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Abstract
The main purpose of this paper is to study certain inequalities for cr-log-h-convex
functions with an interval value. To this end, we first give a definition of
cr-log-h-convexity of interval-valued functions under the cr-order and study some
properties of such functions. On this basis, we establish the Jensen-,
Hermite–Hadamard-, and Fejér-type inequalities for cr-log-h-convex functions, and
discuss some special cases. In addition, we give some numerical examples to illustrate
the accuracy of the results obtained.
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1 Introduction
The convexity of a function is a classical concept that plays an important fundamental
role in fields such as game theory and optimal control, but many practical problems en-
counter functions that are not the classical class of convex functions, but a weaker class
of functions than convex functions. The study of generalized convexity of functions is
therefore a meaningful and interesting area of work, and one that has received a great deal
of scholarly attention. Many new weaker generalized convexities have been proposed to
meet the needs of practical problems. For example, Noor et al. [1] gave the definition of
a log-h-convex function, which is a more general form of several kinds of convex functions.
Moreover, they established integral inequalities for log-h-convex functions and studied
the basic properties of such functions. It is well known that the Hermite–Hadamard in-
equality is an equivalent form of a convex function, so generalized convexity is a necessary
condition for establishing a Hermite–Hadamard-type inequality. The generalized convex
functions and their related inequalities have been fruitfully studied in the last decade, and
the interested reader is referred to [2–13].

On the other hand, interval analysis is a useful tool for measuring uncertainty problems.
It has a long history dating back to Archimedes’ measurement of π , but it was through
Moore’s [14] first application of interval analysis to automated error analysis that the study
of it was taken seriously. Since 2013, Costa et al. [15], Flores-Franulič et al. [16], Chalco-
Cano et al. [17] and others have extended many classical integral inequalities to interval-
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valued functions and fuzzy-valued functions. In particular, Guo et al. [18] gave the defini-
tion of an interval log-h-convex function and established the corresponding integral in-
equality by using the interval-inclusion relation. In 2021, Muhammad [19] introduced the
definition of an h-convex interval-valued function by using Kulisch–Miranker order, and
proved some inequalities of this kind of convex functions. However, both of these order
relations are partial, meaning that any two intervals may be incomparable. It is therefore
an interesting task to find a suitable order for the study of inequalities related to interval-
valued functions. In 2014, Bhunia [20] used the center radius of the interval to establish
a new rank relation, the cr-order. This is a full-order relationship, meaning that any two
intervals can be compared using this order. The main aim of this paper is therefore to in-
vestigate the generalized convexity of interval-valued functions using the cr-order and to
establish the inequalities associated with that convexity.

The paper is organized as follows: after the preliminaries in Sect. 2, we introduce
the concept of cr-log-h-convexity, and discuss some of its fascinating characteristics in
Sect. 3, then some Jensen-type, Hermite–Hadamard-type, and Fejér-type inequalities for
cr-log-h-convex functions are proved. Also, some numerical examples are given to illus-
trate the accuracy of the results obtained. We end with Sect. 4 giving some conclusions
and suggestions for future work.

2 Preliminaries
Let R be the set of all real numbers, R+ the set of all positive real numbers. The set of
all closed intervals on R is denoted by RI . For [a, a] ∈ RI , if a > 0, then [a, a] is called a
positive interval. The set of all positive intervals is denoted by R

+
I .

For any λ ∈ R, a = [a, a], b = [b, b] ∈ RI , the Minkowski addition and scalar multiplica-
tion of intervals are defined by

a + b = [a, a] + [b, b] = [a + b, a + b];

and

λa = λ[a, a] =

⎧
⎪⎪⎨

⎪⎪⎩

[λa, λa], λ > 0,

[0, 0], λ = 0,

[λa,λa], λ < 0.

Let a = [a, a] ∈RI , ac = a+a
2 is called the center of a and ar = a–a

2 is called the radius of a.
Then, a = [a, a] can also be presented in center-radius form as

a =
〈

a + a
2

,
a – a

2

〉

= 〈ac, ar〉.

