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Abstract

In the present research, we introduce the notion of convex stochastic processes
namely; strongly p-convex stochastic processes. We establish a generalized version of
Ostrowski-type integral inequalities for strongly p-convex stochastic processes in the
setting of a generalized k-fractional Hilfer-Katugampola derivative by using the
Holder and power-mean inequalities. By using our main results, we derived some
known results as special cases and many well-known existing results are also
recaptured. It is assumed that this research will offer new guidelines in fractional
calculus.

Keywords: Convex stochastic processes; Hermite—Hadamard inequality; Ostrowski
inequality

1 Introduction and preliminaries
The theory of inequalities has undergone rapid developments because of its widespread
use in pure and applied mathematics. Recently, the role of fractional calculus made this
area more interesting for researchers (see [1-3]). As classical convexity is being used in
less applied problems, it is always appropriate to explore new versions of convexity. A con-
sensus of the history of the Hermite—Hadamard integral inequality can be found in the
literature [4]. In optimization and probability theory, the Hermite—Hadamard inequality
has become a helpful tool [5].

In 1971, the research on convex stochastic processes began when Nagy [6] employed
a characterization of measurable stochastic processes to resolve a generalization of the
Cauchy functional equation. At the end of the twentieth century, Nikodem introduced
the convex stochastic processes, and Skowronski derived several advanced results on con-
vex stochastic processes that generalize further well-known properties, [7-9]. Further,
Kotrys [10] presented the Hermite—Hadamard inequality for convex stochastic processes
in 2012. Many studies have been done by several researchers on different classes of con-
vex stochastic processes and also Hermite—Hadamard inequalities for convex stochastic
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processes in the literature [11-13]. The well-reputed Hermite—Hadamard inequality for
convex stochastic processes is defined as follows:
Let n: I x 2 — R be Jensen-convex and mean-square continuous in I x €2, then

(bl +by > 1 b n(b1,-) + (b, )
n ) = 2

2 ) Shn )y, VYT e (L.1)

forany ci,dy €1, c1 < d;.

In 2014, the authors of [14] considered Hermite—Hadamard integral-type inequalities
for stochastic processes. Katugampola, considered a fractional integral operator that gen-
eralizes the Hadamard and Riemann-Liouville integrals into a single form and many au-
thors use these results in the area of convexity, generalized convexity, and so on (see
[15, 16]). Recently, different Hermite—Hadamard-type inequalities via fractional integrals
have been presented [17-19].

The classical Ostrowski inequality was proposed in [20] and, recently, the Ostrowski
inequality has attracted the attention of many researchers; many remarkable generaliza-
tions, extensions, variants, and applications can be found in the literature [21-29].

The purpose of this article is to develop some integral inequalities of Ostrowski-type
for a strongly p-convex stochastic process using the generalized k-fractional Hilfer—
Katugampola derivative.

Definition 1.1 ([19, 30]) A stochastic process is a family of random variables 7(x) pa-
rameterized by « € I, where I C R. When I = {1,2,...}, then (k) is known as a stochastic
process in discrete time. When I = [0, 00), then 5(«x) is a stochastic process in continuous
time.

For any ¢ € Q the function I 5 ¥ +—> n(k, ) is termed a path of n(k).

Definition 1.2 ([19, 30]) A family G, of a-fields on Q2 parameterized by k € I, where
I C R, is said to be a filtration if

G, CcGrCG
for any p,« €I such that p <«.

Definition 1.3 ([19, 30]) A stochastic process 1(k) parameterized by « € T is said to be
martingale (supermartingale, submartingale) with respect to a filtration G, if

1) n(x) is integrable for each k € I;

2) n(k) is G,-measurable for each «x € I;

3) n(p) = E(n(x)|G,) (respectively, < or >) for every p,x € I such that p <«.

Definition 1.4 ([19, 31]) Consider (2, A, P) to be an arbitrary probability space and I C R.
A stochastic process X : 2 — R is termed

1) Stochastically continuous in I, if Vk, € I

P— lim T](K, ) = n(Koy ');

K—>Ko

where P — lim represents the limit in probability.
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2) Mean-square continuous in /, if Vk, € I

P - lim E(n(k,-) - n(ko,-)) =0,

K—Ko

where E(5(«, -)) represent the expectation value of the random variable n(«, -).
3) Increasing (decreasing) if Vby, b, € I, by < by

n(b1,-) <n(ba,),  nby,) = n(by,-) (ae.).

