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Abstract
LetA ⊂ B(H) be a row contraction and �A determined byA be a completely
positive map on B(H). In this paper, we mainly consider fixed points of �A and its
dual map �†

A. It is given that �A(X) ≤ X (or �A(X) ≥ X) implies �A(X) = X and
�†

A(X) = X when X ∈ B(H) is a compact operator. Some necessary conditions of
�A(X) = X and �†

A(X) = X are given.
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1 Introduction
Completely positive maps play an essential role in quantum information theory since they
correspond to physical operations, see [7]. Recall that a quantum operation can be rep-
resented by a normal completely positive map, which is determined by an operator se-
quence, see [2, 3]. Hence, some problems about completely positive maps can be solved
by researching operator sequences.

For the convenience of description, letH andK be separable Hilbert spaces andB(K,H)
be the set of all bounded linear operators from K into H and abbreviate B(K,H) to B(H) if
K = H.K(H) is the set of compact operators onH. Denote by J a finite or infinite countable
index set. Let A = {Ak}k∈J ⊂ B(H). A is called a row contraction if

∑
k∈J AkA∗

k ≤ I , where
the series

∑
k∈J AkA∗

k is convergent in strong operator topology and A∗
k is the adjoint oper-

ator of Ak . We say that A is unital if
∑

k∈J AkA∗
k = I and trace preserving if

∑
k∈J A∗

kAk = I .
To each row contraction A = {Ak}k∈J one can associate a normal completely positive

mapping �A on B(H),

�A(X) =
∑

k∈J

AkXA∗
k , ∀X ∈ B(H).

Then, we say that �A is a quantum operation on B(H) and each Ak is the operation el-
ement or the Kraus operator of �A. A and �A are called self-adjoint if each Ak is self-
adjoint. If a row contraction A also satisfies

∑
k∈J A∗

kAk ≤ I , we can define a completely
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positive map �
†
A on B(H) as follows:

�
†
A(X) =

∑

k∈J

A∗
kXAk , ∀X ∈ B(H).

The map �
†
A is well defined and is called the dual operation of �A. An operator X ∈ B(H)

is said to be a fixed point of �A if �A(X) = X. In fact, a fixed point �A means that it is
not disturbed by the action of �A. Denote by B(H)�A the set of fixed points of �A.

Fixed points of completely positive maps were considered from different aspects since
they are useful in the theory of quantum error correction, see [1, 4–6], and [8–11]. Li dis-
cussed fixed points of dual quantum operations on compact operators in [4] and given that
the two fixed points sets of quantum operation and its dual operation are coincident under
a certain condition. In [1], the authors noted that the positive fixed point B ∈ B(H)�A of
�A and Ak commute if B has only discrete point spectra and �A is a self-adjoint quan-
tum operation. However, the result does not necessary hold for a not self-adjoint quantum
operation. Li generalized the result to the unital and trace-preserving quantum operation
in [5], but B must be an operator when the spectra space is finite. In [4], the fixed points
sets of �A and its dual map �

†
A were given by use of the properties of self-adjoint opera-

tors. It was given that the two sets were equivalent in compact operator space. Also, it was
noted that �A(X) ≥ X implied �A(X) = X under certain conditions. Popescu studied the
inequality �A(X) ≤ X and the equation �A(X) = X by use of the minimal isometric dila-
tion and Poisson transforms in [5] and the canonical decompositions and lifting theorems
were obtained to provide a description of all solutions of �A(X) ≤ X.

Inspired by the above results, we mainly consider fixed points of completely positive
maps and their dual operations. For a given row contraction A, we study the inequality
�A(X) ≤ X and the equation �A(X) = X on the set of all diagonalizable operators. It is
given that �A(X) ≤ X (or �A(X) ≥ X) implies �A(X) = X and �

†
A(X) = X when X ∈ B(H)

is a compact operator. Simultaneously, an example is given to show that �A(X) = X does
not necessarily imply �

†
A(X) = X when X is not compact. Some necessary conditions of

�A(X) = X and �
†
A(X) = X are obtained.

2 Main result
In order to obtain the main results, we begin with some lemmas.

Lemma 1 ([8]) Let � be a normal completely positive map on B(H) that is defined by

�(X) =
∑

k∈J

AkXA∗
k , ∀B(H).