Definition 2.1 ([20]) Let a = [a, a] = 〈ac, ar〉, b = [b, b] = 〈bc, br〉 ∈ RI , then the center-
radius order (for brevity, cr-order) relation is defined as

a �cr b ⇔
⎧
⎨

⎩

ac < bc, if ac �= bc,

ar ≤ br , if ac = bc.

Obviously, for any two intervals a, b ∈ RI , either a �cr b or b �cr a.
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Let f : [a, b] →RI , then f is called an interval-valued function. For more basic notations
and properties of interval-valued functions, see [14, 21–23]. In particular, the concept of
Riemann integrals for interval-valued functions is given in [21]. The set of all Riemann
integrable interval-valued functions on [a, b] is denoted by IR([a,b]).

Moreover, we have

Theorem 2.2 ([21]) Let f : [a, b] → RI be an interval-valued function given by f = [f , f ].
Then, the f is Riemann integrable on [a, b] if and only if f and f are Riemann integrable on
[a, b] and

∫ b

a
f (x) dx =

[∫ b

a
f (x) dx,

∫ b

a
f (x) dx

]

.

Theorem 2.3 ([23]) Let f , g : [a, b] → R
+
I be interval-valued functions given by f = [f , f ]

and g = [g, g]. If f , g ∈ IR([a,b]), and f (x) �cr g(x) for all x ∈ [a, b], then

∫ b

a
f (x) dx �cr

∫ b

a
g(x) dx.

3 Main results
In this section, we mainly introduce a new concept of cr-log-h-convexity for interval-
valued functions and investigate its properties. On this basis, we establish the inequalities
associated with the cr-log-h-convex function.

First, we recall the concept of log-h-convexity for real functions in [1].

Definition 3.1 ([1]) Let h : [0, 1] → R
+ be a function. We say that f : [a, b] → R

+ is a
log-h-convex function, if for all x, y ∈ [a, b] and t ∈ [0, 1],

f
(
tx + (1 – t)y

) ≤ [
f (x)

]h(t)[f (y)
]h(1–t).

h is called a supermultiplicative function if for any ϑ , t ∈ [0, 1],

h(ϑt) ≥ h(ϑ)h(t).

Now, we generalize this concept to interval-valued functions.

Definition 3.2 Let f : [a, b] → R
+
I be an interval-valued function with f = [f , f ], and h :

[0, 1] →R
+ be a nonnegative function. Then, f is said to be cr-log-h-convex on [a, b] if

f
(
tx1 + (1 – t)x2

) �cr
[
f (x1)

]h(t)[f (x2)
]h(1–t),

for each t ∈ (0, 1) and any x1, x2 ∈ [a, b].

Denote by SX(cr- log -h, [a, b],R+
I) the set of all cr-log-h-convex functions on [a, b].

Remark 3.3 In Definition 3.2,
• If f = f , then f is reduced to a log-h-convex function defined in Definition 3.1.
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• If h(t) = t, then f is called a cr-log-convex function, i.e.,

f
(
tx1 + (1 – t)x2

) �cr
[
f (x1)

]t[f (x2)
]1–t .

• If h(t) = ts, s ∈ (0, 1], then f is called a cr-log-s-convex function, i.e.,

f
(
tx1 + (1 – t)x2

) �cr
[
f (x1)

]ts[
f (x2)

](1–t)s
.

• If h(t) = 1, then f is called a cr-log-P function, i.e.,

f
(
tx1 + (1 – t)x2

) �cr f (x1)f (x2).

Proposition 3.4 Let f : [a, b] → RI be an interval-valued function given by f = [f , f ] =
〈fc, fr〉. If fc and fr are log-h-convex on [a, b], then f is a cr-log-h-convex function on [a, b].

Proof Since fc and fr are log-h-convex on [a, b], then for each t ∈ (0, 1) and any x1, x2 ∈
[a, b], we have

fc
(
tx1 + (1 – t)x2

) ≤ [
fc(x1)

]h(t)[fc(x2)
]h(1–t),

and

fr
(
tx1 + (1 – t)x2

) ≤ [
fr(x1)

]h(t)[fr(x2)
]h(1–t).