4) It is said to be monotonic if it is increasing or decreasing.
5) If there exists a random variable n'(k, -) : I x € — R then it is differentiable at a point
k € I, such that

p,) = P Tim 1) = nle)

K—Ko K — Ko

A stochastic process X : I x © — R is known as continuous (differentiable) if it is contin-

uous (differentiable) at every point of L.

Definition 1.5 ([19, 31]) Let (2, 4, P) be a probability space and I C R with E(5(#)?) < oo
VO € 1. If [k1,k2] C I, k1 =09 < <Oy <+ <y = ky is a partition of [«x1,k;] and ¢ €
[0)-1,0,] for p = 1,2,...,n. A random variable ¥ : @ — R is said to be a mean-square
integral of the process n(?, -) on [k1, k5] if

0 2
nlinc}oE |:Z T’]((pp, ')(7},0: ﬁp—l) - Y():| = 0’
p=1

then

/ 2 @, )dd =Y() (ae).

K1

A mean-square integral operator is increasing, thus,

/ "0, )do < [ TY0,) @e)

K1 K1

here X(9,-) < Z(1,-) in [k1, k2 ].

Definition 1.6 ([7, 19]) Let (2, A, P) be a probability space and I C R. A stochastic process
n:1I x Q — Ris said to be a convex stochastic process, if

n(Ebr+ (1 =§)by,-) <Enby,-) + (1-8E)n(ba,-) (ae) (1.2)
holds for all b1,b, € I and « € [0, 1].

It is natural to view the new versions of convexity in stochastic processes settings, hence
we introduce the strongly p-convex stochastic processes as follows:
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Definition 1.7 Let ¢: Q2 — R be a positive random variable. A stochastic process 1 : 1 x

2 — Ris said to be strongly p-convex with modulus c(-), if

n([68; + (1 -7,
<En(b,) + (1= Enlby, ) — (e~ E)br— b)) (ae)

(1.3)

holds for all b1, b, € I and « € [0,1].
Remark 1.8 1) Taking p = 1 in the above definition, we obtain a strongly convex stochastic
process [11].
2) Taking c(-) = 0 in the above definition, we obtain ap-convex stochastic process [32].
3) Taking p = 1 and ¢(-) = 0 in the above definition, we obtain a convex stochastic process
[7].
Definition 1.9 ([33, 34]) Let [b1, b3] be finite on the real axis R = (—00, 00). Then, the

Lebesgue measurable functions of n on [b1,b;] of complex value are denoted by M, =
(b1, by).

Mq(by, by) = {nrllnqll =(//|n(y)|"dy<+oo}, 1<g<oo.

For g = 1, one has that M, (b1, by) = M(b1, b).
Definition 1.10 ([34, 35]) The k-Gamma function is defined as;
o0 %-K
LCe(y) = / g7 le dE, (1.4)
0

where, y,k > 0. We can observe that

Ce(y+x) =y ()
and

rK(y)=,<i-1r(X>.
K

Definition 1.11 ([34, 36]) The left-hand and right-hand generalized k-fractional integrals

of order wwithz—1<w<z,zeN,k>0,&>0,w>0 are defined as

=g w_
(ilg’ln)()/) = fr » (7 — )" 1xé_ln(x)dx, y> by, (1.5)
k(w) J by
517%/ b w_1 1
(il};’zn)(y) = ( )/ (=) ) dx, ¥ > b (1.6)
KW, y
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Definition 1.12 ([34, 37]) The left-hand and right-hand generalized k-fractional deriva-
tives having order w are defined as;

d n
<Dhn0) = (yl_éd—y) ("5 L5 n), > by, (1.7)

d n
£Dj,n0) = (yl‘sd—y) (k"L ™), 5> ba. (1.8)
Definition 1.13 ([34, 38]) Consider z—1<w <2z 0<9 <1,ze N,k >0,&>0and

n € My[(b1,by)]. Then, the left-hand and right-hand generalized k-fractional Hilfer—
Katugampola derivatives are defined as;

W Kn—wW, - d\" n —9)(kn-w
Dy n) () = (izgj )(yl S@> (& 1" >n))(y>, (1.9)
Kn—w — d " n -9)(kn-w
EDy ) o) = (ilZ; )(yl ¢ d—y) (k" & 15 )n))m, (1.10)

where [ is the integral presented in definition (1.6).

