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Abstract
Our purpose in the present investigation is to study certain geometric properties
such as the close-to-convexity, convexity, and starlikeness of the hypergeometric
function z1F2(a;b, c; z) in the open unit disk. The usefulness of the main results for
some familiar special functions like the modified Sturve function, the modified
Lommel function, the modified Bessel function, and the 0F1(–; c; z) function are also
mentioned. We further consider a boundedness property of the function 1F2(a;b, c; z)
in the Hardy space of analytic functions. Several corollaries and special cases of the
main results are also pointed out.
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1 Introduction and preliminaries
It is well known that special functions play important roles in geometric function the-
ory, especially after the solution of the famous Bieberbach conjecture by De-Branges [10].
There exists an extensive literature that deals with the geometric properties of various
special functions such as hypergeometric functions, confluent hypergeometric functons,
Bessel’s functions, Mittag–Leffler’s function, Wright’s function, Sturve’s function, Lom-
mel’s function, Dini’s function, and several other functions. Many researchers have deter-
mined sufficient conditions for the parameters involved in these special functions when
they belong to certain classes of functions that are starlike, convex or close-to-convex.
For instance, several sufficient conditions for the Gauss hypergeometric functions to be
starlike or convex have been studied by Merkes and Scott [20], Lewis [19], Ruscheweyh
and Singh [30], Miller and Mocanu [22], Silverman [32], Ponnusamy and Vuorinen [25],
Küstner [17, 18], and Hästo et al. [16]. Most of the known results in this direction deal
with the shifted hypergeometric function z2F1(a, b; c; z) for real parameters a, b, and c. Re-
cently, several authors have investigated the geometric properties of Bessel’s functions
[4, 5, 7, 8], Struve’s functions [23, 36], Lommel’s functions [9], Wright’s function [26] (see
also [13, 28]), and Mittag–Leffler’s function [3].
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The classical generalized hypergeometric function [2, 33] is defined by

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) =
∞∑

n=0

(a1)n(a2)n · · · (ap)n

(b1)n(b2)n · · · (bq)n

zn

n!
,

where the Pochhammer (or shifted factorial) symbols (bi)n, i = 1, 2, . . . , q are assumed to
be nonzero and nonnegative integers. In this paper, our main aim is to study various sev-
eral geometric properties of the function z1F2(a; b, c; z), which is a particular case of the
generalized hypergeometric function pFq(z) (for p = 1 and q = 2) and is defined by

1F2(a; b, c; z) =
∞∑

n=0

(a)n

(b)n(c)n

zn

n!
, (1)

where both the parameters b and c do not assume values of zero or a negative integer. By
the ratio test, we see that the radius of convergence of this series (1) is infinity, and hence
it is an entire function. However, in this paper we consider this function in the restricted
domain D = {z ∈ C : |z| < 1}, which is a suitable domain to be considered for studying its
geometric properties. It can easily be verified that

d
dz 1F2(a; b, c; z) =

a
bc 1F2(a + 1; b + 1, c + 1; z), (2)

and further, the function w(z) = 1F2(a; b, c; z) is a solution of the third-order homogeneous
differential equation

z2w′′′(z) + (b + c + 1)zw′′(z) + (bc – z)w′(z) – aw(z) = 0.

Now, we briefly outline some of the useful notations. Let H denote the class of analytic
functions defined on D and let the subclass A = {f ∈ H : f (0) = 0 = f ′(0) – 1} consist of
analytic functions in D having a Taylor-series expansion of the form

f (z) = z + a2z2 + a3z3 + · · · .

Evidently, the function z1F2(a; b, c; z) belongs to the class A. Our purpose in the present
investigation is to study the geometric properties of the function z1F2(a; b, c; z) that en-
ables us to deduce the corresponding properties for functions like the modified Sturve
function, the modified Lommel function, the modified Bessel function, and the 0F1(–; c; z)
function. We briefly give here the details of the special functions that stem from the func-
tion 1F2(a; b, c; z).

1.1 The modified Struve function
The well-known Struve function of order ν is defined by

Hν(z) =
∞∑

n=0

(–1)n

�(n + ν + 3/2)�(n + 3/2)

(
z
2

)2n+ν–1

,
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which is a particular solution of the nonhomogeneous Bessel differential equation defined
by

z2w′′(z) + zw′(z) +
(
z2 – ν2)w =

4(z/2)ν+1
√

π�(ν + 1/2)
.

The modified Struve function Lν(z) is defined by (see [37, p. 353])

Lν(z) = –ie–iνπ/2Hν(iz)

=
∞∑

n=0

1
�(n + ν + 3/2)�(n + 3/2)

(
z
2

)2n+ν–1

=
zν–1

√
π�(ν + 3/2)2ν–2 1F2

(
1;ν +

3
2

,
3
2

;
z2

4

)
.