A positive operator C ∈ B(H) is a solution of the inequality �(X) ≤ X (or �(X) = X) if
and only if there exists an operator sequence {Bk}k∈J ⊂ B(H) such that

∑
k=1 BkB∗

k ≤ I (or
∑

k=1 BkB∗
k = I) and AkC 1

2 = C 1
2 Bk for any k.

Similar to Lemma 1, we give an equivalent condition of �(X) ≥ X.

Lemma 2 Let � be a normal completely positive map on B(H) that is defined by

�(X) =
∑

k∈J

AkXA∗
k , ∀B(H).
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Then, an invertible and positive operator C ∈ B(H) is a solution of the inequality �(X) ≥ X
if and only if there exists an operator sequence {Bk}k∈J ⊂ B(H) such that

∑
k∈J BkB∗

k ≥ I and
C 1

2 Bk = AkC 1
2 for any k.

Proof Suppose that C is an invertible and positive operator and also a solution of the in-
equality �(X) ≥ X. Define the operator Bk by setting Bk = C– 1

2 AkC 1
2 for any k. By direct

computing, we have

∑

k∈J

BkB∗
k = C– 1

2
∑

k∈J

AkA∗
kC– 1

2 ≤ C–1.

That is to say, the operator series
∑

k∈J BkB∗
k is convergent in strong operator topology.

From the definition of Bk , it is easy to obtain that C 1
2 Bk = AkC 1

2 and

�(C) =
∑

k∈J

AkCA∗
k = C

1
2
∑

k∈J

BkB∗
kC

1
2 ≥ C.

Thus, C 1
2 (

∑
k∈J BkB∗

k – I)C 1
2 ≥ 0 and so

∑
k∈J BkB∗

k ≥ I .
On the contrary, suppose that {Bk}k∈J ⊂ B(H) satisfies

∑
k=1 BkB∗

k ≥ I and C 1
2 Bk = AkC 1

2

for any k, then

�(C) =
∑

k∈J

AkCA∗
k = C

1
2
∑

k∈J

BkB∗
kC

1
2 ≥ C.

The proof is completed. �

Lemma 3 Let dimH < ∞ and A = {Ak}k∈J ⊂ B(H) be a row contraction. If
∑

k∈J AkA∗
k = I

and
∑

k∈J A∗
kAk ≤ I , then

∑
k∈J A∗

kAk = I .

Proof Let τ be a faithful tracial state on B(H). This shows that τ (
∑

k∈J AkA∗
k) =

τ (
∑

k∈J A∗
kAk). That is to say τ (

∑
k∈J AkA∗

k –
∑

k∈J A∗
kAk) = 0. This implies that

∑
k∈J A∗

kAk =
∑

k∈J AkA∗
k = I . �

Theorem 4 Let �A(I) = I and �
†
A(I) ≤ I . If X ∈ B(H) is a compact and self-adjoint oper-

ator that satisfies �A(X) ≤ X or �A(X) ≥ X, then �A(X) = X, �†
A(X) = X and X ∈A′.

Proof (1) Suppose that X ∈ B(H) is a compact and self-adjoint operator with �A(X) ≤ X.
Then, �A(α + X) ≤ α + X holds for any real number α since �A(I) = I . Without loss of
generality, we may assume that X is an invertible and positive operator. According to the
spectral theorem of compact normal operators, it is easy to show that the spectrum of X is
at most countable and these spectral points can be arrayed as follows, λ1 > λ2 > · · · > λm (m
is a positive integer or +∞) and the dimension of the spectral projection space associated
with λi is finite. It follows that X =

∑m
i=1λiPi, where Pi is the spectral projection associated

with λi. From Lemma 1, there exists an operator sequence {Bk}k∈J with
∑

k∈J BkB∗
k ≤ I such

that BkX 1
2 = X 1

2 Ak . Denote H1 = R(P1) and H2 = H
H1. Then, X = λ1IH1 ⊕ X1. It follows

that X 1
2 = λ

1
2
1 IH1 ⊕ X

1
2

1 . Ak and Bk can be represented by

Ak =

(
Ak

11 Ak
12

Ak
21 Ak

22

)

and Bk =

(
Bk

11 Bk
12

Bk
21 Bk

22

)

,
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with respect to the space decomposition H = H1 ⊕H2. Therefore,

⎛

⎝λ
1
2
1 Bk

11 Bk
12X

1
2

1

λ
1
2
1 Bk

21 Bk
22X

1
2

1

⎞

⎠ =

⎛

⎝λ
1
2
1 Ak

11 λ
1
2
1 Ak

12

X
1
2

1 Ak
21 X

1
2

1 Ak
22

⎞

⎠ .

