τ

α
Kβ

p+
(
qp

2(χ )
)) 1

p

≤ ν1 + 1
ν1 – λ

(τ

α
Kβ

p+
(
q1(χ ) – λq2(χ )

)) 1
p .

Theorem 4.25 For p ≥ 1, let there be two positive functions q1 and q2 on [0,∞). If 0 < h ≤
q1(ζ ) ≤ H, 0 < m ≤ q2(ζ ) ≤ M and χ ∈ [κ1,κ2], then

(
L
(
qp

1(χ )
) 1

p
)

+
(
L
(
qp

2(χ )
) 1

p
) ≤ H(h + M) + M(H + m)

(m + H)(h + M)
(
L
(
q1(χ ) + q2(χ )

)p) 1
p . (4.20)

Proof Under the supposition, we observe that

1
M

≤ 1
q2(ζ )

≤ 1
m

and we have

h

M
≤ q1(ζ )

q2(ζ )
≤ H

m
. (4.21)

From (4.21), we have

qp
2(ζ ) ≤

(
M

h + M

)p(
q1(ζ ) + q1(ζ )

)p (4.22)

and

qp
1(ζ ) ≤

(
H

m + H

)p(
q1(ζ ) + q1(ζ )

)p. (4.23)

After some necessary settings, we have

∫
�

p(χ , ζ )qp
1(ζ ) dπ (ζ ) ≤

(
H

m + H

)p ∫
�

p(χ , ζ )
(
q1(ζ ) + q1(ζ )

)p dπ (ζ ), (4.24)

which can be written as

(
Lqp

1(ζ )
) 1

p ≤
(

H

m + H

)p(
L
(
q1(ζ ) + q1(ζ )

)p) 1
p . (4.25)

Similarly, we have

(
Lqp

2(ζ )
) 1

p ≤
(

H

m + H

)p(
L
(
q1(ζ ) + q1(ζ )

)p) 1
p . (4.26)

Adding (4.25) and (4.26), we obtain the required inequality. �
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Corollary 4.26 Applying Theorem 4.25 with � = (a, b), dπ (ζ ) = dζ and p(χ , ζ ) defined by
(3.6). Substituting (Lqp

1(χ ))
1
p = (Iα,k

a+;gqp
1(χ ))

1
p and (Lqp

2(χ ))
1
p = (Iα,k

a+;gqp
2(χ ))

1
p , we obtain the

following inequality

(
Iα,k

a+;g
(
qp

1(χ )
) 1

p
)

+
(
Iα,k

a+;g
(
qp

2(χ )
) 1

p
)

≤ H(h + M) + M(H + m)
(m + H)(h + M)

(
Iα,k

a+;g
(
q1(χ ) + q2(χ )

)p) 1
p . (4.27)

Remark 4.27 Applying Corollary 4.26 with g(χ ) = χ , k = 1 and the corresponding p(χ , ζ )
defined by (3.6), we have

(
Iα

a+
(
qp

1(χ )
) 1

p
)

+
(
Iα

a+
(
qp

2(χ )
) 1

p
)

≤ H(h + M) + M(H + m)
(m + H)(h + M)

(
Iα

a+
(
q1(χ ) + q2(χ )

)p) 1
p .

Example 4.28 Taking g(χ ) = log(χ ) and k = 1 in Corollary 4.26 and p(χ , ζ ) defined by
(3.9), we have

(β

α
J

α
(
qp

1(χ )
) 1

p
)

+
(β

α
J

α
(
qp

2(χ )
) 1

p
)

≤ H(h + M) + M(H + m)
(m + H)(h + M)

(β

α
J

α
(
q1(χ ) + q2(χ )

)p) 1
p .

Remark 4.29 Applying Theorem 4.25 with � = (a, b), dπ (ζ ) = dζ and p(χ , ζ ) defined by
(3.10). Substituting (Lqp

1(χ ))
1
p = (Iα

a+;σ ;ηqp
1(χ ))

1
p and (Lqp

2(χ ))
1
p = (Iα

a+;σ ;ηqp
2(χ ))

1
p , we obtain

the inequality for the Erdélyi–Kober-type fractional integral, i.e.,

(
Iα

a+;σ ;η
(
qp

1(χ )
) 1

p
)

+
(
Iα

a+;σ ;η
(
qp

2(χ )
) 1

p
)

≤ H(h + M) + M(H + m)
(m + H)(h + M)

(
Iα

a+;σ ;η
(
q1(χ ) + q2(χ )

)p) 1
p .