The function Lν(z) does not belong to the class A, so we use the normalized form Lν(z)
defined by

Lν(z) =
√

π�(ν + 3/2)2ν–2z2–νLν(z).

It is easy to see that

Lν(z) = z1F2

(
1;ν +

3
2

,
3
2

;
z2

4

)
. (3)

1.2 The modified Lommel function
The Lommel function of the first kind Sμ,ν(z) is a particular solution of the nonhomoge-
neous Bessel differential equation (see for details [6] and [35])

z2w′′(z) + zw′(z) +
(
z2 – ν2)w(z) = zμ+1,

and can be expressed in terms of a hypergeometric series

Sμ,ν(z) =
zμ+1

(μ – ν + 1)(μ + ν + 1) 1F2

(
1;

μ – ν + 3
2

,
μ + ν + 3

2
;

–z2

4

)
,

where μ ± ν is a nonnegative odd integer. The modified Lommel function is defined by

Tμ,ν(z) = –i1–μSμ,ν(iz)

=
zμ+1

(μ – ν + 1)(μ + ν + 1) 1F2

(
1;

μ – ν + 3
2

,
μ + ν + 3

2
;

z2

4

)
.

For more details on the modified Lommel functions, we refer to the works of [29] and
Shafer [31]. The function Tμ,ν(z) obviously does not belong to the class A, so we use the
normalized form Tμ,ν(z) defined by

Tμ,ν(z) = (μ – ν + 1)(μ + ν + 1)z–μTμ,ν(z),
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which has a series representation of the form:

Tμ,ν(z) = z1F2

(
1;

μ – ν + 3
2

,
μ + ν + 3

2
;

z2

4

)
. (4)

1.3 The modified Bessel function
For a = b in (1), we obtain

0F1(–; c; z) =
∞∑

n=0

1
(c)n

zn

n!
,

which is a solution of the second-order homogeneous differential equation defined by

zw′′(z) + cw′(z) – w(z) = 0.

It may be noted that a relationship exists between the function 0F1 and the modified Bessel
function. Indeed, we have

z0F1
(
–;ν + 1; z2/4

)
= 2ν�(ν + 1)z1–νIν(z) = Iν(z), (5)

where the modified Bessel function is defined by

Iν(z) =
∞∑

n=0

1
�(n + 1)�(n + ν + 1)

(
z
2

)2n+ν–1

and Iν(z) is the normalized modified Bessel function.
In order to have this paper reasonably self-contained, we give necessary details related to

the consideration of geometric properties of functions analytic in the unit disk. We denote
by S , the class of all functions f ∈A that are univalent in D, that is,

S = {f ∈A : f is one-to-one in D}.

Recall the Bieberbach conjecture in which the Taylor coefficients of each function of the
class S satisfy the inequality |an| ≤ n for n = 2, 3, . . . , and only the rotations of the Koebe
function z/(1–z)2 provide the case of equality. In 1984, De-Branges [10] settled the Bieber-
bach conjecture by using the generalized hypergeometric functions. The exploitation of
hypergeometric functions in the proof of the Bieberbach conjecture has provided new ar-
eas of interest to study various special functions from the viewpoint of geometric function
theory. We need the following basic classes of functions in the present investigation. For
β < 1, let

P(β) =
{

p : p ∈H with p(0) = 1 and Re
{

p(z)
}

> β , z ∈D
}

and

R =
{

f ∈A : Re
{

f ′(z)
}

> 0, z ∈ D
}

.
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A function f ∈ S is called starlike (with respect to the origin 0), denoted by f ∈ S∗ if tw ∈
f (D) for all w ∈ f (D) and t ∈ [0, 1]. A function f ∈ S that maps D onto a convex domain
is called a convex function and the class of such functions is denoted by K. For a given
0 ≤ α < 1, a function f ∈ S is called a starlike function of order α, denoted by S∗(α), if and
only if

Re

(
zf ′(z)
f (z)

)
> α, z ∈D.

For a given 0 ≤ α < 1, a function f ∈ S is called a convex function of order α, denoted by
K(α), if and only if

Re

(
1 +

zf ′′(z)
f ′(z)

)
> α, z ∈D.

It is well known that S∗(0) = S∗ and K(0) = K. We recall [12] that the function zg ′(z) is
starlike if and only if the function g(z) is convex.

A function f ∈ S is said to be convex in the direction of the imaginary axis if f (D) has
a connected intersection with every line parallel to the imaginary axis. Given a convex
function g ∈K with g(z) �= 0 and α < 1, a function f ∈ S , is called close-to-convex of order
α with respect to the convex function g , denoted by Cg(α), if and only if

Re

(
f ′(z)
g ′(z)

)
> α, z ∈D.