This implies that Bk
11 = Ak

11 and Ak
12 = 1√

λ1
Bk

12X
1
2

1 hold. According to
∑

k∈J AkA∗
k = I and

∑
k∈J BkB∗

k ≤ I , we have

∑

k∈J

Ak
11Ak

11
∗ +

∑

k∈J

Ak
12Ak

12
∗ =

∑

k∈J

Ak
11Ak

11
∗ +

∑

k∈J

1
λ1

Bk
12X1Bk

12
∗ = IH1

and

∑

k∈J

Bk
11Bk

11
∗ +

∑

k∈J

Bk
12Bk

12
∗ ≤ IH1 .

On the other hand, 0 ≤ 1
λ1

X1 ≤ IH2 . Hence,
∑

k∈J Bk
12(IH2 – 1

λ1
X1)Bk

12
∗ = 0, and then B12 = 0.

Therefore, Ak
12 = 0 and

∑
k∈J Ak

11Ak
11

∗ = IH1 . From �
†
A(I) ≤ I , that is,

∑
k∈J A∗

kAk ≤ IH then
∑

k∈J Ak
11

∗Ak
11 ≤ IH1 . It follows from Lemma 3 that

∑
k∈J Ak

11
∗Ak

11 = IH1 since H1 is a finite-
dimensional space. Thus,

∑
k∈J Ak

21
∗Ak

21 = 0 and then Ak
21 = 0. This shows that AkP1 = P1Ak ,

�A(P1) = P1, �
†
A(P1) = P1 and �A(X) = λ1�A(P1) ⊕ �A(X1) ≤ λ1P1 ⊕ X1. Therefore,

�A(X1) ≤ X1. By induction, X ∈A′, �A(X) = X and �
†
A(X) = X.

(2) If �A(X) ≥ X, the process is as above, the result holds by Lemma 2. The proof is
completed. �

Similar to the proof of Theorem 4, we have the following result.

Theorem 5 ([4]) Let �A(I) ≤ I and �
†
A(I) ≤ I . If X ∈K(H) satisfies �A(X) ≥ X ≥ 0, then

�A(X) = X and X ∈A′ hold.

Corollary 6 ([1]) Let dimH < ∞ and A ⊂ B(H) be a unital and trace-preserving row
contraction. Then, B(H)�A = A′.

Proof As A is unital, it is natural that A′ ⊂ B(H)�A holds. We need only to prove that
B(H)�A ⊂ A′. For any X ∈ B(H)�A , then X∗ ∈ B(H)�A . Hence, we can assume that X is
self-adjoint. Denote H1 = PX(0,‖X‖] and H2 = [–‖X‖, 0]. Then, H = H1 ⊕ H2 and X has
the representation X = X+ ⊕ (–X–), where X+ is invertible in B(H1). With respect to the
space decomposition as above, the operator Ak can be expressed as Ak = (Ak

ij)2×2 and then
Ak

∗ = (Ak
ji
∗)2×2. It follows that

AkXA∗
k =

(
Ak

11X+Ak
11

∗ – Ak
12X–Ak

12
∗ Ak

11X+Ak
21

∗ – Ak
12X–Ak

22
∗

Ak
21X+Ak

11
∗ – Ak

22X–Ak
12

∗ Ak
21X+Ak

21
∗ – Ak

22X–Ak
22

∗

)

.

