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Abstract
In this paper, a simple proof of the convergence of the recent iterative algorithm by
relaxed (u, v)-cocoercive mappings due to Imnang (J. Inequal. Appl. 2013:249, 2013) is
presented.
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1 Introduction and preliminaries
In this paper, a simple proof for the convergence of an iterative algorithm is presented that
improves and refines the original proof.

Suppose that C is a nonempty closed convex subset of a real normed linear space E
and E∗ is its dual space. Suppose that 〈., .〉 denotes the pairing between E and E∗. The
normalized duality mapping J : E → E∗ is defined by

J(x) =
{

f ∈ E∗ : 〈x, f 〉 = ‖x‖2 = ‖f ‖2}

for each x ∈ E. Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is called smooth if for all x ∈ U ,
there exists a unique functional jx ∈ E∗ such that 〈x, jx〉 = ‖x‖ and ‖jx‖ = 1 (see [1]).

Recall that a mapping f : C → C is a contraction on C, if there exists a constant α ∈ (0, 1)
such that ‖f (x) – f (y)‖ ≤ α‖x – y‖, ∀x, y ∈ C. We use �C to denote the collection of all
contractions on C, i.e., �C = {f |f : C → C is a contraction}.

For a map T from E into itself, we denote by Fix(T) := {x ∈ E : x = Tx}, the fixed point
set of T .

Recall the following well-known concepts:
(1) Suppose that C is a nonempty closed convex subset of a real Banach space E.

A mapping B : C → E is called relaxed (u, v)-cocoercive [2], if there exist two
constants u, v > 0 such that

〈
Bx – By, j(x – y)

〉 ≥ (–u)‖Bx – By‖2 + v‖x – y‖2,

for all x, y ∈ C and j(x – y) ∈ J(x – y).
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(2) Suppose that C is a nonempty closed convex subset of a real Banach space E and B
is a self-mapping on C. If there exists a positive integer α such that

‖Bx – By‖ ≥ α‖x – y‖

for all x, y ∈ C, then B is called α-expansive.

Lemma 1.1 ([2]) Let C be a nonempty closed convex subset of a real 2-uniformly smooth
Banach space X with the 2-uniformly smooth constant K . Let QC be the sunny nonexpan-
sive retraction from X onto C and let Ai : C → X be a relaxed (ci, di)-cocoercive and Li-
Lipschitzian mapping for i = 1, 2, 3. Let G : C → C be a mapping defined by

G(x) = QC
[
QC

(
QC(x – λ3A3x) – λ2A2QC(x – λ3A3x)

)

– λ1A1QC
(
QC(I – λ3A3)x – λ2A2QC(I – λ3A3)x

)]
.

If λi ≤ di–ciL2
i

K2L2
i

for all i = 1, 2, 3, then G : C → C is nonexpansive.

Lemma 1.2 ([3, Lemma 2.8]) Suppose that C is a nonempty closed convex subset of a real
Banach space X that is 2-uniformly smooth, and the mapping A : C → X is relaxed (c, d)-
cocoercive and LA-Lipschitzian. Then,

∥∥(I – λA)x – (I – λA)y
∥∥2 ≤ ‖x – y‖2 + 2

(
λcL2

A – λd + K2λ2L2
A
)‖x – y‖2,

where λ > 0. In particular, when d > cL2
A and λ ≤ d–cL2

A
K2L2

A
, note I – λA is nonexpansive.

In this paper, using relaxed (u, v)-cocoercive mappings, a new proof for the iterative
algorithm [2] is presented.

2 A simple proof for the theorem
Imnang [2] considered an iterative algorithm for finding a common element of the set of
fixed points of nonexpansive mappings and the set of solutions of a variational inequality.
Our argument will rely on the following lemma.

Lemma 2.1 Suppose that C is a nonempty closed convex subset of a Banach space E. Sup-
pose that A : C → E is a relaxed (m, v)-cocoercive mapping and ε-Lipschitz continuous with
v – mε2 > 0. Then, A is a (v – mε2)-expansive mapping.

Proof Since A is (m, v)-cocoercive and ε-Lipschitz continuous, for each x, y ∈ C and j(x –
y) ∈ J(x – y), we have that

〈
Ax – Ay, j(x – y)

〉 ≥ (–m)‖Ax – Ay‖2 + v‖x – y‖2

≥ (
–mε2)‖x – y‖2 + v‖x – y‖2

=
(
v – mε2)‖x – y‖2 ≥ 0,
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and hence

‖Ax – Ay‖ ≥ (
v – mε2)‖x – y‖,

therefore, A is (v – mε2)-expansive. �

The following theorem is due to Imnang [2] that solves the viscosity iterative problem
for a new general system of variational inequalities in Banach spaces:

Theorem 2.2 (i.e., Theorem 3.1, from [2, §3, p.7]) Suppose that X is a Banach space that
is uniformly convex and 2-uniformly smooth with the 2-uniformly smooth constant K , C
is a nonempty closed convex subset of X, and QC is a sunny nonexpansive retraction from
X onto C. Assume that Ai : C → X is relaxed (ci, di)-cocoercive and Li-Lipschitzian with
0 < λi < di–ciL2

i
K2L2

i
for each i = 1, 2, 3. Suppose that f is a contraction mapping with the constant