The class Cg(0) is the class of functions close-to-convex with respect to g . Geometrically,
a function f ∈ S belongs to C if the complement E of the image-region F = {f (z) : |z| < 1} is
the union of rays that are disjoint (except that the origin of one ray may lie on another one
of the rays). The Noshiro–Warschawski theorem asserts that close-to-convex functions
are univalent in D, but not necessarily the converse. It is easy to verify that K ⊂ S∗ ⊂ C .
For more details, one may refer to see [12].

2 Key lemmas
In order to establish our main results, we need the following results.

Lemma 1 ([14]) Let {an} be a sequence of nonnegative real numbers such that a1 = 1, and
that for n ≥ 2 the sequence {an} is a convex decreasing, i.e., 0 ≥ an+2 – an+1 ≥ an+1 – an, for
all n ∈N. Then,

Re

( ∞∑

n=1

anzn–1

)
> 1/2 (z ∈ D). (6)

It may be noted that each convex decreasing sequence also generates a convex null se-
quence. We recall that the sequence a0, a1, . . . of nonnegative numbers is called a convex
null sequence if

lim
k→∞

ak = 0 and a0 – a1 ≥ a1 – a2 ≥ · · · ≥ ak – ak+1 ≥ · · · ≥ 0.
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For a convex null sequence a0 = 1, a1, a2, . . . , we have instead of (6) the following inequality

Re

(
a0

2
+

∞∑

n=1

anzn

)
> 0 (z ∈ D).

Lemma 2 ([14]) If An ≥ 0, {nAn} and {nAn – (n + 1)An+1} are both nonincreasing, then the
function f (z) = z +

∑∞
n=2 Anzn is in S∗.

Lemma 3 ([24]) Let f (z) = z +
∑∞

n=2 Anzn. Suppose that

1 ≥ 2A2 ≥ · · · ≥ (n + 1)An+1 ≥ · · · ≥ 0

or

1 ≤ 2A2 ≤ · · · ≤ (n + 1)An+1 ≤ · · · ≤ 2,

then f is close-to-convex with respect to the convex function – log(1 – z) in D.

Lemma 4 ([24]) Suppose that f is an odd function (i.e., of the form f (z) = z +
∑∞

n=2 A2n–1z2n–1), such that

1 ≥ 3A3 ≥ · · · ≥ (2n + 1)A2n+1 ≥ · · · ≥ 0

or

1 ≤ 3A3 ≤ · · · ≤ (2n + 1)A2n+1 ≤ · · · ≤ 2,

then f is close-to-convex with respect to the convex function (1/2) log((1 + z)/(1 – z)).

Lemma 5 ([1]) Let {An}∞n=1 be a sequence of nonnegative real numbers such that A1 = 1
and

(n + 1)An+1 ≤ nAn; (2n)2A2n ≤ (2n – 1)2A2n–1 for all n ∈N.

Then, the functions defined by the series
∑n

k=1 Akzk and
∑∞

n=1 Anzn are convex in the direc-
tion of the imaginary axis (see for details [1, Theorem 2.3.5, p. 34]).

Lemma 6 ([21]) Let � ⊂ C, and suppose that ψ : C3 × D → C satisfies the condition
ψ(is, t, u + iv; z) /∈ � for z ∈D and for real s, t, u and v satisfying

t ≤ –
(
1 + s2)/2 and t + u ≤ 0.

If p(z) is analytic in D, with p(0) = 1 and ψ(p(z), zp′(z), z2p′′(z); z) ∈ � for z ∈ D, then
Re(p(z)) > 0, for all z ∈D.

This lemma is a special case of Theorem 1 due to Miller and Mocanu in [21].
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Lemma 7 ([34]) For α < 1, β < 1, we have

P(α) ∗P(β) ⊂P(δ), where δ = 1 – 2(1 – α)(1 – β).

The value of δ is the best possible.

In this paper, we study certain geometric properties such as the close-to-convexity, star-
likeness, and convexity of the function z1F2(a; b, c; z). We also study the boundedness prop-
erty of the function z1F2(a; b, c; z) in the concluding section. Several special cases and
corollaries of our main results are also pointed out.

3 Close-to-convexity of z1F2(a; b, c; z)
This section deals with conditions on the parameters a, b, and c so that the normalized
function z1F2(a; b, c; z) is close-to-convex and hence univalent in D.

Theorem 1 Let a, b, c > 0 and a ≤ bc/2, then the function z1F2(a; b, c; z) is close-to-convex
with respect to the convex function – log(1 – z).