From �A(X) = X, we obtain
⎧
⎨

⎩

∑
k∈J Ak

11X+Ak
11

∗ –
∑

k∈J Ak
12X–Ak

12
∗ = X+,

∑
k∈J Ak

21X+Ak
21

∗ –
∑

k∈J Ak
22X–Ak

22
∗ = –X–,
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whereas,
∑

k∈J Ak
12X–Ak

12
∗ ≥ 0, so

∑
k∈J Ak

11X+Ak
11

∗ ≥ X+. Combining this with Theorem 5,
we have X+ ∈ {Ak

11}k∈J
′ and

∑
k∈J Ak

11X+Ak
11

∗ = X+. Furthermore,
∑

k∈J Ak
11Ak

11
∗ = IH1

holds. Moreover,
∑

k∈J AkAk
∗ = IH implies

∑
k∈J Ak

12Ak
12

∗ = 0 and hence Ak
12 = 0. From

Lemma 3 and
∑

k∈J A∗
kAk = IH, we have Ak

21 = 0 for any k. Hence,
∑

k∈J Ak
22Ak

22
∗ = IH2 .

Combining
∑

k∈J Ak
22X–Ak

22
∗ ≥ X– with Theorem 4, it is easy to obtain X– ∈ {Ak

22}k∈J
′, and

then X ∈A′. The proof is completed. �

In Theorem 4, the result does not necessarily hold if X is not a compact operator.

Example 7 Let {e1, e2, . . .} be a basis of an infinite Hilbert space H and S be the unilateral
operator on H. Then, Sei = ei+1,∀i ≥ 1. Suppose that K = H⊕H⊕H. Define an operator
A as follows,

A =

⎛

⎜
⎝

S∗ 0 0
1√
2 (I – SS∗) SS∗ 1√

2 (I – SS∗)
0 0 S∗

⎞

⎟
⎠ .

Then,

A∗ =

⎛

⎜
⎝

S 1√
2 (I – SS∗) 0

0 SS∗ 0
0 1√

2 (I – SS∗) S

⎞

⎟
⎠ .

By direct computing, it is easy to obtain that AA∗ = IK and A∗A ≤ IK. Assume that X ∈
B(K) has the following matrix form,

X =

⎛

⎜
⎝

IH 0 IH
0 3

2 IH 0
0 0 IH

⎞

⎟
⎠ .

According to the matrix forms of A, A∗, X, AXA∗ = X holds, whereas,

AX =

⎛

⎜
⎝

S∗ 0 0
1√
2 (I – SS∗) 3

2 SS∗ √
2(I – SS∗)

0 0 S∗

⎞

⎟
⎠ ,

XA =

⎛

⎜
⎝

S∗ 0 S∗
3√
2 (I – SS∗) 3

2 SS∗ 3√
2 (I – SS∗)

0 0 S∗

⎞

⎟
⎠ .

These show that AX �= XA and A∗XA �= X.

Proposition 8 Let �A(I) ≤ I and �
†
A(I) ≤ I . Suppose that X is a positive operator with

only at most a countable set of distinct eigenvalues {λi} such that X =
∑

i λiPi, where
PiPj = PjPi = 0 and λi is strictly decreasing. If �A(X) ≥ X and �

†
A(X) ≥ X, then X ∈ A′

and �A(X) = �
†
A(X) = X.
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Proof Suppose that X is a positive operator with X =
∑

i λiPi and λi is strictly decreasing.
Denote H1 = PX{λ1}H and H2 = H 
 H1. Then, X = λ1IH1 ⊕ X1. Ak and A∗

k have the
following matrix forms,

Ak =

(
Ak

11 Ak
12

Ak
21 Ak

22

)

and A∗
k =

(
Ak

11
∗ Ak

21
∗

Ak
12

∗ Ak
22

∗

)

.

Therefore,

AkXA∗
k =

(
λ1Ak

11Ak
11

∗ + Ak
12X1Ak

12
∗

λ1Ak
11Ak

21
∗ + Ak

12X1Ak
22

∗

λ1Ak
21Ak

11
∗ + Ak

22X1Ak
12

∗
λ1Ak

21Ak
21

∗ + Ak
22X1Ak

22
∗

)

.

From
∑

k∈J AkXA∗
k ≥ X, we have

λ1IH1 ≤
∑

k∈J

λ1Ak
11Ak

11
∗ +

∑

k∈J

Ak
12X1Ak

12
∗ ≤ λ1

(∑

k∈J

Ak
11Ak

11
∗ +

∑

k∈J

Ak
12Ak

12
∗
)

≤ λ1H1.