Lemma 1.14 ([34]) Consider z -1 <w <2z 0<9 <1,ze€N, k>0, >0and n €
M, [(by1,b5)], then

w, (kn—w d n - (kn-w
Dy () i) oo

Y

0= (52
(gl Kn—-w) <y1 & d )"(Knslkn—w—ﬁ(/m—w)))n(y)
dy Kby

gl (kn— w)< )VI nglkn {w+0 (kn—-w)} )
5) « n) )0)

1 (cn— W)SDW+19 Kn— W)ﬂ)(y) (by using (1.7))

(v
($1¢ wE Ny ) )
=

b1 « b1
514’ "n )
1-&v

M/ 0" - xp)_fl @) dx  (by using (1.5)), (1.11)

where ¢ = w + 0 (kn — w), w> 0 and n'? is the derivative of 1) presented in (1.7).

Thus, the generalized k-fractional Hilfer—Katugampola derivative can be presented as:

gl_ﬂ -1

£ _ )

Dy ) ) = P A (yp x") (x)dx, z>by, (1.12)
(EDW”?’?)O/) = i ” (# —yp)(tiw_lxé_ln(‘z’)(x) dx, z<b;. (1.13)
“h KFK(¢_W) y

Definition 1.15 ([34]) The beta function denoted by B is defined as;

(NG N . by-1
Blbwbo) = 0 - /0 P11 -) g, (biby>0) (1.14)
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and the Gaussian hypergeometric function denoted by F; is defined as;

1 1
Filbybiibab) = g [ eia- gt b e,
) - 0

(bg > by >0,|b| < 1), (1.15)
where I'(b) = [, e*£%"! d& is the well-known Euler Gamma function.

2 Ostrowski-type inequalities for a strongly p-convex stochastic process
The Ostrowski-type inequality for a strongly p-convex stochastic process in the setting of

a generalized k-fractional Hilfer-Katugampola derivative is established in this section.

Lemma 2.1 Let a differentiable stochastic process ju > 0 with p € R\{0} and n" : I x Q@ —
R defined on the I° such that by, by € I with by < by and ") e M([by, by)), then the fol-

lowing inequality holds almost everywhere:

(07 = B\ (by, ) + (b5 — 32 )"0 (by, )
pH(by —by)
Ce(u+6) 0, P i
=y =y Lm0+ €Dy m) 0]
_ (yp _ bll’);ul
T ptiby-by)

1 1
< [ et ra-on) T ar e (et v - o) de
0

-y
pri(by — by)

1 1y
« [ er(erhe a-en) T (et -0, ) de. e.1)

Proof Integrating by parts, we can write

[ s a-e) F e (el oo, )as

) [PE”’?(” )+ (1 —E)y”w)}l /lpué“‘ln(” EV) + (1-£)yr,) e
0

b~y 0 Py
by, [P PREMTIE (L= £)p7, ) d
B b’f‘)’p —-/0 bllj—yp s
_pn(by, ) PP oy —wr\ w1 »
-y _y"—b‘f/y (yp—b‘l’> o) g [w=Jett+ 1 -e]

by,- 2 y B
) Pb’z}(—lyp) * (yr fbﬁ]:)“’rl /bl (yp - Wp)# IU(W: P ldw

_pnby) Pulcw)  pt (7
Bl —yr  ptoi(yp = D) Te(p) Jyy

w? L (o = w?)* i (w, ) dw

Page 6 of 19
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_pn(by,) . P (e + k) ptt
By -y (=Bt T(i) Jp,

_pnlby) PHIT (1 + k)
A

Ly —w?) T p(w, ) dw

(2D ) 0 )- (2.2)

Similarly,

[ e a-en) e (et -, ) as

(b ) ) 1+MFK( )
i pr’ —ZyP ) p(b’i —yff):f (€D3;7)07) (2:3)

bp);ul (biz’_yp)uﬂ .
For both sides of (2.2) and (2.3), multiplying by 1+u by A0 STy respectively, we
obtain
()/p _ b!IJ);/.Jrl

1 -p
— p +1) _ )
S, 5y ), 5 EH - £p) 7 WD (e + (-, )

_(yp_b‘ll?)#n(bb') Lo +x) P it
pi(bs—by)  (by—by) (£ 0>, (2.4)

and

bp_ n+1 1p
% £ (685 + (L-8)) 7 1D (Yebh + (1 - )0, ) d

(G- n(by,) Tl +k)
- pt(by —by) B (by — by) (1;? hg’l)()’w). 25)