Now, if fc(tx1 + (1 – t)x2) �= [fc(x1)]h(t)[fc(x2)]h(1–t), then for each t ∈ (0, 1) and every x1, x2 ∈
[a, b],

fc
(
tx1 + (1 – t)x2

)
<

[
fc(x1)

]h(t)[fc(x2)
]h(1–t),

that is,

f
(
tx1 + (1 – t)x2

) �cr
[
f (x1)

]h(t)[f (x2)
]h(1–t).

Otherwise, for each t ∈ (0, 1) and all x1, x2 ∈ [a, b], we have

fr
(
tx1 + (1 – t)x2

) ≤ [
fr(x1)

]h(t)[fr(x2)
]h(1–t),

that is,

f
(
tx1 + (1 – t)x2

) �cr
[
f (x1)

]h(t)[f (x2)
]h(1–t).

The proof is completed by combining the above inequations. �

Proposition 3.5 Let f : [a, b] → R
+
I be an interval-valued function given by f = [f , f ] =

〈fc, fr〉 and f ∈ SX(cr- log -h, [a, b],R+
I), h : [0, 1] → R

+ is a multiplicative function. Then,
for any x1, x2, x3 ∈ [0, 1] and x1 < x2 < x3,

[
f (x2)

]h(x3–x1) �cr
[
f (x1)

]h(x3–x2)[f (x3)
]h(x2–x1).
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Proof Let x1, x2, x3 ∈ [0, 1] satisfy the assumptions, then

h
(

x3 – x2

x3 – x1

)

=
h(x3 – x2)
h(x3 – x1)

, h
(

x2 – x1

x3 – x1

)

=
h(x2 – x1)
h(x3 – x1)

.

Let t = x3–x2
x3–x1

, then x2 = tx1 + (1 – t)x3. Since f ∈ SX(cr- log -h, [a, b],R+
I) and h is a multi-

plicative function, then

f (x2) = f
(
tx1 + (1 – t)x3

) �cr
[
f (x1)

]h( x3–x2
x3–x1

)[f (x3)
]h( x2–x1

x3–x1
)

�cr
[
f (x1)

] h(x3–x2)
h(x3–x1)

[
f (x3)

] h(x2–x1)
h(x3–x1) .

Thus,

[
f (x2)

]h(x3–x1) �cr
[
f (x1)

]h(x3–x2)[f (x3)
]h(x2–x1).

The proof is completed. �

In what follows, we give a Jensen-type inequality for cr-log-h-convex functions.

Theorem 3.6 Let f : [a, b] → R
+
I be an interval-valued function and h : [0, 1] → R

+ be a
nonnegative supermultiplicative function. If f ∈ SX(cr- log -h, [a, b],R+

I), then

f

(
1
Pn

n∑

i=1

pixi

)

�cr

n∏

i=1

[
f (xi)

]h( pi
Pn ), (3.1)

where pi ≥ 0 but not all 0, xi ∈ [a, b], i = 1, 2, . . . , n, and Pn =
∑n

i=1 pi.

Proof Let f ∈ SX(cr- log -h, [a, b],R+
I). If n = 2, according to Definition 3.2, we have

f
(

p1

P2
x1 +

p2

P2
x2

)

�cr
[
f (x1)

]h( p1
P2

)[f (x2)
]h( p2

P2
).

Assume that (3.1) holds for n = k, that is

f

(
1
Pk

k∑

i=1

pixi

)

�cr

k∏

i=1

[
f (xi)

]h( pi
Pk

).

