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1 Introduction

The hypothesis of convex functions gives us amazing standards and methods to concen-
trate on a wide class of issues in both pure and applied sciences. Several paragons of sci-
ences reliably endeavor to use and benefit the original musings for the delight and beau-
tification of the convexity hypothesis. This hypothesis assumes an important and pivotal
part in applied mathematics, particularly in nonlinear programming, financial mathemat-
ics, mathematical statistics, optimization theory, and functional analysis. The theory of
convexity plays a vital role in the exploration of mathematical inequalities. There exists
a strong relationship between the theory of inequality, fractional integrals, and convex
functions due to the behavior of their definitions and properties.

Definition 1.1 ([1]) A function Q: J € R — R is said to be convex if
Q(@p +(1-P)q) < 2Qp) + (1 - P)Q(q), (1.1)

holds true for all [p, q] € J and @ € [0, 1]. We say that Q is concave if (—Q) is convex.
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Convex functions are used to create inequalities such as the Hermite—Hadamard
(H - H) inequality, the Ostrowski inequality, and Simpson’s inequality. The H — H double
inequality is one of the most extensively researched results involving convex functions.
This conclusion provides us with the necessary and sufficient conditions for a function
to be convex. The H — H inequality has been considered as one of the most useful re-
sults in mathematical analysis. It is also known as the H — H inequality’s classical equa-
tion.

The Hermite—Hadamard inequality (see [2]) asserts that, if a mapping Q: J C R —> R
is convex in J for p,q € J and q > p, then

p+q 1 g Ap) + Aq)
Q( ' )qu/p o(@)ae < 200, (12)

In 1938, Ostrowski [3] investigated the following interesting integral inequality as:
Let Q: J € R — R be a differentiable mapping on 7°, such that Q € L[p, q], where
p,qe J withq>p. If |Q(2)| <K, for all w € [p, q], then

1 [ 1 (0-59)
_ d S i wa .
‘Q(w) q_p/p Ow)du| = K(q p)[4+ e ] (13)

holds true.
This result in the literature is studied extensively and is famously known as the Ostrowski

inequality. This inequality gives an upper bound of ﬁ qu Q(u) du by Q(u).

Definition 1.2 ([4, 5]) A function Q : [0, +00) — R is called s-convex in the second sense,
if

Q(@p+(1-P)g) <D*Q(p) + (1 - D) Q(q), (1.4)
holds true V p,q € [0, +00), s € (0,1] and @ € [0, 1].

For R(a), R(b) > 0, the Beta function is expressed as:

1
Bla,b) = / v 11— v)b 1 dy.
0

Dragomir et al. [4], established the following integral inequality under the assumption of

an s-convex function as:

1 AP+ 1 a Q(p) + Aq)
2 Q(T) < —/p o(@)do < T2 (15)

Dragomir and Rassias [6], investigated the Ostrowski-type inequality for convex functions

as:

<

SCED) o

1 ra
’Q(w) - / Q(u) du

P

K Tw-p*+@-w)
e
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Alomari et al. [7], investigated the Ostrowski-type inequality for an s-convex function

in the second sense as:

(1.7)

<
—(

K [(w—P)2+(q—w)2]

1 q
’Q(“”‘rp/p Qudu| = 5T v

Many mathematicians generalized the Ostrowski inequality in different directions. In par-
ticular, several scientific articles have been published in this regard taking various forms
of convexities into account. For example, Alomari et al. [7] used the notion of s-convexity
and Iscan et al. [8] used the notion of an harmonically s-convex function. Set [9] in-
troduced the fractional version of the Ostrowski-type inequality employing Riemann-—
Liouville fractional operators. Liu [10] used the equality proved by Set to establish new
refinements of the Ostrowski-type inequality for an MT-convex function. Tung [11], stud-
ied the Ostrowski-type inequality for an /z-convex function. Ozdemir et al. [12], obtained
a new version of the Ostrowski-type inequality for an («, m)-convex function. Agarwal et
al.[13], investigated a more generalized Ostrowski-type inequality via a Raina fractional
integral operator. Sarikaya et al. [14], employed local fractional integrals to obtain new
generalizations of the Ostrowski-type inequality. Giirbuz et al. [15], used a Katugampola
fractional operator for a generalized version of Ostrowski inequality. Ahmad ez al. [16], es-
tablished some novel generalization of the Ostrowski inequality via an Atangana—Baleanu
fractional operator for differentiable convex functions. To acquire detailed information
about recent advancements of the Ostrowski-type inequality, we direct the readers to the
following references (see [17-20]).

Fractional calculus forms an important area of research in the fields of pure and ap-
plied sciences. In particular, in mathematical analysis, it is used to solve the uniqueness
of various fractional differential equations and boundary value problems. It also helps in
solving many real-world problems. The main motivation of fractional calculus is to pro-
pose new notions of fractional derivatives and integrals and study their properties, ap-
plications, and advantages over other fractional operators. With regard to this interest,
several new variants of fractional models such as Riemann-Liouville [21], k-Riemann—
Liouville [22], Katugampola [23], Caputo—Fabrizio [24], Atangana—Baleanu [25], etc. have
been introduced in some of the recent articles. They all have distinct conditions and
properties, which make them not identical to each other. The main focus of this arti-
cle to study the correlation between mathematical inequality and fractional operators.
The improvements of fractional operators are backed by presenting different types of
inequalities such as H - H type [26, 27], Minkowski type [28, 29], Griiss type [30, 31],
Pélya—Szego type [32], and Chebyshev type [33] employing these operators. Lately, many
mathematicians have incorporated the concepts of new notions of fractional integrals
and well-known inequalities. To know more about the recent developments about the
theory of fractional integral inequalities, we suggest interested readers follow the articles
[34-38].