If X1 = 0, then
∑

k∈J Ak
11Ak

11
∗ = IH1 . It follows that

∑
k∈J Ak

12Ak
12

∗ = 0, hence Ak
12 = 0. If X1 �=

0, then X1 < λ1IH2 , which means λ1IH2 –X1 is a positive and invertible operator. Therefore,
∑

k∈J Ak
12Ak

12
∗ = 0 and so Ak

12 = 0. On the other hand, from �
†
A(X) ≥ X, we can obtain

Ak
21 = 0. That is, AkP1 = P1Ak , �A(P1) = P1 and �

†
A(P1) = P1. Meanwhile, �A(0 ⊕ X1) ≥

0 ⊕ X1, �
†
A(0 ⊕ X1) ≥ 0 ⊕ X1. Continuing the above process, the result holds. The proof

is completed. �

Theorem 9 Let �A(I) ≤ I and �
†
A(I) ≤ I . Suppose that X is a self-adjoint operator with

only at most a countable set of distinct eigenvalues {λi} and |λi| can be arranged in de-
creasing order, where |λi| means the absolute value of λi. If �A(X) = X and �

†
A(X) = X,

then X ∈A′.

Proof Let H1 = PX[–‖X‖, 0),H2 = PX{0} and H3 = PX(0,‖X‖], where PX(·) is the spectral
measure of X. Then, H = H1 ⊕H2 ⊕H3. X has the matrix form X = X1 ⊕0⊕ (–X3), where
X1 and X3 are injective and have dense ranges. Denote Ak = (Ak

ij)3×3, then Ak
∗ = (Ak

ji
∗)3×3.

By direct computing, we have

AkXA∗
k =

⎛

⎝
Ak

11X1Ak
11 ∗ –Ak

13X3Ak
13

∗ Ak
11X1Ak

21
∗ – Ak

13X3Ak
23

∗ Ak
11X1Ak

31
∗ – Ak

13X3Ak
33

∗

Ak
21X1Ak

11
∗ – Ak

23X3Ak
13

∗ Ak
21X1Ak

21
∗ – Ak

23X3Ak
23

∗ Ak
21X1Ak

31
∗ – Ak

23X3Ak
33

∗

Ak
31X1Ak

11
∗ – Ak

33X3Ak
13

∗ Ak
31X1Ak

11
∗ – Ak

33X3Ak
13

∗ Ak
31X1Ak

31
∗ – Ak

33X3Ak
33

∗

⎞

⎠ .

From �A(X) = X, it is easy to see that

∑

k∈J

Ak
11X1Ak

11
∗ –

∑

k∈J

Ak
13X3Ak

13
∗ = X1, (1)

∑

k∈J

Ak
31X1Ak

31
∗ –

∑

k∈J

Ak
33X3Ak

33
∗ = –X3, (2)

whereas,

A∗
kXAk =

⎛

⎝
Ak

11
∗X1Ak

11 – Ak
31

∗X3Ak
31 Ak

11
∗X1Ak

12 – Ak
31

∗X3Ak
32 Ak

11
∗X1Ak

13 – Ak
31

∗X3Ak
33

Ak
12

∗X1Ak
11 – Ak

32
∗X3Ak

31 Ak
12

∗X1Ak
12 – Ak

32
∗X3Ak

32 Ak
12

∗X1Ak
13 – X3Ak

32
∗Ak

33
Ak

13
∗X1Ak

11 – Ak
33

∗X3Ak
31 Ak

13
∗X1Ak

12 – Ak
33

∗X3Ak
32 Ak

13
∗X1Ak

13 – Ak
33

∗X3Ak
33

⎞

⎠ .
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From �
†
A(X) = X, we can obtain

∑

k∈J

Ak
11

∗X1Ak
11 –

∑

k∈J

Ak
31

∗X3Ak
31 = X1, (3)

∑

k∈J

Ak
13

∗X1Ak
13 –

∑

k∈J

Ak
33

∗X3Ak
33 = –X3. (4)