Now, let us prove that (3.1) is valid when n = k + 1,

f

(
1

Pk+1

k+1∑

i=1

pixi

)

= f

(
1

Pk+1

k–1∑

i=1

pixi +
pk + pk+1

Pk+1

(
pkxk

pk + pk+1
+

pk+1xk+1

pk + pk+1

))

�cr

k–1∏

i=1

h
(

pi

Pk+1

)

f (xi)
[

f
(

pkxk

pk + pk+1
+

pk+1xk+1

pk + pk+1

)]h( pk +pk+1
Pk+1

)
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�cr

k–1∏

i=1

h
(

pi

Pk+1

)

f (xi)
[[

f (xk)
]h( pk

pk +pk+1
)[f (xk+1)

]h( pk+1
pk +pk+1

)]h( pk +pk+1
Pk+1

)

�cr

k–1∏

i=1

h
(

pi

Pk+1

)

f (xi)
[[

f (xk)
]h( pk

Pk+1
)[f (xk+1)

]h( pk+1
Pk+1

)]

=
k+1∏

i=1

h
(

pi

Pk+1

)

f (xi).

This completes the proof. �

Remark 3.7 In Theorem 3.6,
• If f = f , then we obtain Theorem 12 of [18].
• If h(t) = t, we obtain the Jensen-type inequality for cr-log-convex functions:

f

(
1
Pn

n∑

i=1

pixi

)

�cr

n∏

i=1

[
f (xi)

] pi
Pn .

• If h(t) = ts, s ∈ (0, 1], we obtain the Jensen-type inequality for cr-log-s-convex
functions:

f

(
1
Pn

n∑

i=1

pixi

)

�cr

n∏

i=1

[
f (xi)

]( pi
Pn )s

.

• If h(t) = 1, we obtain the Jensen-type inequality for cr-log-P functions:

f

(
1
Pn

n∑

i=1

pixi

)

�cr

n∏

i=1

f (xi).

Next, we prove the Hermite–Hadamard-type inequality for cr-log-h-convex functions.

Theorem 3.8 Let f : [a, b] → R
+
I be an interval-valued function such that f = [f , f ] and

f ∈ IR([a,b]), and let h : [0, 1] → R
+ be a nonnegative function with h( 1

2 ) �= 0. If f ∈
SX(cr- log -h, [a, b],R+

I), then

[

f
(

a + b
2

)] 1
2h( 1

2 ) �cr exp

[
1

b – a

∫ b

a
ln f (x) dx

]

�cr
[
f (a)f (b)

]∫ 1
0 h(t) dt .

Proof Since f ∈ SX(cr- log -h, [a, b],R+
I), we have

f
(

x + y
2

)

�cr
[
f (x)f (y)

]h( 1
2 ).

That is,

1
h( 1

2 )
ln f

(
x + y

2

)

�cr ln f (x) + ln f (y).
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Let x = ta + (1 – t)b, y = (1 – t)a + tb, t ∈ [0, 1], then

1
h( 1

2 )
ln f

(
a + b

2

)

�cr ln f
(
ta + (1 – t)b

)
+ ln f

(
(1 – t)a + tb

)
. (3.2)

Integrating (3.2) on [0, 1], we obtain

1
h( 1

2 )
ln f

(
a + b

2

)

�cr

[∫ 1

0
ln f

(
ta + (1 – t)b

)
dt +

∫ 1

0
ln f

(
(1 – t)a + tb

)
dt

]

=
[∫ 1

0

(
ln f

(
ta + (1 – t)b

)
+ ln f

(
(1 – t)a + tb

))
dt,

∫ 1

0

(
ln f

(
ta + (1 – t)b

)
+ ln f

(
(1 – t)a + tb

))
dt

]

=
[∫ a

b
ln f (x)

dx
a – b

+
∫ b

a
ln f (x)

dx
b – a

,
∫ a

b
ln f (x)

dx
a – b

+
∫ b

a
ln f (x)

dx
b – a

]

=
[

2
∫ b

a
ln f (x)

dx
b – a

, 2
∫ b

a
ln f (x)

dx
b – a

]

=
2

b – a

∫ b

a
ln f (x) dx. (3.3)

Similarly, since f ∈ SX(cr- log -h, [a, b],R+
I), one has

f
(
ta + (1 – t)b

) �cr
[
f (a)

]h(t)[f (b)
]h(1–t).