From (2.4) and (2.5), we obtain the inequality (2.1). |

Theorem 2.2 For a differentiable stochastic process by, by € 1 with by < by, and )
I x QC (0,00) = R on I° such that n**V) € M([by,b,)) and |n"“*V| a strongly p-convex
stochastic process with modulus c(-) satisfying [n**V(y, )| < Q, Vy € [b1, b,), the following
inequality holds almost everywhere for all y € [b1,b;] and p € (0, 00):

‘ 07 = Y0 b1, ) + (B =50 b, )
p"(by = by)
s D)0 + (D))
(b =) <Y

b_[ 9 (Yot oy
w+1 (by - by)
0 (@P—b’f)ﬂ“(y—bl)z+(b§—yp)“+1(y—bz)2)]
(u+2)(u+3) (b= ) ’

= 1
- +
p “n

(2.6)

Page 7 of 19
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and the following inequality holds almost everywhere for all y € (b1, by) and p € (—00,0) U
(0,1):

‘ 7 = D)0 by, ) + (B —97) 0" (ba, )

p*(by—by)
De(u+6) 1 o
T (by—by) [(KDb* )0, + (KDhgn)(y»')]
- b;—p |: Q ((yp — Dy 4 (B _yp)#+1)
AV (b2~ D)
B c(+) ((yp _ u+1(y bl (blz’ _yp);ul(y _ bz)z)] 07
(n+2) (1 +3) (by — by) : .

Proof By using Lemma 2.1, to prove inequality (2.6) of Theorem 2.2 for a strongly p-

convex stochastic process of [+ yields

O = B0 (by, ) + (B — y2)“ 0¥ (b, )
pH(by — by)

FK M Y23
} (biu—;:)) (D) 0) + Dy n) 0, ')]‘
— Yyu+t
5%/ Er(EM +(1- S)J’P) ( EDE + (1-&)yr, )‘df;‘
bp_ n+1 1 1p
1% £ e+ (1-8y) 7 WD (e + (-, e
_ o=ty

AVt VA Ry #
—p“u(bz—bl)/ e+ A=)

x [€[n" Dby, )] + (1= 6) "V, )| - (Ve (1 =)y - br)*] dE

(b’; _yp)u+1
pr(by - by) Jo

x [€[n" D (bo, ) + (1= E)[n* V()| - c(Ve(L - &)y - b2)*]dE  (ace.).

1p
»

s“ (5 + (1 -&)y)

As p € (1,00), we can deduce that

1p
p

E 4 (L—En?) 7 < (€W + (1-8)) 7 <bl. (2.8)

We proceed by simplifying

1
/0 ER[E |0 D (b1, )] + (1= )10, )] - OB - £)y - b1)?] d

T ()
_[/Hl (u+2)(u+3)(y bl)} (@.e)
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Similarly,

1
/0 EL[E D (B, )] + (L= 8"V, )| = c()EQL — &)y - ba)?] dE

:[ Q c(-)
w+1 (u+2)(n+3)

(y— b2)2:| (a.e.).

The inequality (2.6) of Theorem 2.2 is proved.
Now, to prove inequality (2.7), we consider p € (—00,0) U (0, 1) that yields

(0 + (1 -80) 7 < (5B + (1-0)) 7 <0} (29)
This completes the proof. d

Theorem 2.3 For a differentiable stochastic process 6, A > 1 with 14 l=1,b,byel
With by < by, and n™ : I x Q C (0,00) — R on I° such that n"*V € M([b1, b,]) and |n*+|*
a strongly p-convex stochastic process with modulus c(-) satisfying |n**V(y,-)| < Q, Vy €
[b1, b)), the following inequality holds almost everywhere for all y € [b1, b,] and p € (0, 00):

0 = B0 (by, ) + (B — y2)“ 0 (b, )
pH(by — by)

FK i I
oD 0)0.+ (D4 1) 0.0

by ” [()’p—b'f)“”( <0 2)
b
_p1+/1«(1+5/,¢)% (ba — b1) @ - (y )

bP _ 1+1
G (- o) ] i

and the following inequality holds almost everywhere for all y € (b1,b3) and p € (—00,0) U
(0,1):