Proof Let f (z) = z1F2(a; b, c; z). Then, f (z) ∈ A, which has the standard normalized form
f (z) = z +

∑∞
n=2 Anzn, where

An =
(a)n–1

(b)n–1(c)n–1(n – 1)!
(n ≥ 2 and A1 = 1).

Using the definition of the Pochhammer symbol, we have

An+1 =
(a + n – 1)

(b + n – 1)(c + n – 1)n
An. (7)

We first note that the condition a ≤ bc/2 implies that 2A2 ≤ A1. Now for n ≥ 2, we obtain
that

nAn – (n + 1)An+1 = An

[
n –

(n + 1)(a + n – 1)
(b + n – 1)(c + n – 1)n

]

=
An

n(b + n – 1)(c + n – 1)
X(n),

where

X(n) = (b + n – 1)(c + n – 1)n2 – (n + 1)(a + n – 1)

= n4 + n3(b + c – 2) + n2(bc – b – c) – a – na + 1

= n3(n – 2) + n2[n(b + c) – b – c
]

+
[
n(nbc – a) – a

]
+ 1

≥ n3(n – 2) + n2[n(b + c) – b – c
]

+
[
n(2na – a) – a

]
+ 1 (in view of bc ≥ 2a)

≥ 0 (for n ≥ 2).

Thus, we have X(n) ≥ 0 for all n ≥ 1, provided that a, b, c > 0 and a ≤ bc/2, and so
the sequence {nAn} is nonincreasing. Applying Lemma 3, we conclude that the function
z1F2(a; b, c; z) is close-to-convex with respect to the convex function – log(1 – z). �
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Example 1 Setting a = b in Theorem 1, it follows that for c ≥ 2, the function z0F1(–; c; z)
is close-to-convex with respect to the convex function – log(1 – z) in D.

Corollary 1 Let a, b, c > –1, a + 1 ≤ (b + 1)(c + 1)/2 and a �= 0, then z1F ′
2(a; b, c; z) is univa-

lent in D.

Proof Differentiating (1) with respect z, we obtain

bcz1F ′
2(a; b, c; z) = az1F2(a + 1; b + 1, c + 1; z). (8)

Using (8) and Theorem 1, we deduce that bc
a z1F ′

2(a; b, c; z) is close-to-convex with respect
to – log(1 – z) and hence the function z1F ′

2(a; b, c; z) is univalent in D. �

For a = b, Corollary 1 yields the result:

Corollary 2 Let c ≥ 1, then z0F ′
1(–; c; z) is univalent in D.

Remark 1 In view of Biberbach’s theorem, it is necessary that |A2| = |a/bc| ≤ 2 for f to
belong to the class S and therefore if a, b, c ∈ C, b, c �= 0, –1, –2, . . . , then the function
z1F2(a; b, c; z) is not univalent whenever |a| > 2|bc|. Similarly for |c| < 1/2, the function
z0F1(–; c; z) is not univalent in D. In particular, for 0 < c < 1/2, the function z0F1(–; c; z) is
not univalent in D. Therefore, in view of Example 1, the investigation of the univalence of
the function z0F1(–; c; z) for the case 1/2 ≤ c < 2 is still an open problem.

Theorem 2 Let a, b, c > 0 and a ≤ 4bc/3, then z1F2(a; b, c; z2/4) is close-to-convex with re-
spect to (1/2) log((1 + z)/(1 – z)).

Proof Let f (z) = z1F2(a; b; c; z2/4) = z +
∑∞

n=2 A2n–1z2n–1, where

A2n–1 =
(a)n–1

(b)n–1(c)n–1(n – 1)!4n–1 (n ≥ 2 and A1 = 1).

By means of the definition of the Pochhammer symbol, it is easy to see that

A2n+1 =
(a + n – 1)

4n(b + n – 1)(c + n – 1)
A2n–1.

We first note that the condition a ≤ 4bc/3 implies that 3A3 ≤ A1. Now for n ≥ 2, we esti-
mate that

(2n – 1)A2n–1 – (2n + 1)A2n+1 =
A2n–1

4n(b + n – 1)(c + n – 1)
Y (n),

where

Y (n) = 4n(2n – 1)(b + n – 1)(c + n – 1) – (2n + 1)(a + n – 1)

= 8n4 – 20n3 + 14n2 – 3n + 1 + 8cn3 + 4cn – 12cn2 + 8bn3 + 4bn

– 12bn2 + 8bcn2 – 4bcn – 2an – a
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≥ 8n4 – 20n3 + 14n2 – 3n + 1 + 8cn3 + 4cn – 12cn2 + 8bn3 + 4bn

– 12bn2 + 6an2 – 4bcn – 2an – a

≥ 0 (in view of 4bc ≥ 3a).