Remark 4.30 Taking β > 0,g(χ ) = χβ

β
and k = 1 in Corollary 4.26, we obtain the inequality

for the Katugampola fractional integrals, i.e.,

(ρIα
a+

(
qp

1(χ )
) 1

p
)

+
(ρIα

a+

(
qp

2(χ )
) 1

p
)

≤ H(h + M) + M(H + m)
(m + H)(h + M)

(ρIα
a+

(
q1(χ ) + q2(χ )

)p) 1
p .

Remark 4.31 Taking β > 0,g(χ ) = (χ–a)β
β

and k = 1 in Corollary 4.26, we obtain the in-
equality for the conformable fractional integral, i.e.,

(β

α
J

α
(
qp

1(χ )
) 1

p
)

+
(β

α
J

α
(
qp

2(χ )
) 1

p
)

≤ H(h + M) + M(H + m)
(m + H)(h + M)

(β

α
J

α
(
q1(χ ) + q2(χ )

)p) 1
p .
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Remark 4.32 Taking β > 0,g(χ ) = χμ+ν

μ+ν
, and k = 1 in Corollary 4.26, we obtain the inequal-

ity for the generalized conformable fractional, i.e.,

(τ

α
Kβ

p+
(
qp

1(χ )
) 1

p
)

+
(τ

α
Kβ

p+
(
qp

2(χ )
) 1

p
)

≤ H(h + M) + M(H + m)
(m + H)(h + M)

(τ

α
Kβ

p+
(
q1(χ ) + q2(χ )

)p) 1
p .

Theorem 4.33 Let (�,�,π ) be a measure space with positive σ -finite measure. For p, q ≥
1 with 1

p + 1
q = 1. Suppose that there are two positive functions q1 and q2 on [0,∞) and

q1, q2 ∈ U(p) such that χ > κ1, (Lqp
1(χ )) < ∞ and (Lqp

2(χ )) < ∞. If 0 < h ≤ q1(ζ ) ≤ H, 0 <
m ≤ q2(ζ ) ≤ M and χ ∈ [κ1,κ2], then

1
ν2

(
L
(
q1(χ )q2(χ )

)) ≤ 1
(ν1 + 1)(ν2 + 1)

(
L
(
q1(χ ) + q2(χ )

))2

≤ 1
ν1

(
L
(
q1(χ )q2(χ )

))
. (4.28)

Proof Under the supposition, we observe that

ν1 ≤ q1(ζ )
q2(ζ )

≤ ν2,

it follows that

q2(ζ )(ν1 + 1) ≤ q1(ζ ) + q2(ζ ) ≤ q2(ζ )(ν2 + 1). (4.29)

Additionally, we have

1
ν2

≤ q2(ζ )
q1(ζ )

≤ 1
ν1

, (4.30)

which yields that

ν2 + 1
ν2

q1(ζ ) ≤ q2(ζ ) + q1(ζ ) ≤ ν1 + 1
ν1

q1(ζ ). (4.31)

From (4.29) and (4.31), we have

q1(ζ )q2(ζ )
ν2

≤ (q2(ζ ) + q1(ζ ))2

(ν1 + 1)(ν2 + 1)
≤ q1(ζ )q2(ζ )

ν1
. (4.32)

Multiplying both sides of the above inequality with p(χ , ζ ) and integrating with respect to
ζ over measure space �, we obtain

∫
�

p(χ , ζ )
q1(ζ )q2(ζ )

ν2
≤

∫
�

p(χ , ζ )
(q2(ζ ) + q1(ζ ))2

(ν1 + 1)(ν2 + 1)

≤
∫

�

p(χ , ζ )
q1(ζ )q2(ζ )

ν1
. (4.33)
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This can be written as