Before discussing our main results, let us focus on some basic definitions and related

results for fractional integral inequalities.

Definition 1.3 ([21, 34]) Let Q € L[p, q] be the set of all Lebesgue measurable functions
on [p, q]. Then, for the order ¢ > 0, the left and right Riemann—Liouville (R-L) fractional
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integrals are defined as follows:

1 t
I.. == -yt )
o+ Q) F(g)/,; -y Q0)dy, (t>p)
and
1 q
TS - _#)s-1 ,
-9 e /t -0 Qdy (t<q)

respectively, where I'(¢) = fooo y$~1e dy is the Euler gamma function.

Set et al. [9] proved the following equality and established several fractional Ostrowski-

type inequalities.

Lemma 1.1 Suppose Q: J = [p,q] = R is a twice-differentiable mapping on (p,q) with
p<q. If Q" € Lilp,ql, then for all w € [p,q] and ¢ > 0, the following equality for AB-

fractional integrals
(@-p) - (g-w)*
q-p

(w_p)g+1 1 <y
= —m—m—----- - d B
P /0<p Q(Pw+(1-P)p)dd (1.8)

_ +1 1
- M/ 5Q (Do + (1 - @)q) dd
a-p» Jo

Q) - eV

{Z5. 0(q) + Z5- O(p)}

holds true for @ € [0,1].

Definition 1.4 ([24]) Let Q € H(p,q), q > p, ¢ € [0,1], then the definition of the new

Caputo fractional derivative is:

s Q(e) B(g) / Q’(y)eXP[ (t—y)}dy,

-9)

where B(¢) is a normalization function.

Definition 1.5 ([39]) Let Q € H'(p,q), q > b, ¢ € [0,1], then the left and right Caputo—

Fabrizio fractional integrals are defined as:

(7)) =

1-¢ s [*
s S dy,
B(g) 20 B(;)/p Q0)dy

and

1-
CF7¢ _
(I 9)(0) —B(g) t)+—B( )/ Q(y) dy,

where B(¢) is a normalization function.

Page 4 of 27
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The Atangana—Baleanu fractional operator containing the Mittag—Leftler function in
the kernel was introduced by Atangana and Baleanu in [25], which solves the problem of
retrieving the original function. It is seen that the Mittag—Leffler function is more appro-
priate than the power law in many physical phenomena. Due to its effectiveness, many
researchers have shown a keen interest in utilizing this operator. Alina et al. [40] applied
the Atangana—Baleanu fractional integral operator to multiplier transformations and ob-
tained a new operator. Refai [41] presented the weighted fractional operators associated
with the Atangana—Baleanu fractional operators. Very recently, Refai and Baleanu [42] in
their short article extended the fractional integral in relation to the Mittag—Leffler kernel,
which admits an integrable singular kernel at the origin. They introduced some modified
ABC fractional operators and also solved related differential equations. Many researchers
[43-47] have studied the fractional integral, which Atangana and Baleanu [25] general-
ized. The corresponding derivative operator in the Caputo and Liouville—Reimann senses
is

Definition 1.6 ([25]) Let q>p, ¢ € [0,1] and Q € H'(p, q). The new fractional derivative
is given as:

B(g) , (t-y)
b pilQ / v [ ;)]dy

However, in the same paper they gave the corresponding Atangana—Baleanu (A-B) frac-
tional integral operators as:

Definition 1.7 ([25]) The fractional integral operator with nonlocal kernel of a function
Q € H(p, q) is defined as:

IO} - 5500 s [ Qe ay

where q > p, ¢ € [0,1].

n [48], the right-hand side of the AB-fractional integral operator was given as;

AB S s-1
75(00) - (g) e S / Q) - 15 dy.
Here, I'(¢) is the Gamma function. The positivity of the normalization function B(¢) im-
plies that the fractional AB-integral of a positive function is positive. It is worth noting the
case that when the order ¢ — 1, it yields the classical integral and the case when ¢ — 0,
it provides the initial function.

Motivated by the above results and the literature, the main motivation of this article
is to use the Atangana—Baleanu fractional integrals to prove some novel inequalities for
twice-differentiable s-convex functions and some interesting applications related to mod-
ified Bessel functions and q-digamma functions. The rest of the paper is structured as
follows: In Sect. 2, we establish a new identity and then apply it to derive new fractional
Ostrowski-type inequalities for s-convex functions. Further, with the help of the improved
Holder’s inequality, results for functions with a bounded second derivative are presented
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in Sect. 3. In order to illustrate the efficiency of our main results, some applications to
modified Bessel functions and q-digamma functions are obtained in Sect. 4. Finally, in

Sect. 5 a brief conclusion and future plans are discussed.

2 Main results
In this section, first we prove an Atangana—Baleanu fractional identity for twice-
differentiable functions. Then, employing this and some fundamental integral inequal-

ities, we present our main results.

Lemma 2.1 Suppose Q: J = [p,q] — R is a twice-differentiable mapping on (p,q) with
p<q.If Q" € L1[p,ql, then for all w € [p,q] and ¢ > 0, the following equality for AB-
fractional integrals

(@-p)* - (q-w)*! (o-p)F+@-o)f

/ 2.1
R R P R -
_ M{fﬁzﬁ Q(p) + 42T Q(g)} - wg(w)
q-p qa-»
(a)—p)§+2 ! 17
=—— 2 | @ @ - D)p)do
oD py &7 @0 a-2p)
(q—a))§+2 ! c+l A
_\Mzer + _ ao,
ey )y ¢ e a-onde

holds true for @ € [0,1].