Thus, we have Y (n) ≥ 0 for all n ≥ 1, provided that a, b, c > 0 and a ≤ 4bc/3 and so the
sequence {nAn} is nonincreasing. Applying now Lemma 4, we assert that z1F2(a; b, c; z2/4)
is close-to-convex with respect to the function (1/2) log((1 + z)/(1 – z)). �

Example 2 Setting a = 1, b = ν + 3/2, and c = 3/2 in Theorem 2 and using (3), we have the
result that if ν ≥ –1, then Lν(z) is close-to-convex with respect to (1/2) log((1 + z)/(1 – z)).
Again, setting the parameter as in (4), we obtain the result that if μ±ν is a nonnegative odd
integer and (μ + 3)2 – ν2 ≥ 3, then Tμ,ν(z) is close-to-convex with respect to (1/2) log((1 +
z)/(1 – z)).

Example 3 Setting a = b in Theorem 2, we obtain the result that for c ≥ 3/4, the function
z0F1(–; c; z2/4) is close-to-convex with respect to (1/2) log((1 + z)/(1 – z)). Using this result
and (5), we have the assertion that for ν ≥ –1/4, the function Iν(z) is close-to-convex with
respect to (1/2) log((1 + z)/(1 – z)).

4 Starlikeness of z1F2(a; b, c; z)
In this section we determine the conditions on the parameters a, b, and c such that the
function z1F2(a; b, c; z) is not only close-to-convex with respect to – log(1 – z) but also
starlike in D. Let KS∗ denote the family of functions in A that are close-to-convex with
respect to – log(1 – z) and also starlike in D.

Theorem 3 Let b, c > 0, and

3bc
5bc + 8b + 8c + 8

≤ a ≤ bc/4.

Then, the function z1F2(a; b, c; z) is in the class KS∗.

Proof In view of Lemma 2, it is sufficient to prove that {nAn} and {nAn – (n + 1)An+1} are
nonincreasing sequences for all n ≥ 1. The sequence {nAn} is nonincreasing under the
condition that a ≤ bc/2 and the same will be true here as a ≤ bc/4 < bc/2. Therefore, it
suffices to show that nAn – 2(n + 1)An+1 + (n + 2)An+2 ≥ 0 for all n ≥ 1. Using (7), we have

nAn – 2(n + 1)An+1 + (n + 2)An+2 ≥ 0

⇔ An

[
n – 2

(n + 1)(a + n – 1)
n(b + n – 1)(c + n – 1)

+
(n + 2)(a + n)(a + n – 1)

(b + n)(b + n – 1)(c + n)(c + n – 1)n(n + 1)

]
≥ 0.

Therefore, it is sufficient to prove that

n – 2
(n + 1)(a + n – 1)

n(b + n – 1)(c + n – 1)
≥ 0 (for all n ≥ 1). (9)
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This is true for n = 1 as a ≤ bc/4. Also, (9) is true for n = 2 provided that

1 ≥ 3(a + 1)
2(b + 1)(c + 1)

,

which holds true if we show that

1 ≥ 4a
bc

≥ 3(a + 1)
2(b + 1)(c + 1)

,

and this inequality is valid under the hypothesis of the theorem. For n ≥ 3, (9) is valid, if
Z(n) ≥ 0, where

Z(n) = n2(b + n – 1)(c + n – 1) – 2(n + 1)(a + n – 1)

= n4 + bn3 + cn3 – 2n3 + bcn2 – bn2 – cn2 – n2 – 2an + 2 – 2a

=
(
n4 – 2n3 – n2 + 2

)
+ n2[n(b + c) – b – c

]
+

[
n(nbc – 2a) – 2a

]

≥ (
n4 – 2n3 – n2 + 2

)
+ n2[n(b + c) – b – c

]
+

[
n(4an – 2a) – 2a

]
(as bc ≥ 4a)

≥ 0.

This completes the proof. �

As before, if we set a = b in Theorem 3, then we deduce the following result:

Corollary 3 Let c ≥ 4,then the function z0F1(–; c; z) is in the class KS∗.

5 Convexity of z1F2(a; b, c; z)
Theorem 4 Let b, c > –1, abc �= 0 and

–
26 + 10b + 10c + 2bc
29 + 13b + 13c + 5bc

≤ a ≤ bc + b + c – 3
4

,

then 1F2(a; b, c; z) is a convex function in D.