(yp - b’f)”’l(“)(bl, ) + (bg —yp)”ﬂ(“)(bz: )

pH(by—by)

Ce(i + k) _ -

- D)0+ (D )0,0)
b;*P |:(yp_bll7)u+1( X () 2)
b

p1+l‘(1+8/¢)% (by—b1) - (y )

@ -y el %
W(@ ‘?@-bﬂ) } 211)

Proof From Lemma 2.1, (2.8), and Holder’s inequality to prove (2.10) of Theorem 2.3 yields

07 = B0 (b, ) + (B~ )0 (s, )
pH(by—by)

Ty (u+ 1 )
_(biﬂf:n))[( D)) + ({Dj;n) )]'




Qi et al. Journal of Inequalities and Applications (2023) 2023:12
- bﬁ)}l*—l ! " 71;[7 (/l.+1) {/7 ‘
L _ —_ &P, .
Sp()““(bz—bl) e a-a) T e (Yend + - o) de

@y
p(by — b1) Jo

- b}—P(yp _ bllf)/ul
= pt(ba-b1) Jo
N b}_p(bg _yp)u+l IEM
pri(ba=b1) Jo
- b}—P(yp _ bllf)/ul
= pt(by—by)

([ e dgf( [ e (e —sm)(kds)%

by " -y
pl(by - by)

([ (]

n(’“”({’/éb’z’ +(1-&)y, ) ’ 3
n(‘””(\”/éb’f +(1=&)r, ) ‘ d&
n(‘“”(f/éb’z’ +(1-&)yP, ) ) 3

FE e (L=E)) T

1
g"

(g o) &) e

As |n"*D|* is a strongly p-convex stochastic process and |*+*V(y, -)| < Qforally € [by, by],

we have

/Ol‘n(wl)(p/gbll’ + (1_§)yp,.>‘kdg

1
< f ([0 by, )| + (1 - ), -)
0

<0~ D45 e

o o()E(L-£)(y - by)?] dt

and

/Ol‘n(;ul)( TR + (1 - E)yp, ) ‘Adg <Q'- ?(y— b)* (ae).

The remaining proof is simple.

Theorem 2.4 For a differentiable stochastic process 8, > 1 with §* + A1 =1, by, by € 1
With by < by, and n™ : I x Q C (0,00) — R on I° such that n'"*V € M([b1, by]) and |n*+|*
a strongly p-convex stochastic process with modulus c(-) satisfying |n"*Y(y,-)] < Q, Vy €
[b1, by, the following inequality holds almost everywhere for all y € [by,by] and p € (0, 00):

l 0 = ) (by, ) + (B — y2) 0 (by, -)
pH(by — b1)

[ (i + k)

"~ (by-by)

1- . %
s b; i [(y‘“—b’f)u 1< @ () (y—b1)2)
p't (by—b1) \1+iuw (Ap+2)(Ap+3)

[GDym) ) + (CDyn) B -)]'

Page 10 of 19



Qi et al. Journal of Inequalities and Applications (2023) 2023:12

By -y )t Q@ () %
T (ba-b) (1+AM_(,\M+2)(,\,,L+3)@‘1’2)) ] (2.12)

and the following inequality holds almost everywhere for all y € (b1, by) and p € (—00,0) U
(0,1):

’ (- bzf)“n(“)(bl, D+ (b’z’ —y")“n(“)(bg, )

p'(by = by)
_FK(H‘FK)[(pDP« )(y ')+(pD“ )(y )]‘
(bp—by) ot T TR R
T pHirl (by=b1) \1+ipn (Au+2)(Apu+3) 1
W -yy (@ 0 N
" 1) (1+w_(w+2)(xu+3)(y‘b2)) } (2.13)

Proof From Lemma 2.1, (2.8), and the power-mean inequality to prove (2.12) of Theo-
rem 2.4 yields

0 = By (by, ) + (B — y2)“n*) by, -)
pH(by - by)

FK I
0 0)0. + (Df1) 0.0

< O [Cene e a0) 7 e (e 1) e
(bg _yl’)l“l 1 n(/!-+l)( p %'bg +(1- E)J/p» )’ds

1p
p

g1 (EHh + (1-€)y”)

p(by — b1) Jo
0

_ %(/OEW‘"WM(W,,)‘ldg)%
n(ml)(m,.)rﬁf we).