Proof Let us suppose that

_)s+2 1
%/0‘ €D§+1Q”(<Da)+(l—¢)p)d¢
(q - w)§+2 ! c+l A
+ EEnrESIA Q" (Pw+(1-P)g)dP
(@ - p)*? (q- )

T n@-p T e Dq-p

where

1
T, = / Q" (Pw + (1 - D)p)dd
0

B D Q (Pw + (1 - D)p)|* B e+ 1)PsQ(Pw+(1-D)p)

o p =, s Ao
, 1
= %a;) - i—i;/o ®<Q (Pw+(1-P)p)do
e G [ o o) do
- ifa;) T pl>2 Q)+ Bg(fa))r—(;:j) {331’5 o) - IB(_—SQ(“’)}'

Page 6 of 27
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Similarly,

1
IZ:/ Q" (Pw + (1-D)q)dd
0

q>s+IQ (cpw +(1-@)g) |

/ (§+1)<1>9Q’(q)a)+(1 q§)q)

:_Q/(w)_g_”/ 2°Q (Pw+(1-P)q)dP

qg-—o w®w—=qJo

/ 1
Y
_ Q@)  c+1 B(6)I'(s +2) [ 45 1-¢
"o @2 2t e { L= 5 Q(‘“)}’
using Z; and 7, with (2.2), we obtain (2.3). |

Theorem 2.1 Suppose Q : J C [0,00) — R is a twice-differentiable mapping on (p,q)
with p < q such that Q" € Li[p,q]. If |Q"| is an s-convex function on [p, q] for some fixed
s €(0,1], then for all ¢ > 0, the following AB-fractional integral inequality

(@-p)F<t—(q-w)s* (w=p)S +(q-w)

R R e (2.3)
M{ABng(p) +2BI§ Q(q)} — wg(u))‘
-8 q—p
@-p2 [ 1@ | .,
= (;Ci l)z_p){(“:z) *le (‘“”ﬂ‘g”'“”}

(q-w)*? { Q" ()]

e crsrg T @B 25 1)},

holds true for @ € [0, 1].
Proof From Lemma 2.1 and since |Q”| is an s-convex function on [p, q], we obtain

(@-p)! - (g-w)! (@-p)F+@-w)*

i@y 2@y @
- B as7e o) 4 2875 ()} - 2E= )
(@=p) 1
—— | o e —®))|do
Seanaop ), & (@era-an)
(@=o) 1
T EE— Pt (0] 1-@ do
+(§+1)(q—p)/o [ (P 9
(@-p)s** [, , ,
- ¢§+ ¢S _¢S d¢
Srdaop fy &I @L AT
(q-w)s*?

1
+1 sl o s| 4
+m/0 o5 0*|Q" ()] + (1 - @YD" (q)|} d

(w - p)s+? { | Q" (w)]
T+ D(g-p) (s +5+2)

+|Q"(p)|B(s + 2,5+ 1)}
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(q-w)* { Q" ()|
(

Tern@-plcrs+2) " 2 (q)|/3(§+2,S+1)}.

Therefore, the proof is completed. O

Corollary 2.1 Ifwesets=1in Theorem 2.1, then we have the following new Ostrowski-type

inequality for a convex function:

=P @) @ @)
(s +Da—p) @-»)

-p

Q)

Q( )‘

(w-p)*? {IQ”(w)I+ [Q"(p)] }
T (e+Dg-pl ¢+3  (¢+2)(c+3)

. (4 - )<+ {IQ”(w)I . Q" (q) }

c+D@-p)| c+3  (c+2(c+3) )

Remark 2.1 If we set ¢ = 1 in Theorem 2.1, then (Theorem 4 of [49] ) is recovered;

L[ P+a) o
jA Q(u)du—Q(w)+<w— . )Q(w)‘

- (w-p)? { |Q" ()] s 2|1Q"(p)] }
2(q-p) | s+3 (s+1)(s+2)(s+3)

s (4-w)? { | Q" (w)] .\ 2[Q"(q)l }
2(q-p) | s+3 (s+D(s+2)s+3) ]

Corollary 2.2 By using Corollary 2.1 with |Q"| < M, we obtain the following inequality

(@-p)' - (g-w)! (@-p) +(g-w)*

ciDa-p W7 qopy 2@
A oz 0+ 22500} - 222 g

1
EM(<g+1>(g+2><q—m

)[(w LD+ (- 0)]

Theorem 2.2 Suppose Q : J C [0,00) — R is a twice-differentiable mapping on (p,q)
with p < q such that Q" € Li[p,ql. If |Q"|? is an s-convex function on [p,q] for some
fixed s € (0,1], g > 1, then for all ¢ > 0, the following A-B fractional integral inequal-

ity

=P @) @ @)
(s +Da-p) @-»)

-p

S( 1 ){ (0= p)<*? (lQ”(w)l‘f+|Q”(p)Iq>5 o)
(c+Dp+1/) L(c+Da-p) s+1

Q)

Q( )‘

Page 8 of 27
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(q - )™ (IQ”(w)IMIQ”(q)I‘f)%]
(c+1)(q-p) s+1 ’

holds true for @ € [0,1], whereq ™! + p~* = 1.