Proof Let g(z) = 1F2(a; b, c; z) and f (z) = z1F2(a + 1; b + 1, c + 1; z). Then, from relation (8),
we have f (z) = (bc/a)zg ′(z). By taking logarithmic derivatives of both sides, we obtain the
relation

zf ′(z)
f (z)

= 1 +
zg ′′(z)
g ′(z)

. (10)

Using Theorem 3 and the hypothesis of Theorem 4, we infer that f (z) is starlike and hence
from (10), the function g(z)) = 1F2(a; b, c; z) is a convex function. �

Theorem 5 Let a, b, c > 0 and a ≤ bc/4, then z1F2(a; b, c; z) is convex in the direction of the
imaginary axis.

Proof We have already proved in Theorem 1 that (n + 1)An+1 ≤ nAn for all n ≥ 1, provided
that a ≤ bc/4 < bc/2. In view of Lemma 5, z1F2(a; b, c; z) is convex in the direction of the
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imaginary axis provided that (2n)2A2n ≤ (2n – 1)2A2n–1 for all n ≥ 1. Now,

(2n – 1)2A2n–1 – (2n)2A2n = A2n–1

[
(2n – 1)2 – 4n2 (a + 2n – 2)

(b + 2n – 2)(c + 2n – 2)(2n – 1)

]

=
A2n–1

(b + 2n – 2)(c + 2n – 2)(2n – 1)
L(n),

where

L(n) = (2n – 1)3(b + 2n – 2)(c + 2n – 2) – 4n2(a + 2n – 2)

=
(
32n5 – 112n4 + 144n3 – 92n2 + 32n – 4

)
+ b

(
16n4 – 40n3 + 36n2 – 14n + 2

)

+ c
(
16n4 – 40n3 + 36n2 – 14n + 2

)
+ bc

(
8n3 – 12n2 + 6n – 1

)
– 4n2a

≥ 0 (as bc ≥ 4a).

This completes the proof. �

Theorem 6 Let c be a real number such that

c ≥ 3 – 3β + 2β2

2(1 – β)
, (11)

and 0F ′
1(–; c; z) �= 0, then 0F1(–; c; z) is a convex function of order β (0 ≤ β < 1).

Proof Let w(z) = 0F1(–; c; z). If we put

1 +
zw′′(z)
w′(z)

= β + (1 – β)p(z),

then p(z) is analytic inD and p(0) = 1. Therefore, to prove Theorem 6, we need to show that
Re(p(z)) > 0 in D. Since the function w(z) = 0F1(–; c; z) satisfies the differential equation

zw′′(z) + cw′(z) – w(z) = 0,

we find that

zp′(z) + (1 – β)p2(z) + p(z)
[
c – 2(1 – β)

]
–

z
1 – β

+ 1 – β – c = 0.

We may rewrite the above differential equation in the form of ψ(p(z), zp′(z); z) = 0. Now,
for all real s and t ≤ –(1 + s2)/2 and z(= x + iy) ∈D, we have

Reψ(is, t; z) = t – (1 – β)s2 –
x

1 – β
+ 1 – β – c

≤ –
(1 + s2)

2
– (1 – β)s2 –

x
1 – β

+ 1 – β – c

= –
s2

2
(3 – 2β) –

[
x

1 – β
–

1
2

+ β + c
]

.
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Also,

x
1 – β

–
1
2

+ β + c >
–1

1 – β
–

1
2

+ β + c ≥ 0

for all x ∈ (–1, 1) and c satisfying the condition (11). Hence, we deduce thatRe{ψ(is, t; z)} <
0, and therefore by Lemma 6, it follows that Re(p(z)) > 0 in D, which shows that the func-
tion 0F1(–; c; z) is convex of order β . �

If we use the identity

(c – 1)z0F ′
1(–; c – 1; z) = z0F1(–; c; z), (12)

then from Theorem 6, we obtain the following result:

Corollary 4 Let c be a real number such that

c ≥ 5 – 5β + 2β2

2(1 – β)
,

and 0F ′
1(–; c – 1; z) �= 0, then z0F1(–; c; z) ∈ S∗(β) for 0 ≤ β < 1.

If we let f (z) = z0F1(–; c; z) and h(z) = f (z2/4)/(z/4), then we have

zh′(z)
h(z)

= 2
z2

4
f ′(z2/4)
f (z2/4)

– 1. (13)

This observation and Corollary 4 immediately yields the following result.

Corollary 5 Let c be a real number such that

c ≥ 5 – 5β + 2β2

2(1 – β)
,

1/2 ≤ β < 1, and 0F ′
1(–; c – 1; z) �= 0, then z0F1(–; c; z2/4) ∈ S∗(2β – 1).

Theorem 7 Let a, b, c > 0, a ≤ bc, and

2bc(b + 1)(c + 1) ≥ a
[
4(b + 1)(c + 1) – (a + 1)

]
, (14)

then Re{1F2(a; b, c; z)} > 1/2 for z ∈D.