L
q1(ζ )q2(ζ )

ν2
≤ L

(q2(ζ ) + q1(ζ ))2

(ν1 + 1)(ν2 + 1)
≤ L

q1(ζ )q2(ζ )
ν1

, (4.34)

which is the required result. �

Corollary 4.34 Applying Theorem 4.33 with � = (a, b), dπ (ζ ) = dζ and p(χ , ζ ) defined by
(3.6). Substituting (Lqp

1(χ ))
1
p = (Iα,k

a+;gqp
1(χ ))

1
p and (Lqp

2(χ ))
1
p = (Iα,k

a+;gqp
2(χ ))

1
p , we obtain the

following inequality

1
ν2

(
Iα,k

a+;g
(
q1(χ )q2(χ )

)) ≤ 1
(ν1 + 1)(ν2 + 1)

(
Iα,k

a+;g
(
q1(χ ) + q2(χ )

))2

≤ 1
ν1

(
Iα,k

a+;g
(
q1(χ )q2(χ )

))
. (4.35)

Remark 4.35 Applying Corollary 4.34 with g(χ ) = χ and the corresponding corresponding
p(χ , ζ ) defined by (3.6), we have

1
ν2

(
Iα

a+
(
q1(χ )q2(χ )

)) ≤ 1
(ν1 + 1)(ν2 + 1)

(
Iα

a+
(
q1(χ ) + q2(χ )

))2

≤ 1
ν1

(
Iα

a+
(
q1(χ )q2(χ )

))
.

Example 4.36 Taking g(χ ) = log(χ ) and k = 1 in Corollary 4.34 and p(χ , ζ ) defined by
(3.9), (3.12) becomes

1
ν2

(β

α
J

α
(
q1(χ )q2(χ )

)) ≤ 1
(ν1 + 1)(ν2 + 1)

(β

α
J

α
(
q1(χ ) + q2(χ )

))2

≤ 1
ν1

(β

α
J

α
(
q1(χ )q2(χ )

))
.

Remark 4.37 Applying Theorem 4.33 with � = (a, b), dπ (ζ ) = dζ and p(χ , ζ ) defined by
(3.10). Substituting (Lqp

1(χ ))
1
p = (Iα

a+;σ ;ηqp
1(χ ))

1
p and (Lqp

2(χ ))
1
p = (Iα

a+;σ ;ηqp
2(χ ))

1
p , we obtain

the inequality for the Erdélyi–Köber fractional integral, i.e.,

1
ν2

(
Iα

a+;σ ;η
(
q1(χ )q2(χ )

)) ≤ 1
(ν1 + 1)(ν2 + 1)

(
Iα

a+;σ ;η
(
q1(χ ) + q2(χ )

))2

≤ 1
ν1

(
Iα

a+;σ ;η
(
q1(χ )q2(χ )

))
.

Remark 4.38 Taking β > 0,g(χ ) = χβ

β
and k = 1 in Corollary 4.34, we obtain the inequality

for the Katugampola fractional integral operators in the literature [17] and the inequality
takes the form

1
ν2

(τ

α
Kβ

p+
(
q1(χ )q2(χ )

)) ≤ 1
(ν1 + 1)(ν2 + 1)

(τ

α
Kβ

p+
(
q1(χ ) + q2(χ )

))2

≤ 1
ν1

(τ

α
Kβ

p+
(
q1(χ )q2(χ )

))
.
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Remark 4.39 Taking β > 0,g(χ ) = (χ–a)β
β

and k = 1 in Corollary 4.34, we obtain the in-
equality for the conformable fractional integral operators defined by Jarad et al. [1] and
the inequality takes the form

1
ν2

(β

α
J

α
(
q1(χ )q2(χ )

)) ≤ 1
(ν1 + 1)(ν2 + 1)

(β

α
J

α
(
q1(χ ) + q2(χ )

))2

≤ 1
ν1

(β

α
J

α
(
q1(χ )q2(χ )

))
.