- N
L[
0
As |+ |* is a strongly p-convex stochastic process and [n“*V(y, -)| < Qforally € [by, b],

pr(by — by)

we obtain
/01 sw‘n(uﬂ)(xﬂ/sbf +(1-&)y?, ) ‘A dE

P (=), - c(EQ - £)(y - 1)) de

1
< / g ) by, )
0

Q c(-)

= - _h)2
T ap+1 ()LM+2)()LM+3)()/ b1)® (ae).

Page 11 0of 19
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Similarly,

/Olé“‘]n‘*““(" e, + -y, )| ae

Q* <)

2
= Aun+l B O +2) (O + 3)0’— by)* (a.e.).

By combining all the above inequalities we obtain our desired result. O

Theorem 2.5 Let the differentiable stochastic process 8, > 1 with S1+at=1,b,b,el
with by < by, and n™ : I x Q C (0,00) — R on I° such that n"*+*V € M([by, b,]) and |n*+D|*
a strongly p-convex stochastic process with modulus c(-) satisfying |n**V(y,-)| < Q, Vy €
[b1, b)), the following inequality holds almost everywhere for all y € [by, by] and p € (0, 00):

O0F =B (by, ) + (b5 — y7) 0 (b, )
pH(by—by)

I
- oSS n) 0+ €D n)0,0]

- (5 - bll’);ul + (blz’ — Pyl [ bi(lfp) . g]
- plﬂt(bz - bl) 8(5# + 1) A

_c()r |: (o = Byt (b — Pyt
6 |p'(by—by) pr(by — by)

(y—b1)* + ()’—bz)z]; (2.14)

and the following inequality holds almost everywhere for all y € (b1, b,) and p € (—00,0) U
(0,1):

| (o - b’f)“rl(”)(bly D+ (biz’ —y”)"n(“)(bg, )

pH(by—b1)
oSS n) 0+ €0l n)0.0]
0P —ypw[ B @ ]
N pri(by — by) S(6u+1) A
“a 1
- [ﬁf&fiﬂm b % v w]. 219
Proof The Young’s inequality is mn < }m® + 1n*, m,n > 0,8,A > 1,81 + 17! = 1. By using

Lemma 2.1, to prove (2.14) of Theorem 2.5, and taking the definition of a strongly p-convex
) |>»

stochastic process of [n“+V|* yields

| (o - bzf)“n(”)(bl, D+ (biz’ —y”)"n(“)(bg, )

pH(by = b)
Ll + ) p oy -
B m[(KDbi’ n)(y’ )+ (KDbgn)(yr )]
- (yp_bll’)u_ﬂ

 piti(by - by)

x /01<§|s“(5b’1’ ra=e0) 7 g (et e )| ) e
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-y
prH(by — by)

xfol(éls“(sb'h(l—s)y”)l’*pI“i\ v (Yerh v (-epp,)| )ds

_bp)[l.+1 1 EB/L 1-p
Sp(lyfﬂ(bzl—bl)[/o ( 5l a-ay) |

)

T O (RN (R M IO

5=yt [ e
el ], (5 e ra-on 7

+%{§|n(’”l)(bz,-)| +(1=8)[n" V0, )" —e(EA-E)y - bz>2})dé]

< (7 = D))"+ (b —yP) b‘i(l'p) Q*
B p(by — by) [8(8lu,+1) +Ti|

6)L [ (yp_ u+1 O,_bl)z (bP yp u+l

1*“([)2— by) Py — ()/ bz):| (a.e.).

Continuing in the same way, we can prove (2.15). O

Theorem 2.6 For a differentiable stochastic process 8, > 1 with §* + A1 =1, by, by € 1
With by < by, and n™ : I x Q C (0,00) — R on I° such that n"*V € M([b1, b,]) and |n*+|*
a strongly p-convex stochastic process with modulus c(-) satisfying |n“*V(y,-)| < Q, Vy €
[b1, by, the following inequality holds almost everywhere for all y € [by, by) and p € (0, 00):

O = B0 (by, ) + (B — y2)“ 0¥ (b, )
pH(by - by)

r,
_ (biu_;)f)) (D5 )0 ) + (D1 m) 0 ')]'

(0 =By (= A T B
=T b b)) [w . AQ]

cOA[ (o7 =Byt
6 [plwbz—bl)

Wy

-b)*+
0=l =B

(y- bz)z], (2.16)

and the following inequality holds almost everywhere for all y € (b1, by) and p € (—00,0) U
(0,1):

‘ 7 = B0 by, ) + (B —97) 0" (ba, )

p*(by —by)
_ FK(M+K) [(PDM )()/ )+ (pDM )(y )]‘
(by—by) " b+ K h;’l ’
0P B + (B —yf’)‘“l[ by "8 ]
: pl(by — by) (w+1) +1Q
() (yp—b’f)““ ) (b’z’—yl’)lﬁl ,
— 6 |:p1+u(b2_b1) _bl) +m(y—b2) ] (217)
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Proof To prove this result, we will use the following inequality:

mlnt < 8m + An, m,n >0, 8,A>0, S+A=1.