Proof In view of Lemma 1, it is sufficient to show that the sequence

{An}∞n=1 =
{

(a)n–1

(b)n–1(c)n–1(n – 1)!

}∞

n=1
(A1 = 1)

is a convex decreasing sequence. We first prove that the above sequence is a decreasing
sequence, i.e.,

An – An+1 = An

[
1 –

(a + n – 1)
(b + n – 1)(c + n – 1)n

]
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=
An

n(b + n – 1)(c + n – 1)
M(n),

where

M(n) = (b + n – 1)(c + n – 1)n – (a + n – 1)

= n3 + n2(b + c – 2) + n(bc – b – c) – a + 1

= n2(n – 2) + 1 + n(b + c)(n – 1) + (nbc – a)

≥ 0 (In view of bc ≥ a).

Thus, we have M(n) ≥ 0 for all n ≥ 1, provided that a, b, c > 0, and a ≤ bc and hence the
sequence {An} is nonincreasing. Next, we show that the sequence {An}∞n=1 is convex de-
creasing, and for that we need to show that An – 2An+1 + An+2 ≥ 0 for all n ≥ 1. Using (7),
we have

An – 2An+1 + An+2 ≥ 0

⇔ An

[
1 – 2

(a + n – 1)
n(b + n – 1)(c + n – 1)

+
(a + n)(a + n – 1)

(b + n)(b + n – 1)(c + n)(c + n – 1)n(n + 1)

]
≥ 0.

In view of (14), the above is true for n = 1. For n ≥ 2, the difference between the first two
terms is

1 – 2
(a + n – 1)

n(b + n – 1)(c + n – 1)
=

N(n)
n(b + n – 1)(c + n – 1)

,

where

N(n) = n3 + cn2 + bn2 – 2n2 + bcn – bn – cn – n – 2a + 2

=
(
n3 – 2n2 – n + 2

)
+ n

[
n(b + c) – b – c

]
+ nbc – 2a.

In view of bc ≥ a, it is easy to see that N(n) ≥ 0 for all n ≥ 2, and hence applying Lemma 1,
we obtain the desired result. �

Substituting a = b in Theorem 7, we have

Corollary 6 Let c ≥ (1 +
√

7)/2, then Re{0F1(–; c; z)} > 1/2 for z ∈ D.

Remark 2 Applying the above Corollary 6 for positive half-integers greater than or equal
to 2, we obtain the following inequality for c = 5/2:

Re
(

0F1(–; 5/2; z)
)

= Re

(
3
8z

(
2 cosh(2

√
z) –

sinh(2
√

z)√
z

))
> 1/2 (z ∈D). (15)

Similarly, for c = 7/2, Corollary 4.7 gives the inequality:

Re

(
3
8z

(
2 cosh(2

√
z) –

sinh(2
√

z)√
z

))
> 1/2 (z ∈D). (16)
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6 Boundedness property of 1F2(a; b, c; z)
Let H∞ denotes the space of all bounded functions on H. For the function f ∈H, set

Mp(r, f ) =
(

1
2π

∫ 2π

0

∣∣f
(
reiθ )∣∣p dθ

)1/p

(0 < p < ∞)

and

M∞(r, f ) = max
|z|≤r

∣∣f (z)
∣∣.

The function f is said to belong to Hp and it is called the Hardy space (0 < p ≤ ∞) if
Mp(r, f ) is bounded for all r ∈ [0, 1). Evidently, we have the relationship ([11])

H∞ ⊂Hq ⊂Hp for 0 < p < q < ∞.

The following results are widely known (see [15] and [27]) for the Hardy space ([11]):

Re
(
f ′(z)

)
> 0 ⇒ f ′ ∈Hq for all q < 1

⇒ f ∈Hq/(1–q) for all 0 < q < 1. (17)

Theorem 8 Let a, b, c > 0, a ≤ bc, c > a – b – 1 and

2bc(b + 1)(c + 1) ≥ a
[
4(b + 1)(c + 1) – (a + 1)

]
.

If f ∈R, then the convolution z1F2(a; b, c; z) ∗ f (z) is in H∞ ∩R.

Proof Let f ∈R, then f ′ ∈P . We define a function g by

g(z) = z1F2(a; b, c; z) ∗ f (z) =
∞∑

n=1

(a)n–1

(b)n–1(c)n–1

zn

(n – 1)!
an, (18)

then

g ′(z) = 1F2(a; b, c; z) ∗ f ′(z). (19)

Applying Theorem 7, we have Re{1F2(a; b, c; z)} > 1/2. Also, f (z) ∈ R implies that
Re(f ′(z)) > 0, and therefore from Lemma 7 it follows that g ∈ R. Thus, in view of the first
implication of (17), we have g ′ ∈ Hq for all q < 1. Further, from the second implication of
(17), we have g ∈Hq/(1–q) for all 0 < q < 1, or equivalently, g ∈Hp for all 0 < p < ∞.