Remark 4.40 Taking β > 0,g(χ ) = χμ+ν

μ+ν
and k = 1 in Corollary 4.34, we obtain the inequal-

ity for the conformable fractional integral operators defined by Khan et al. [3] and the
inequality takes the form

1
ν2

(τ

α
Kβ

p+
(
q1(χ )q2(χ )

)) ≤ 1
(ν1 + 1)(ν2 + 1)

(τ

α
Kβ

p+
(
q1(χ ) + q2(χ )

))2

≤ 1
ν1

(τ

α
Kβ

p+
(
q1(χ )q2(χ )

))
.

Theorem 4.41 Let (�,�,π ) be a measure space with positive σ -finite measure. For p, q ≥
1 with 1

p + 1
q = 1. Suppose that there are two positive functions q1 and q2 on [0,∞) and

q1, q2 ∈ U(p) such that χ > κ1, (Lqp
1(χ )) < ∞ and (Lqp

2(χ )) < ∞. If 0 < h ≤ q1(ζ ) ≤ H, 0 <
m ≤ q2(ζ ) ≤ M and χ ∈ [κ1,κ2], then

(
L
(
qp

1(χ )
) 1

p
)

+
(
L
(
qp

2(χ )
) 1

p
) ≤ 2

(
LUp(q1(χ ), q2(χ )

)) 1
p , (4.36)

where

Up(q1(χ ), q2(χ )
)

= max

{
ν2

[(
1 +

ν2

ν1

)
q1(χ ) – ν2q2(χ )

]
,
ν1 + ν2q2(χ ) – q1(χ )

ν1

}
.

Proof By the supposition, we observe that

0 < ν1 ≤ ν2 + ν1 –
q1(ζ )
q2(ζ )

and

ν2 + ν1 –
q1(ζ )
q2(ζ )

≤ ν2.

From the above two inequalities, we obtain

q2(ζ ) <
(ν2 + ν1)q2(ζ ) – q1(ζ )

ν1
≤ U

(
q1(χ ), q2(χ )

)
,

where

Up(q1(χ ), q2(χ )
)

= max

{
ν2

[(
1 +

ν2

ν1

)
q1(χ ) – ν2q2(χ )

]
,
ν1 + ν2q2(χ ) – q1(χ )

ν1

}
.
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Also, from the given supposition

1
ν2

≤ q2(ζ )
q1(ζ )

≤ 1
ν1

,

we have

1
ν2

≤ 1
ν2

+
1
ν1

–
q2(ζ )
q1(ζ )

(4.37)

and

1
ν2

+
1
ν1

–
q2(ζ )
q1(ζ )

≤ 1
ν1

. (4.38)

From (4.37) and (4.38), we obtain

1
ν2

≤ ( 1
ν1

+ 1
ν2

)q1(ζ ) – q2(ζ )
q1(ζ )

≤ 1
ν1

. (4.39)

This implies that

q1(ζ ) ≤ ν2

(
1
ν1

+
1
ν2

)
q1(ζ ) – ν2q2(ζ )

≤ ν2

[(
ν2

ν1
+ 1

)
q1(ζ ) – ν2q2(ζ )

]

≤ U
(
q1(ζ ), q2(ζ )

)
,

hence, we have

qp
1(ζ ) ≤ Up(q1(ζ ), q2(ζ )

)
, (4.40)

and

qp
2(ζ ) ≤ Up(q1(ζ ), q2(ζ )

)
. (4.41)

Multiplying both sides of the above inequality (4.40) with p(χ , ζ ) and integrating with
respect to ζ over measure space �, we obtain

∫
�

p(χ , ζ )qp
1(ζ ) ≤

∫
�

p(χ , ζ )Up(q1(ζ ), q2(ζ )
)
, (4.42)

which can be written as

Lqp
1(ζ ) ≤ LUp(q1(ζ ), q2(ζ )

)
. (4.43)

Using the same technique for inequality (4.41), we obtain

Lqp
1(ζ ) ≤ LUp(q1(ζ ), q2(ζ )

)
. (4.44)

By adding the inequalities (4.43) and (4.44), we obtain the desired inequality. �
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Corollary 4.42 Applying Theorem 4.33 with � = (a, b), dπ (ζ ) = dζ and p(χ , ζ ) defined by
(3.6). Substituting (Lqp