Proof Suppose that g > 1. From Lemma 2.1, by using the well-known Holder integral in-
equality and the s-convexity of |Q"|7, we obtain
(@-p)* ~ (g - ) ') (@-p) +(q-w)*
) —
(c+1)(a—p) (@-p)

-HEED w00 T 0w) - T2 o)

Q)

_pn)St2 1
Gl |, 1 0o 0o

(4 - )+

(c+Da-») Jo

o w 5
(@—p)s? </ ¢<g+l>pdqb) </ |Q”(¢w+(1—q’)P)|qd‘p)
0 0

1
o Q" (Pw + (1 - P)q) |dP

“(c+1)(g-p)

L@y (/1 @@H)Pdcp)p (/1|Q”(q>w +(1- @)q)r,d@)? (25)
0 0

(c+1L)(q-p)

Since, |Q”|? is an s-convex function on [p, q], we obtain
1
/ Q" (Pw +(1-P)p)|"do
0

1
< /0 [2°]Q"(@)|" + (1 - @ |Q"()|"} d (2.6)
19 @I+ QG

s+1

Also,
1
/ |Q"(Pw +(1-)q)|"do
0

1
5/0 [#°]Q"(@)|" + (1- )|Q"(q)|*} do (2.7)
_ Q@)1+ 1Q'@I

s+1

By using (2.6) and (2.7) with (2.5), we obtain

@-p - @-0)" |  (@-p)F (G-

e TR
-HEED 00 215 0w) - X2 o)

1 »
</ -
- ((5+1)p+1>
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x [ (=) (lQ”(w)l" ' |Q”(p)|q>%
(c+1)a-p) s+1

(q - ) (IQ”(w)l“lQ”(q)lq)%]
+ P
(c+D(q-p) s+1

which completes the proof. g

Corollary 2.3 If we set s = 1 in Theorem 2.2, then we have the following Ostrowski-type

inequality for a convex function:

Q(w) (2.8)

’(w—lﬂ)“l - (g-w)s*! » (w-p) +(q-w)*
(c+D(q-p) (a-p)

B(s)I'(s)
~ oy TR+ ST -

1 5
</ -
- <(§+1)p+1)

x|: (@=p)s*? <|Q”(w)|q+|g”(p)|q>i
(c+1a-p) 2

(q - )™ (|Q~(w)|q+|9”(q)w)%}
N .
(c+1)(q-p) 2

2(1- g)F(g)Q(w)‘

Remark 2.2 If we set ¢ = 1 in Theorem 2.2, then we obtain (Theorem 5, [49] ).

ﬁ /p " Q) dii - Q) + (w _ ”%) Q’(w)‘
1

1
p

<

- (2p+1>

. [(w—p)s (IQ”(w)I" ' |Q”(p>|q>é L a-o)’ (IQ”(w)I" ' |Q~<q)|q>é]
2(q-p) s+1 2(q-p) s+1 ’

Corollary 2.4 Using Corollary 2.3 with |Q"| < M, we obtain

(@=-p)* —(q-w)*! Olw) - =P +a-w)F
(c+1)(q-p) (a-p)

_B(9)I'(s) { 2(1-¢)l(s) Q(w)‘

Q(w)

SPT5 Q) +4PT5 Q) -

M )[ @-pF (q—wW}
- (c+Dp+1) L(c+D@@-p) (c+)a-p)]

Theorem 2.3 Suppose Q : J C [0,00) — R is a twice-differentiable mapping on (p,q)
with p < q such that Q" € L1[p,q]. If |Q"| is an s-convex function on [p, q] for some fixed

s€(0,1], g = 1, then for all ¢ > 0, the following inequality for A-B fractional integrals

(@=p)* —(q-w)"! Ole) - @PF +la-w)F

(s +1(a-p) G 2 (2.9)

Page 10 of 27
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q-p qa-p

L\ -9 (19w Y
§(§+2> |:(§+1)(C|—p)<(§+s+2)+ﬁ(g+2’s+l)|Q(p)|)

. (q-w)* (IQ”(w)Iq
(c+D@-p)\(c+s+2)

+B(c +25+ 1)}9”<q>}q) ]

holds true for @ € [0,1].

Proof Suppose that g > 1. From Lemma 2.1, by using the power-mean integral inequality
and the s-convexity of |Q"|7, we obtain
(@-p) - (g-w)*! Q') (@-p)+@-w)*
) —
(c+1)a-p) (@-»p)

- HEED w00 T 0w) - 2 o)

Q)

_n)s+2 1
=Geniap y ¢ 00 -omlde

(4 - )+

(c+Da-») Jo

+2 1 1—% 1 q
(©-a)° (/ ¢;+1d¢> (/ |Q”(<1>w+(1—<15)p)|qd<15> (2.10)
0 0

< - 0
“(c+D(g-p)

(q- )52 ( b e )1%,( L ] );
(c+1(q-1) ot de P - do | .
HCESICED) /0 /O|Q( + (1= @)q)

Since | Q"] is an s-convex function on [p, q], we obtain

1
o Q" (Pw + (1 - P)q) |dP

1
/ o0 (Pw + (1 P)p)|" dt
0

1
< [ oo @+ (- 0y|Q )"} do (211)

Q@)
T (c+s+2)

+B(s +2,5+1)|Q"(p)|"
and
1
/ Q" (Pw + (1- ®)q)|"dt
0

1
5/0 o | Q" (w)|" + 1 - )| Q"(q)|"} d (2.12)

Q@)
- (c+s+2)

+B(s +2,5+1)|Q"(9)|".