In view of the known bound for the Carathéodory functions in the unit disc [12], we
note that if f (z) = z +

∑∞
n=2 anzn ∈R, then

|an| ≤ 2
n

(n ≥ 2).

By using this bound, we have in view of (18):
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Using the well-known bound for the Carathéodory functions in the unit disc, we find
that if f (z) = z +

∑∞
n=2 anzn ∈R then

|an| ≤ 2
n

(n ≥ 2).

Using this fact we find that

∣∣g(z)
∣∣ ≤ |z| +

∞∑

n=2

(a)n–1

(b)n–1(c)n–1(n – 1)!
|an||z|n (20)

< 1 +
∞∑

n=2

(a)n–1

(b)n–1(c)n–1(n – 1)!
2
n

= 1 + 2
∞∑

n=1

(a)n

(b)n(c)nn!
1

n + 1
< 1 + 2

∞∑

n=1

(a)n

(b)n(c)nn!
1
n

.

Therefore, applying Raabe’s test for convergence, we deduce that the series

∞∑

n=1

(a)n

(b)n(c)nn!
1
n

(21)

converges absolutely for |z| = 1. This argument shows that the power series for g(z) con-
verges absolutely for |z| = 1. Furthermore, it is well known that [11, Theorem 3.11, p. 42]
g ′ ∈Hq implies continuity of g onD, the closure ofD. Finally, since the continuous function
g on the compact set D is bounded, g(z) is a bounded analytic function in D. Therefore,
g ∈H∞ and this completes the proof. �

We conclude this paper by considering a special case of Theorem 8. Indeed, if we put
a = b in Theorem 8, we have the following corollary.

Corollary 7 Let c ≥ 1+
√

7
2 and f ∈R, then the convolution z0F1(–; c; z) ∗ f (z) is in H∞ ∩R.
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https://doi.org/10.2478/aicu-2014-0007
24. Ozaki, S.: On the theory of multivalent functions. Sci. Rep. Tokyo Bunrika Daigaku A 2, 167–188 (1935)
25. Ponnusamy, S., Vuorinen, M.: Univalence and convexity properties for Gaussian hypergeometric functions. Rocky Mt.

J. Math. 31(1), 327–353 (2001)
26. Prajapat, J.K.: Certain geometric properties of the Wright functions. Integral Transforms Spec. Funct. 26(3), 203–212

(2015)
27. Priwalow, I.I.: Randeigenschaften Analyticscher Funktionen. Deutscher Verlag Der Wissenschaften (1956)
28. Raina, R.K.: On univalent and starlike Wright’s hypergeometric functions. Rend. Semin. Mat. Univ. Padova 95, 11–22

(1996)
29. Rollinger, C.N.: Lommel functions with imaginary argument. Q. Appl. Math. 21(4), 343–349 (1964)
30. Ruscheweyh, S., Singh, V.: On the order of starlikeness of hypergeometric functions. J. Math. Anal. Appl. 113(1), 1–11

(1986)
31. Shafer, R.E.: Lommel functions of imaginary argument. Technical report, Lawrence Radiation Laboratory, Livermore

(1964)
32. Silverman, H.: Starlike and convexity properties for hypergeometric functions. J. Math. Anal. Appl. 172(2), 574–581

(1993)
33. Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, UK (1966)
34. Stankiewicz, J., Stankiewicz, Z.: Some applications of Hadamard convolutions in the theory of functions. Ann. Univ.

Mariae Curie–Sklodowska 40, 251–265 (1986)
35. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944)
36. Yagmur, N., Orhan, H.: Partial sums of generalized Struve functions. Miskolc Math. Notes 17(1), 657–670 (2016)
37. Zhang, S., Jin, J.: Computation of Special Functions. Wiley Interscience Publication, New York (1996)

https://doi.org/10.2478/aicu-2014-0007

	On the characterization properties of certain hypergeometric functions in the open unit disk
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	The modiﬁed Struve function
	The modiﬁed Lommel function
	The modiﬁed Bessel function

	Key lemmas
	Close-to-convexity of z1F2(a;b,c;z)
	Starlikeness of z1F2(a;b,c;z)
	Convexity of z1F2(a;b,c;z)
	Boundedness property of 1F2(a;b,c;z)
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author contributions
	Author details
	Publisher's Note
	References