1(χ ))
1
p = (Iα,k

a+;gqp
1(χ ))

1
p and (Lqp

2(χ ))
1
p = (Iα,k

a+;gqp
2(χ ))

1
p , we obtain the

following inequality

(
Iα,k

a+;g
(
qp

1(χ )
) 1

p
)

+
(
Iα,k

a+;g
(
qp

2(χ )
) 1

p
) ≤ 2

(
Iα,k

a+;gUp(q1(χ ), q2(χ )
)) 1

p . (4.45)

Remark 4.43 Applying Corollary 4.42 with g(χ ) = χ and the corresponding p(χ , ζ ) defined
by (3.6), we have

(
Iα

a+
(
qp

1(χ )
) 1

p
)

+
(
Iα

a+
(
qp

2(χ )
) 1

p
) ≤ 2

(
Iα

a+Up(q1(χ ), q2(χ )
)) 1

p .

Example 4.44 If we take g(χ ) = log(χ ) and k = 1 in Corollary 4.42 and p(χ , ζ ) defined by
(3.9), then (3.12) becomes

(β

α
J

α
(
qp

1(χ )
) 1

p
)

+
(β

α
J

α
(
qp

2(χ )
) 1

p
) ≤ 2

(β

α
J

αUp(q1(χ ), q2(χ )
)) 1

p .

Remark 4.45 Applying Theorem 4.33 with � = (a, b), dπ (ζ ) = dζ and p(χ , ζ ) defined by
(3.10). Substituting (Lqp

1(χ ))
1
p = (Iα

a+;σ ;ηqp
1(χ ))

1
p and (Lqp

2(χ ))
1
p = (Iα

a+;σ ;ηqp
2(χ ))

1
p , we obtain

the inequality for the Erdélyi–Köber fractional integral, i.e.,

(
Iα

a+;σ ;η
(
qp

1(χ )
) 1

p
)

+
(
Iα

a+;σ ;η
(
qp

2(χ )
) 1

p
) ≤ 2

(
Iα

a+;σ ;ηUp(q1(χ ), q2(χ )
)) 1

p .

Remark 4.46 Taking β > 0,g(χ ) = χβ

β
and k = 1 in Corollary 4.42, we obtain the inequality

for the Katugampola fractional integral operators in the literature [17] and the inequality
takes the form

(τ

α
Kβ

p+
(
qp

1(χ )
) 1

p
)

+
(τ

α
Kβ

p+
(
qp

2(χ )
) 1

p
) ≤ 2

(τ

α
Kβ

p+ Up(q1(χ ), q2(χ )
)) 1

p .

Remark 4.47 Taking β > 0,g(χ ) = (χ–a)β
β

and k = 1 in Corollary 4.42, we obtain the in-
equality for the conformable fractional integral operators defined by Jarad et al. [1] and
the inequality takes the form

(β

α
J

α
(
qp

1(χ )
) 1

p
)

+
(β

α
J

α
(
qp

2(χ )
) 1

p
) ≤ 2

(β

α
J

αUp(q1(χ ), q2(χ )
)) 1

p .

Remark 4.48 Taking β > 0,g(χ ) = χμ+ν

μ+ν
and k = 1 in Corollary 4.42, we obtain the inequal-

ity for the conformable fractional integral operators defined by Khan et al. [3] and the
inequality takes the form

(τ

α
Kβ

p+
(
qp

1(χ )
) 1

p
)

+
(τ

α
Kβ

p+
(
qp

2(χ )
) 1

p
) ≤ 2

(τ

α
Kβ

p+ Up(q1(χ ), q2(χ )
)) 1

p .

5 Concluding remarks
In recent years, many researchers have given the generalization of integral operators and
constructed fruitful inequalities. It is always interesting and motivating for us to provide
the generalization of all previous results. Motivated by the above, we presented certain
elegant inequalities successfully that generalize the previous results. For this, we construct
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a class of functions that represent the integral transform with a general kernel. We prove a
wide range of Pólya–Szegö- and Čebyšev-type inequalities involving a general kernel over
a σ -finite measure. We extract the known results from our general results.
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