By using (2.11) and (2.12) with (2.10), we obtain

(@=-p)* —(q-w)"! Ole) - @PF +la-w)F

(c+D@—p) CES IR
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-2 o + 7 0] - X2 D o)
L\ -9 (19w Y
: <§+2> |:(§+1)(C|—p)<(§+s+2) +Bls +2,5+1)[Q" ()| )

(q-w)* ( Q" (w)|
(

7 q %
syl (s s RN

which completes the proof. 0

Corollary 2.5 If we set s = 1 in Theorem 2.3, then we have the following Ostrowski-type
inequality for a convex function:

(@-p)<t—(q-w)s* (w=p)S +(q-w)°

croa-» 20T a2 (2.13)
M{ABzgg(p) ABI§Q( )} - %Q(a))‘

<( )[ (-9 (CACIBELE )

T \g+2 (c+D@-p\ ¢c+3  (c+2)(c+3)
, (a-w) (lQ”(w)l"+ Q@ H
(c+D@-p\ c+3  (c+2)(c+3)) |

Remark 2.3 If we set ¢ =1, in Theorem 2.3, then we recover (Theorem 6, [49] )

q
= / Q(w) it - Q(w) + (w - ”%) Q’(w)‘

<(1>1‘[<w p>3(|9"<w>|q+ 21Q(p)1" )é
—\3 2(q-p) s+3 (s+1)(s+2)(s+3)
L a-o)’ (IQ”(w)Iq . 2A9'@N ”

2(q—-p) \ (s+3) (s+1)(s+2)(s+3)

Corollary 2.6 Under the same assumptions of Corollary 2.5 with |Q"| < M, we obtain the
following inequality

Q)

l @-p = @-) o ) @-p)F +a-w)f
(c+D(a-p) (@-»p)

a-p

! —p)st? 62
_M<(§+1)(§+2)(q—p)>[(w P+ (- w) ]

Q(w)

Theorem 2.4 Suppose Q : J C [0,00) — R is a twice-differentiable mapping on (p,q)
with p < q such that Q" € L1[p,ql. If |Q"|? is an s-convex function on [p, q] for some fixed
s€(0,1], g > 1, then for all ¢ > 0, following the inequality for AB-fractional integrals

(@-p)* —(q-w)"! Ole) - @PF +la-w)F

(c+1)(g-p) (q-p) Q) (2.14)
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B B(g)F(g){
q-p
- (w - p)s+? { 1 . Q" (w)|? + IQ”(p)Iq}
T+ D@-p) [ (c+Dp+1)p (s+1)g
, (a-o)” { 1 L 1Q @) 1@ }
(c+D@-p | (c+p+1)p (s+1)gq ’

ABTE Qp) + 4875 Qo)) - wgw‘

holds true for @ € [0,1].
Proof From Lemma 2.1, we obtain

@-p) —@-) o @p)F @)
(¢ +1)(q-p) (@-p)
20 -9 ()

Q(w)

B(s)I'(s)
- W{fffﬁ Q(p) + 4°Z5 Qa)} 2@
_ )52 1
= oy | o e o) a0
(CI _ a))g+2 1

¢+l " _
EreEsiA o< Q" (Pw + (1 - @)q)|do.

By using Young’s inequality as

1 1
uv<=-Uur+-vi,

p q
ot o
- o + 7 0w) - X Q(w)‘
< %E /01 O [ + $/01|Q”(<Da)+ (1- ¢)p)|’qu>}
Lot oure

4((0—;3)“2 1 ' (s+1)p l ' s|O" ()4 VWl q}

+ 7(;:)“()5:) {}7 fol o gep 4 $/01{<1§S|Q”(w)|q +(1- cb)le”(q)l"}}
_ _(o—p)y* { 1 Q@)+ IQ”(p)Iq}
T +D@E-p) s+ p+1)p (s+1)gq
, (- w)*? { 1 19 @)1 +1Q (@) }
(c+1(@-p) (s +Dp+1)p (s+1)q

which completes the proof. d
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Corollary 2.7 If we set s = 1 in Theorem 2.4, then we have the following Ostrowski-type

inequality for a convex function:

@-p)T -@-a)" |, (@-pF+ -0
- .15
cida-p 2T @ 2 (219)

- % {0775 QW) + 5P T Q@) - %Q(w)‘

- (w-p)s*? { 1 . Q" ()| +1Q" (p)]7 }
T+ D@-p) [ ((c+Dp+1)p 2q

, (a-o)” { 1 L 12+ 1@ }

(c+D(@-p) | (c+Dp+1)p 2q '

Corollary 2.8 Ifweset ¢ =1 in Theorem 2.4, we obtain

ﬁ /pq Q(u) diu - Q(w) + ( - ”%)Q’(w)‘
_(@-py [ 1 Q)+ IQ”(p)Iq]
+

T 2q-p)[@p+1)p 2q
(q-w)? [ 1 Q@I+ |Q”(q)|q]
2(q-p) L 2p+1)p (s+1)q '

3 Further inequalities via an improved Holder’s inequality

Theorem 3.1 Suppose Q : J C [0,00) — R is a twice-differentiable mapping on (p,q)
with p < q such that Q" € L1[p,ql. If |Q"|? is an s-convex function on [p, q] for some fixed
s€(0,1], g > 1, then for all ¢ > 0, the following A-B fractional integral inequality

(w-p)t - (q-w)s* O'w) - (w-p)s +(q-w)*
(c+1(q-p) (a-p)

-2 wrion + 1 0w) - X2 D o)

_ (w—pe [< 1 )( Q@) +|Q"<p)|q>%
T (c+)g-p) [\(cp+p+1)(sp+p+2) (s+1)(s+2)  s+2
+( 1 >5<|Q"<w>|q+ 19" ()1 >]
(c+1)p+2 (s+2) (s+1)(s+2)
. (a-e) [( 1 )( Q@) +|Q”(q>|q)é
(c+D(@-p) | \(cp+p+D(scp+p+2) (s+1)(s+2) s+2
(et >5<|Q“<w>|q+ @ >]
(c+1)p+2 (s+2) (s+1)(s+2) ’

holds true for @ € [0,1], whereq™' + p™* = 1.