As
∑

k∈J Ak
13X3Ak

13
∗ ≥ 0 and

∑
k∈J Ak

31X1Ak
31

∗ ≥ 0, combining Eq. (1) with Eq. (2), we have

∑

k∈J

Ak
11X1Ak

11
∗ ≥ X1, (5)

∑

k∈J

Ak
33

∗X3Ak
33 ≥ X3. (6)

Similarly, combining
∑

k∈J Ak
13

∗X1Ak
13 ≥ 0,

∑
k∈J Ak

31
∗X3Ak

31 ≥ 0 with Eqs. (3) and (4), the
following equations hold,

∑

k∈J

Ak
11

∗X1Ak
11 ≥ X1, (7)

∑

k∈J

Ak
33

∗X3Ak
33 ≥ X3. (8)

It follows from Proposition 8, Eqs. (5), (7), (6), and (8) that

X1 ∈ {
Ak

11, Ak
11

∗}′ and X3 ∈ {
Ak

33, Ak
33

∗}′, (9)

and

∑

k∈J

Ak
11X1Ak

11
∗ = X1,

∑

k∈J

Ak
33X3Ak

33
∗ = X3.

Hence,
∑

k∈J Ak
13X3Ak

13
∗ = 0. As X3 is positive, injective, and also has dense range, hence

Ak
13 = 0. Similarly, Ak

31 = 0. The operator X1 is also a positive and injective operator
with dense range,

∑
k∈J Ak

11Ak
11

∗ = IH1 from Eq. (5). According to
∑

k∈J AkAk
∗ ≤ IH, then

∑
k∈J Ak

12Ak
12

∗ = 0, and so Ak
12 = 0 for any k. Similarly, Ak

21 = 0. This shows that Ak =
Ak

11 ⊕ Ak
22 ⊕ Ak

33. Combining Eq. (9) and the matrix forms of X and Ak , we have AkX = XAk

for any k. The proof is completed. �

If X has only two spectral points, we have the following result.

Theorem 10 Let A be a unital operator sequence and X be a self-adjoint operator with
only two spectral points. If �A(X) = X, then X ∈A′.

Proof Let λ1,λ2 be the two spectral points of X. Without loss of generality, suppose that
λ1 > λ2 > 0 since �A(I) = I . Denote H1 = PX{λ1}H and H2 = PX{λ2}H, then H1 ⊕H2 = H.
Hence, X = λ1IH1 ⊕λ2IH2 . Assume that Ak has the matrix form Ak = (Ak

ij)2×2 with respect
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to the space decomposition H = H1 ⊕H2. From �A(X) = X, we have

∑

k∈J

AkXA∗
k

=

(
λ1

∑
k∈J Ak

11Ak
11

∗ + λ2
∑

k∈J Ak
12Ak

12
∗

λ1
∑

k∈J Ak
11Ak

21
∗ + λ2

∑
k∈J Ak

12Ak
22

∗

λ1
∑

k∈J Ak
21Ak

11
∗ + λ2

∑
k∈J Ak

22Ak
12

∗
λ1

∑
k∈J Ak

21Ak
21

∗ + λ2
∑

k∈J Ak
22Ak

22
∗

)

=

(
λ1 0
0 λ2

)

.

This shows that λ1
∑

k∈J Ak
11Ak

11
∗ + λ2

∑
k∈J Ak

12Ak
12

∗ = λ1IH1 . That is,

∑

k∈J

Ak
11Ak

11
∗ +

λ2

λ1

∑

k∈J

Ak
12Ak

12
∗ = IH1 .

As A is unital, it is easy to obtain that

∑

k∈J

Ak
11Ak

11
∗ +

∑

k∈J

Ak
12Ak

12
∗ = IH1 .

Hence,
∑

k∈J Ak
12Ak

12
∗ = 0 and then Ak

12 = 0. Similarly, according to

λ1
∑

k∈J

Ak
21Ak

21
∗ + λ2

∑

k∈J

Ak
22Ak

22
∗ = λ2IH2

and

∑

k∈J

Ak
21Ak

21
∗ +

∑

k∈J

Ak
22Ak

22
∗ = IH2 ,

we have Ak
21 = 0. Hence X ∈A′. The proof is completed. �
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