That is,

ln f
(
ta + (1 – t)b

) �cr h(t) ln f (a) + h(1 – t) ln f (b). (3.4)

Integrating (3.4) on [0, 1], we have

1
b – a

∫ b

a
ln f (x) dx �cr

[
ln f (a)f (b)

]
∫ 1

0
h(t) dt. (3.5)

The proof is completed by combining (3.3) with (3.5). �

Remark 3.9 In Theorem 3.8,
• It is clear that if f = f , then we obtain Theorem 4.3 of [1].
• If h(t) = t, we obtain the Hermite–Hadamard-type inequality for cr-log-convex

functions:

f
(

a + b
2

)

�cr exp

[
1

b – a

∫ b

a
ln f (x) dx

]

�cr
√

f (a)f (b).

• If h(t) = 1, we obtain the Hermite–Hadamard-type inequality for cr-log-P-functions:

√

f
(

a + b
2

)

�cr exp

[
1

b – a

∫ b

a
ln f (x) dx

]

�cr
[
f (a)f (b)

]
.
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Figure 1 Illustration of Example 3.10: the function f is the blue line and the function f is the red line

• If h(t) = ts, s ∈ (0, 1], we obtain the Hermite–Hadamard-type inequality for
cr-log-s-convex functions:

[

f
(

a + b
2

)]2s–1

�cr exp

[
1

b – a

∫ b

a
ln f (x) dx

]

�cr
[
f (a)f (b)

] 1
s+1 .

Example 3.10 Let f : [ π
4 , π

2 ] → R
+
I be an interval-valued function given by f (x) = [e– sin x,

e– cos x], the images can be seen in Fig. 1. Suppose that h(t) = t for all t ∈ [0, 1], then

[

f
(

a + b
2

)] 1
2h( 1

2 )
=

[
e– sin 3

8 π , e– cos 3
8 π

]
= [0.3970, 0.6820],

exp

[
1

b – a

∫ b

a
ln f (x) dx

]

=
[
e– 2

√
2

π , e
2
√

2–4
π

]
= [0.4064, 0.6887],

[
f (a)f (b)

]∫ 1
0 h(t) dt =

[
e– 2+

√
2

4 , e–
√

2
4

]
= [0.4259, 0.7022].

Since

[0.3970, 0.6820] �cr [0.4064, 0.6887] �cr [0.4259, 0.7022].

Hence, Theorem 3.8 is verified.

As a further extension, we establish the Fejér-type inequality for cr-log-h-convex func-
tions.

Theorem 3.11 Let f : [a, b] → R
+
I be an interval-valued function such that f = [f , f ]

and f ∈ IR([a,b]), and let h : [0, 1] →R
+ be a nonnegative function with h( 1

2 ) �= 0. ξ : [a, b] →
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R
+ is a function symmetric about a+b

2 . If f ∈ SX(cr- log -h, [a, b],R+
I), then

1
2(b – a)h( 1

2 )
ln f

(
a + b

2

)∫ b

a
ξ (x) dx

�cr
1

b – a

∫ b

a

[
ln f (x)

]
ξ (x) dx

�cr ln
[
f (a)f (b)

]
∫ 1

0
h(t)ξ

(
(1 – t)a + tb

)
dt. (3.6)

Proof Since f ∈ SX(cr- log -h, [a, b],R+
I), we have

ln f
(
(1 – t)a + tb

) �cr h(1 – t) ln f (a) + h(t) ln f (b), (3.7)

ln f
(
ta + (1 – t)b

) �cr h(t) ln f (a) + h(1 – t) ln f (b). (3.8)

Multiplying (3.7) and (3.8) by ξ ((1 – t)a + tb) and ξ (ta + (1 – t)b), respectively, we have

[
ln f

(
(1 – t)a + tb

)]
ξ
(
(1 – t)a + tb

)

�cr
[
h(1 – t) ln f (a) + h(t) ln f (b)

]
ξ
(
(1 – t)a + tb

)
,

(3.9)

and

[
ln f

(
ta + (1 – t)b

)]
ξ
(
ta + (1 – t)b

)

�cr
[
h(t) ln f (a) + h(1 – t) ln f (b)

]
ξ
(
ta + (1 – t)b

)
.