Q(w) (3.1)

Proof From Lemma 2.1, by using the Holder—Iscan integral inequality (see in [50] ) and

the s-convexity of |Q” |7, we obtain

(@=-p)* —(q-w)"! Ole) - @PF +la-w)F

(c+D@—p) CES IR

Page 14 of 27
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_B(g)r(g) AB~< AB¢ _2(1 )l (s)
TS Q) + T Q) - T )
(w_p)§+2 ! +1|

Slernaop Jo OIS @Ol

(q-w)s*?

Tlern@-n Jo

+ 1 [l,
= (g(wﬁ)?:—zm [(fo (1- @)ty ‘@)

1 ;
X (/ 1-2)|Q"(Pw+(1- q§)p)|qd@>
0

1 3/l :
+<f q><§+1>1’+1dcb) (/ qﬁ\Q”(q>w+(1—cb)p)]qdq>> ]
0 0

(Cl—a))§+2 |:< ! _ (c+l)p >11’
e+ Da-p) /0(1 PIPETR AP

1 )
X (/ (1-9)|Q"(Pw+(1- <D)q)|qd<1>>
0

L s 1
+(/ qb(;“)p“w) (/ <D|Q”(<Da)+(1—§b)CI)|qdq§> }
0 0

1

(w - p)s+? [( ! (c+1) )p
Bt 2 1-®)d P 4o
=+ D@-p) /0( :

. 7

x (/O (1-q>){q>S|Q”(w)|"+(1-¢)S|Q”(p)|q}dq>)
1 i 1 1
¢(§+1)p+ld¢)p< olps ” q 1 @ N dd))q]

(fo /0 {2°]Q"@)|" + (1 - 2| Q" ()]}

M[( ' _ (s+p )11’

FlerDa-p /0(1 Py@ETAe

1 q
% (/0 (1-@){#°|Q"(w)|"+(1 - @)S|Q”(q)|"}d<1>)

1 5/l i
+ (/ ¢(§+1)p+1 d¢> (/ ®{¢S|Q”(a})iq + (1 _¢)S|Q//(q)|q}d(p> :|'
0 0

(0= p)*? [( )( Q" ()| +|Q"<p)|q>é
(c+1)(gq-p) p+p+1(§p+p+2) (s+1)(s+2) s+2

( ) <|Q”(w 11 () >]
(c+1)p+2 (s+2) (s+1)(s+2)

1
o Q" (Pw + (1 - ®)q)|d®

I A

g+2

( >( Q@) +|Q"(a|>|q>%
(§+1)(q p) (§p+p+1)(§p+p+2) (s+D(s+2)  s+2

( <|Q"<w 1@ >]
(c+1)p+2 s+2 s+1)(s+2) ’

This completes the proof.
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Corollary 3.1 If we set s = 1 in Theorem 3.1, then we have the following Ostrowski-type

inequality for a convex function:

(@-p)* — (g - ) (@-p) +(g-w)*

i@y 2@y <@
_%15){3313 O(p) + 48T Q(g)} - wg( )‘

(= p)<*? [< 1 )5(1 MR T q)%
=erna-nl\ ey (6@ 3190

1

Pl 1 q 1 /" q %
(Grapm) Gl gewr)]

+ )

(q_a))§+2 1 [% 1 /7" q 1 17/ q %
. [ : <6|Q(w)\ +310 <q>\)
+ )

1
(
(c+D(q-p) ((§p+p+1) §p+p+2))
1

}7 1 4 1 i %
(@i tear)]
Corollary 3.2 Ifwe set ¢ =1 in Theorem 3.1, we obtain
5 [ ewdi- 0w+ (o) ow )
<(w—p)3[< 1 )( Q@) +|Q"<p)|q)é
T 2(q-p) [\ 2p+1)(2p +2) (s+1)(s+2) s+2
+( 1 )?(|Q”<w>|q+ Q" ()17 ”
2p +2 (s+2) (s+1)(s+2)
+(q—w>3[( 1 >( Q@) +|Q~(q)|q);
2(g-p) [\ 2p+1)(2p +2) (s+1)(s+2) s+2
(5 >%(|Q“<w>|q+ Q@ ”
2p +2 (s+2)  (s+1)(s+2) ’

Corollary 3.3 Using the same assumptions in Corollary 3.1 with |Q"| < M, we obtain

<(§+1)p+2

(@-p)° +(q-0)f

(a)—p)5+1 _(q_w)s‘ﬂ , B
’ i Da-p 2 CE RS
_ % (1500 + 75 0w) - - g, >‘

“de el @mwrs) (G ]
T 2i(c+1)(q-p) L\(cp P+ D)(sp+p+2) (c+1p+2

x [(@=p)? + (g - 0)*2].