By using (2.1) and taking the definition of a strongly p-convex stochastic process of
In®+V|* yields

(0 = b)Y 0 (by,-) + (B — y7)' 0" (by, )
p'(by —by)
B el +x) [(leL )()’ )+ (pDM_ )(y )]‘
(by=by) oV AR T
- (yp_blf)wl
= pt(by - by)

<[l a-on) 7|

oy
pi(by — by)

« [l a6 T ek v e, )] e

_ -ty
= pt(by - by)

[/ ER(EH, + (L-8)) 7 dt

+/O A‘n(’”l)(mw)’df]

B
pr(by — by)

1 1-p
x[/ e+ (L-EW) 7 de
0

+/01A‘n(“+1)({/m">’d$]

(yp_bp)/ul 1 .
< gl 7

(u+1)(\/m )Hk 4%

/0 Me[n® by, ) + Q- 8) Py, - c()EQ - &)y - bl)z}ds}

(B — y?)! 1peen
(b, bl)[/ biTogt dg

A (n+1) by,

+/0 (€[00 (b, )
+ + 1-

O U]

+(L=&)[n" V()| —c()E1 - £)(y - bz)z}dé{|

p1+/4(b2 -by) 1
cOA (07 =)yt , (B =y ,
_ 6 |:pl+ﬂ(b2_b1)(y_b1) +m(}’—b2) :I (a.e.).

Continuing in the same manner, we can also prove (2.17). O
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Theorem 2.7 For a differentiable stochastic process 8, > 1 with 5t + A1 =1, by, by € 1
With by < by, and n™W : I x Q C (0,00) = R on I° such that n"*V € M([b1, by]) and |n*+V|*
a strongly p-convex stochastic process with modulus c(-) satisfying |n"“*Y(y,-)] < Q, ¥y €
[b1, by, the following inequality holds almost everywhere for all y € [by,b;) and p € (0, 00):

O =B (by, ) + (B — y7)“ 0 (b, )
pH(by - by)

C (i + 1)
Dm0+ €0l )]
- (yp _ bl;);ul
= plu (b — b))
1 1 A . x
>4Ummwmﬁ+UmmmmPK%~i§@-my>, 2.18)

and the following inequality holds almost everywhere for all y € (b1, b3) and p € (-00,0) U
(0,1):

O = B0 (by, ) + (B — 7)) (b, )
pH(by —by)

[y
)04+ €Df0)000)
_ -y
= prilbs —by)
1 1 A . e
x [(IT3(b2,y3p))° + (Ma(ba y3p))° | <7 - %(y— b2)2> . (2.19)

Here,

[2F1(68(1-3).0p+ Lou3,1-(2L)P))
-1 (§p1+1)(82+2) ’

. _ Y " M

Th(BLyib) = 1 R 60- D suesi-2v)

p € (-00,0)U(0,1),

€ (1,00),
bfwil)(8u+1)(8u+2) p ( )
2F1 (6(1-3)5+1,80+31-(2 )]

SN PP (5u+2) ’
(b y;p) = [2F1(8(1— }).6 1+ 18143, 1~(£-)7)]

pE (—OO, 0) U (0, 1):

) € (1,00),
b(i(p—l)(é,u+2) pel( )
2F1 (6(1-3).5+1,80+31-(2 )]
Sp-1) ’
N ¥ (3p+1)(8p+2)
I3(by, y;p) = [2F1(8(1- )61+ Lop3,1-( 2 P))

p e (~00,0)U(0,1),

€ (1,00),
B3P (51041)(611+2) pel )

and

[2F; (5(1—},),8/4+1,3u+3,1—(b72)")]
Fi) )