(3.10)

Adding (3.9) to (3.10), and integrating the result on [0, 1], one has

∫ 1

0

[
ln f

(
(1 – t)a + tb

)]
ξ
(
(1 – t)a + tb

)
dt +

∫ 1

0

[
ln f

(
ta + (1 – t)b

)]
ξ
(
ta + (1 – t)b

)
dt

�cr

∫ 1

0
ln f (a)

[
h(t)ξ

(
ta + (1 – t)b

)
+ h(1 – t)ξ

(
(1 – t)a + tb

)]
dt

+
∫ 1

0
ln f (b)

[
h(1 – t)ξ

(
ta + (1 – t)b

)
+ h(t)ξ

(
(1 – t)a + tb

)]
dt

= 2 ln f (a)
∫ 1

0
h(t)ξ

(
(1 – t)a + tb

)
dt + 2 ln f (b)

∫ 1

0
h(t)ξ

(
ta + (1 – t)b

)
dt

= 2
[
ln f (a)f (b)

]
∫ 1

0
h(t)ξ

(
(1 – t)a + tb

)
dt.

Therefore,

∫ 1

0

[
ln f

(
(1 – t)a + tb

)]
ξ
(
(1 – t)a + tb

)
dt

=
∫ 1

0

[
ln f

(
ta + (1 – t)b

)]
ξ
(
ta + (1 – t)b

)
dt

=
[∫ 1

0

[
ln f

(
ta + (1 – t)b

)]
ξ
(
ta + (1 – t)b

)
dt,
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∫ 1

0

[
ln f

(
ta + (1 – t)b

)]
ξ
(
ta + (1 – t)b

)
dt

]

=
1

b – a

∫ b

a

[
ln f (x)

]
ξ (x) dx,

which gives the second inequality in (3.6).
On the other hand, since f ∈ SX(cr- log -h, [a, b],R+

I), ξ > 0 and there is symmetry about
a+b

2 , multiplying (3.2) by ξ (ta + (1 – t)b) = ξ ((1 – t)a + tb) and integrating the result on [0, 1],
we obtain

1
h( 1

2 )
ln f

(
a + b

2

)∫ 1

0
ξ
(
(1 – t)a + tb

)
dt

�cr

∫ 1

0

[
ln f

(
ta + (1 – t)b

)]
ξ
(
ta + (1 – t)b

)
dt

+
∫ 1

0

[
ln f

(
(1 – t)a + tb

)]
ξ
(
(1 – t)a + tb

)
dt.

Since

∫ 1

0
ξ
(
(1 – t)a + tb

)
dt =

1
b – a

∫ b

a
ξ (x) dx,

and

∫ 1

0

[
ln f

(
ta + (1 – t)b

)]
ξ
(
ta + (1 – t)b

)
dt

=
∫ 1

0

[
ln f

(
(1 – t)a + tb

)]
ξ
(
(1 – t)a + tb

)
dt

=
1

b – a

∫ b

a

[
ln f (x)

]
ξ (x) dx,

we obtain

1
2h( 1

2 )
ln f

(
a + b

2

)∫ b

a
ξ (x) dx �cr

∫ b

a

[
ln f (x)

]
ξ (x) dx.

The proof is therefore completed. �

Remark 3.12 Similarly, we can obtain particular results for cr-log-convex functions,
cr-log-P-functions, and cr-log-s-convex functions by taking special multiplicative func-
tions in Theorem 3.11.

4 Conclusions
This work investigates inequalities related to convexity for interval-valued functions.
First, under the full-order relation, we give a definition of the cr-log-h-convex function
and study some of its induced properties. On this basis, we establish Jensen-, Hermite–
Hadamard-, and Fejér-type inequalities for cr-log-h-convex functions, and discuss some
special cases of them. Moreover, numerical examples are given to verify the accuracy of
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the results developed. With the techniques and ideas developed in this work, it is possi-
ble to further investigate other types of convex inequalities, with possible applications to
problems such as optimization and differential equations with convex shapes associated
with them.
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