Theorem 3.2 Suppose Q : J C [0,00) — R is a twice-differentiable mapping on (p,q)
with p < q such that Q" € L1[p,ql. If |Q"|? is an s-convex function on [p, q] for some fixed
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s€(0,1], g = 1, then for all ¢ > 0, the inequality for A-B fractional integrals

(@=-p)F*—(@@-w)* | = (@-p)F+(q-0)
cDa-p

B B(g)l"(g){
q-p

@ (3:2)

4875 Q) + 4275 Q(q)} - 2L =TS

Q(w)‘

_ (o-p)? [( 1 )1-é
T (c+D@a-p) L\ (s +2)(s +3)

|Q”(a))|q , . %
i ((§+S+2)(§ +5+3) +Q"()] /3(3+2,§+2))

1

1 -3 ()9 L
+<§+3) <|§Q+(:i)|3 +|Q”(p)|”ﬂ(g+3,s+1)> }

. _(a-w)s [< 1 )
c+Da@-p L\ (c+2)(+3)

Q@) o %
X ((§+S+2)(§+S+3) + |Q (q)| ,3(S+2,§+2)>

1\ 1@ o !
+<§+3> ((§+s+3)+|Q (@) /3(;+3,s+1)) }

holds true for @ € [0,1].

Proof From Lemma 2.1, the improved power-mean integral inequality (see in [50] ), and
the s-convexity of |Q” |7, we obtain

@-p - @0 (@-p) (- 0)
c+Da-p

Q(w)
(a-p)
BT an e o) 475 () - 21D )
q-p 9-P
)52 1
_% (05 Q/ (90 + (1 0p) a0
(CI _ w)g+2

1
+1 /"

(- p)g+2 |:< 1 " )1—}1
— 2 1-®)o* do
S(§+1)(CI—|O) /0( )
1 ;
X (/ 1 —¢)4>§+1|Q”(4>w+(1—<1>)p)|qdq>>
0
1 -1/ a1 :
+<f q>§+2d¢>) </ ¢§+2|Q”(¢a)+(1—q§)p)|qdq§> }
0 0
(q-w)* [( L o4l )1_5
e [ -

1 ;
x (/ (1-®) Q" (Pw+ (1~ P)q) |qdq>)
0
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1 1—% 1 %1
+</0 <D§*2dq§> </0 ¢§+2|Q”(q§w+(1—¢)q)|qd¢) ]

(0~ P§+2 |:< (p¢§+1d¢> K
<<g+nm ) /(1 )

x(/'u—¢0¢“w¢ﬂ9%wnful—¢f¥ymnﬂd¢)q
0

—

1

1 -1 1
+ (/ q)§+2 d@) (/ @§+2{@S|Q” |q 1 _ @)S|Q”(p)|q}d(1§) ]
0 0
(CI _a))§+2 |:< ! _ §+1d )1_;
el o eeeae
1 i
X (/ 1-2)o | Q" ()" + (1 - &)|Q"(0)|"} dqb)
0
1 -1 1 1
+ (/ (Dg+2d(p) </ ¢§+2{¢5|Q1/(w)|q+ (1_¢)S|Q//(q)|q}d¢> :|
0 0

- w—mﬁz[< 1 y%
“+D@-pL\(c+2)(c+3)

( 19" (@)
“\{

1

+|Q%mVﬂ@+zg+20q

c+s+2)(c+s+3)
-1 /" %
+< 1 ) q<|Q(a))lq+|Q”(P)|ql3(§+3,s+l)> i|
c+3 S+s+3
, _a-or” [( 1 )1-5
c+D@-9 [\ (c+2)(c +3)
|Q" (w)| o .
i ((§+S+2)(§+s+3) +Q" (@ :3(S+2,§+2))

1

1_% Y !
+( 1 ) <|Q (w)|? +|Q”(C|)|q/3(§+3,s+1)> j|

c+3 (¢ +s+3)

This completes the proof. O

Corollary 3.4 If we set s = 1 in Theorem 3.2, then we have the following Ostrowski-type

inequality for a convex function:

(@-p)F<t—(q-w)s* (w=p)S +(q-w)

(c+1)(a-p) ()= (a-p) o
%{ABI@@) +0 L5 Q) - %Q(w)‘

. w—w&[< 1 y%(|@ww . AQG)N f
T (c+D(g-p) [\(c+2)(c+3) (c+3)(c+4) (c+2)(c+3)(c+4)

+<_L)L“ngmw+ 1Q"(p)I? )T
c+3 c+4 (¢ +3)(c +4)
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L _(a-w)s [< 1 )
(c+1D(q-p) L\ (c+2)(c +3)

« ( Q@ 2@ )
(c+3)c+4) (c+2)(c+3)c+4)

+<;)15<|9"(w)|‘1+ 2@ )]
c+3 c+4  (c+3)c+4) /) |
Corollary 3.5 Ifwe set ¢ =1 in Theorem 3.2, we obtain
5 [ ewai-w (0-"3") 2
_ (o—pp [< >l'é< Q@I 29N )é
()(CI p) (s+3)(s+4) (s+2)(s+3)(s+4)
+ (_>1“( DA — DA ”
4 s+4 (s+1(s+2)(s+3)(s+4)
, 4o [<1>< CAC—C A >
(2)(q-p) L\ 12 (s+3)s+4) (s+2)(s+3)(s+4)
+(1>1%(|Q~(w>iq+ 619" @I H
4 (s+4)  (s+1(s+2)(s+3)(s+4) ’

Corollary 3.6 Using the same assumption of Corollary 3.4 with |Q"| < M, we obtain

(@-p)<t—(q-w)s* (w=p)S +(q-—w)°

(c+1)(a-p) Q- (@-p) o)
%{ABI@@) +o g Qa)} - %Q(w)

- M
T (e + (s +2)(a-p)

[(@=p)*2 + (g -w)*?].