α ∈ (0, 1) and S : C → C, a nonexpansive mapping such that � = F(S) ∩ F(G) �= ∅, where G
is defined as in Lemma 1.1. Suppose that x1 ∈ C and {xn}, {yn} and {zn} are the following
sequences:

⎧
⎪⎪⎨

⎪⎪⎩

zn = QC(xn – λ3A3xn),

yn = QC(zn – λ2A2zn),

xn+1 = anf (xn) + bnxn + (1 – an – bn)SQC(yn – λ1A1yn,

where {an} and {bn} are two sequences in (0, 1) such that
(C1) limn→∞ an = 0 and

∑∞
n=1 an = ∞;

(C2) 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1.
Then, {xn} converges strongly to q ∈ �, which solves the following variational inequality:

〈
q – f (q), J(q – p)

〉 ≤ 0, ∀f ∈ �C , p ∈ �.

A Simple Proof Let i = 1, 2, 3. Consider Theorem 2.2 and the Li-Lipschitz continuous and
relaxed (ci, di)-cocoercive mapping Ai in Theorem 2.2. From the condition that 0 < λi <
di–ciL2

i
K2L2

i
, we have that 0 < 1 + 2(λiciL2

i – λidi + K2λ2
i L2

i ) < 1. Note that from Lemma 1.2, we
have that I – λiAi is nonexpansive when 0 < 1 + 2(λiciL2

i – λidi + K2λ2
i L2

i ). Then, applying
the coefficients αi = 1 + 2(λiciL2

i – λidi + K2λ2
i L2

i ) in Lemma 1.2 we have that I – λiAi is an
αi-contraction, for each i = 1, 2, 3. Also, note that QC is nonexpansive and I – λiAi is an
αi-contraction, for each i = 1, 2, 3. Hence, using the proof of [2, Lemma 2.11], we conclude
that

∥∥G(x) – G(y)
∥∥ =

∥∥QC
[
QC

(
QC(I – λ3A3)x – λ2A2QC(I – λ3A3)x

)

– λ1A1QC
(
QC(I – λ3A3)x – λ2A2QC(I – λ3A3)x

)]

– QC
[
QC

(
QC(I – λ3A3)y – λ2A2QC(I – λ3A3)y

)

– λ1A1QC
(
QC(I – λ3A3)y – λ2A2QC(I – λ3A3)y

)]∥∥

≤ ∥∥QC
(
QC(I – λ3A3)x – λ2A2QC(I – λ3A3)x

)

– λ1A1QC
(
QC(I – λ3A3)x – λ2A2QC(I – λ3A3)x

)
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–
[
QC

(
QC(I – λ3A3)y – λ2A2QC(I – λ3A3)y

)

– λ1A1QC
(
QC(I – λ3A3)y – λ2A2QC(I – λ3A3)y

)]∥∥

=
∥∥(I – λ1A1)QC(I – λ2A2)QC(I – λ3A3)x

– (I – λ1A1)QC(I – λ2A2)QC(I – λ3A3)y
∥∥

≤ α1α2α3‖x – y‖,

and since 0 < α1α2α3 < 1 then G is an α-contraction with α = α1α2α3, hence from Banach’s
contraction principle F(G) is a singleton set and hence, � is a singleton set, i.e., there
exists an element p ∈ X such that � = {p}. Since (di – ciL2

i ) > 0, from Lemma 2.1, Ai is
(di – ciL2

i )-expansive, i.e.,

‖Aix – Aiy‖ ≥ (
di – ciL2

i
)‖x – y‖, (1)

in Theorem 2.2. The authors in [2, p.11] proved (see (3.12) in [2, p.11]) that

lim
n

‖A3xn – A3p‖ = 0, (2)

for x∗ = p. Now, put x = xn and y = p in (1), and from (1) and (2), we have

lim
n

‖xn – p‖ = 0.

Hence, xn → p. As a result, one of the main claims of Theorem 2.2 is established (note
� = {p}).

Note that the main aims of Theorem 3.1 in [2] are xn → p and

〈
q – f (q), J(q – p)

〉 ≤ 0, ∀f ∈ �C , p ∈ �.

Next, we show that the main aim of Theorem 3.1 in [2] can be concluded from the relations
(3.12) in [2, page 11] and the proof in Theorem 2.2 can be simplified even further using the
above. Note that the part of the proof between the relations (3.12) in [2, page 11] to the end
of the proof of Theorem 3.1 can be removed from the proof. Indeed, since immediately
from (3.12) in [2], we conclude that xn → p, i.e., the first aim of Theorem 3.1 is concluded.
The second aim of the theorem, i.e.,

〈
q – f (q), J(q – p)

〉 ≤ 0, ∀f ∈ �C , p ∈ �,

is clear, because p = q (� = {p}) and J(0) = {0}. Consequently, the relations between (3.12)
in [2, page 11] to the end of the proof of Theorem 3.1 in [2, page 11] can be removed. �

3 Discussion
In this paper, a simple proof for the convergence of an algorithm by relaxed (u, v)-
cocoercive mappings due to Imnang is presented.

4 Conclusion
In this paper, a refinement of the proof of the results due to Imnang is given.
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