N ¥y (Bu+2)
Ta(b23i0) = ¥ r 0= Dyt s v

p €(-00,0)U(0,1),

, € (1,00).
bg(pil)(6u+2) p ( OO)
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Proof By using Lemma 2.1, to prove the first part of Theorem 2.7 and from the Holder—
Iscan inequality yields

07 = R 1 b1, ) + (B = )0 (b, )

p(by —b1)
FK(/’L+K) P M
e (LR AR
(yp bp;ul

m/ EM(E +(1- E))’p)

w0 (Yert + -y, )| a
u+1)(m,.>’d§

x ( / it —s>\ﬁﬂ*“(€/sbﬁ’+(1—S)ypf)\kds)%

3§

(bP yp);ul
PPl - m)/ e ra-y)

(f £ (58] + (1-£)y?)’ T”)ds)

([T )]

B ([ ea-ores -y )
x (/1(1 &) n(““)({/m, .>‘kds>%

+</ $8M+1 %'bp+(1 é)yp) Tp )%

( /0 s\ﬁ*‘*”({”/s%+(1—s)yp,-)\*ds);]

X

«[menso! ([ - (et va-eme. )| a s)i
(o) ([ e (et =g, ) ac) i}

(bs _yp)u+1
pL(by - by)

X[(ns(bz»yp (/ A=) (Jeth+ 1-g),-) ds)
+ (Malbo,yip)) (/ el (Jerg+ a-epr,)[ sﬂ (a.c).
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As |n"*D|* is a strongly p-convex stochastic process and [“+*V(y, -)| < Qforally € [by, by],
we obtain

/0 « o) (Yot - -, )| s

1
< /O (1= &)[E[n™ Dby, )" + A =)0V, )| - (Va1 - &)y - br)*] dE

A’ .
-=- %(y— b)Y (ae),

/0 ls(n"‘“)({’/sb'{ ey, )| e

1
< fo E[E|n™ Dby, )| + A=) "Dy, )| - (Ve - €)(y - br)?] d

)\' .
T Yy by e

Similarly, we have

/01(1 _5)‘,](;“1)(17/5175 +(1 _g)yp,.>‘xd§

)\' .
< % - %(y— b)? (ae),
1
/(; é_—‘n(uﬂ)(ﬁ/%—bg+(1_§)yp,.>’Ad5
A‘ .
< -5 %(y— b)? (ae).

We now have the result that

1 1p
(b, y;p) = /o E(L—g) (W + (1-&)) 7k (2.20)

[2F1(6(1- D)o+ Lous3.1-(5)P)]
PV (6p+1)(6p+2) ’
[2F; (8(1—1%),5u+1,5u+3,1—(%)1’)]

P (5u+1)(01+2)

pe (—OO, 0) ) (O: 1)1

, pe(l,00),

1 1-p
Hz(bh)’;p):/() E‘”‘“(Sb‘l’+(1—€)y’”)8(7)d$ (2.21)

2F (5(17%),5M+1,5ﬂ+3,17(”y—1)17)]
PO-D(5p+2) ’
[2F; (6(1—1%),6u+1,5u+3,1—(%)")}

Rl

pE (_OO)O) ) (0: 1)7

, pe(l,00),

1 1-p
(b yip) = /0 P E) (W + (1-En?) T de (2.22)

(21 (51~ £),81+1,5043,1-(22)P))
POV Gp+1)(Eu+2) ’
[2F1(3(1- )81+ 1611+3,1~(5 )]

bg(pil) (Su+1)(8u+2)

p € (-00,0)0U(0,1),

, pe(l,00),

Page 17 of 19



Qi et al. Journal of Inequalities and Applications (2023) 2023:12 Page 18 of 19

1 1p
S(—=£
Mibwyip) = [ £ (et v (1- )" (223)
0
(2P (5(1-1),6.041,610+3,1-(22)7))
I;g(p_l)(aquz) 2 ) 17 € (—OO, O) U (O; 1))
[2F1(3(1-3), 1+ 1811+3,1~(5 )]
s € (1,00).
bg(pil) (Sp+2) p ( )
Combining all above inequalities, we obtain the desired result (2.18) and (2.19). (]

3 Conclusion

In the present note, we introduced the notion of a strongly p-convex stochastic process.
We established Ostrowski-type inequalities for a strongly p-convex stochastic process.
Also, we established some integral inequalities of Ostrowski-type via the generalized k-
fractional Hilfer—Katugampola derivative.
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