4 Applications
4.1 g-digamma function
The g-digamma(psi) function g, is the p-analog of the digamma function ¢ (see [51] )

given as:
k+y
0p(y) =-In(1- p)+lnp21 e
k=0
ok
=—In(1- ,o+ln,021 P

For p > 1 and y >0, p-digamma function g, can be given as:

1 ad el —(k+y)
0=t - o132
k=0
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1 & ptr
=—In(p-1)+Inp V_E_Zl—p—ky .

k=1

From the definition of g-digamma functions, it is seen that Q(x) = ¢},(x) is completely
monotonic on (0,00). If we set Q(x) = 0/, (x), then Q" (x) = Q;)”(x) is also completely mono-

tonic on (0, 00).

Proposition 4.1 Assuming all the above conditions and applying Remark 2.1, we have

Q (Cl)—Q (P) ’ p+q 1
Ty @ (w— T)ep(w)’
- (w-p)? { lo} ()] 2ley (Pl }

“2(q-p) | s+3 " (s+1)(s+2)(s+3)
(q-o)? { o)) (@) 2l0//(a)] }
T2q-p | 543 G+D)s+26+3) ]

Proposition 4.2 Considering all the conditions of Proposition 4.1 and applying Re-

mark 2.2, we have

Q (Cl)—Q (P) ’ p+q "
qupp —Qp(w)+ <CU— T)Qp(w)‘

1
1 P

<
_(2p+1>

. [(w-p)B <|g;;/(w>|q + |g;;/(p>|q>é (q- o) <|g;/(w>|q ¥ |Q;;/(Cl)|q>‘lf]
2(q-p) s+1 T 2q-p) s+1 ‘

Proposition 4.3 Considering all the conditions of Proposition 4.1 and applying Re-

mark 2.3, we have

o (q)_Q (P) / p+q "
qupp —0,(0) + <w— T)Qp(w)’

3 (1)1-5[(w—p)3(|ag/(w)|q 2107 (p)|? )é
—\3 2(q-p) s+3 +(s+1)(s+2)(s+3)

(q—a))?’(lQZ’(w)l" 2107 (@) ”
T2q-p\(s+3) " G+D6+26+3)) |

Proposition 4.4 Considering all the conditions of Proposition 4.1 and applying Corol-

lary 2.8 we have

Qp(q) _Qp(p) —o.(@)+ (w _ pﬂ)Q;;(w)‘

q-p ’ 2

(-p)? [ 1 lo}) (@)|7 + IQ;;’(p)Iq]
= +
T 2q-p)[@p+1)p 2q

N (q—w)g[ L o) (@) + |QZ/(Q)|q]
2(q-p)LCp+1)p (s+1)q
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Proposition 4.5 Considering all the conditions of Proposition 4.1 and applying Corol-
lary 3.2 we have

o (Q)—Q (P) / p+q "
% -0, (w) + <w— T)Qp(w)’

e 9)3[ )7’( lo}) ()| ’”(p)lq>
2(q ») (p+p+1)(p+p+2) (s+1)(s+2)+ s$+2

( )é ( J@I7 loy oI ”
2 +2 (s+2) s+1)(s+2)
E w)g[( )( o) (@)1 |Q”’(q)|q>é
2(q p) (p+p+1)p+p+2) (s+1)(s+2)Jr s+2

+< 1 ) (m’”( e _loy@ ”
20 +2 (s+2)  (s+1)(s+2) ’

Proposition 4.6 Considering all the conditions of Proposition 4.1 and applying Corol-

lary 2.8 we have

0,(q) —0,(0) 3 Q;)(a)) N <a) B M)Qz(w)‘

q-p 2
_ (o—pp [< 1 >( oy (@)l 2l ()17 )
= 2a-p |\ 12 5+3)(5+4)  (5+2)(+3)s+4)
(_) g (m”/(w)w 6le), (p)I” )1
"2 s+4 +(s+1)(s+2)(s+3)(s+4)
(q-w)® [( 1 >lé< ey (@)1 2/} ()| >2
* 2)(g-p) |\ 12 (s + 3)(s+4) (s+2)(s+3)(s+4)
(_) <|g”/( ) 6lc} (@)l )}
"2 (s+4) +(s+1)(s+2)(s+3)(s+4) ’

4.2 Modified Bessel functions
Let the function K, : R — [1, 00) be defined [51] as

Ko(u) =2°T (0 + 1)u_‘SIQ(u), ueR.

Here, we consider the modified Bessel function of the first kind given by

o ( )Q+2n

Zn‘ Fo+n+1)

n=|

The first-, second-, and third-order derivatives are given as

, _ u
ICQ(U) = 20 + I)Kgﬂ(u);

1

= 30

M2
[m’cgﬂ(u) + 2K:g+1 (M):| ’
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IC///( )_ u I/l2 ]C () 3’C ()
QM_4(Q+1)(Q+2)|:(Q+3) o+3ll) + g+2u},

If we use, ®(u) = K, (1) and the above functions, we have

Proposition 4.7 Counsidering all the above conditions and applying Remark 2.1 we have

’/Cg(q)—lcg(m_ » W )
q-p 2(g+1) Kenle)+ 2070

(w - p)3 { |w[ Q+3 Kor3(@) + 3K 2(0)]
~ 2a-p) 4o+1)(o+2)(s+3)

2

|p[(gp+3) ’Cg+3(P) + 3ICQ+2(p)]I
2(0 +1)(o + 2)(s +1)(s+2)(s +3) }

w?
[m’cmz(w) +2K o0 (w)] )

+

N (q —a)) { |w[ Q+3 g+3(a)) + 3ICQ+2(0))]|
2(q-p) 40+ 10 +2)(s+3)

1l 5 Kora(@) + 3K g2 (@)]]
200+ (0 +2)(s+ 1)(s +2)(s +3) }

Proposition 4.8 Considering all the conditions of Proposition 4.7 and applying Remark 2.2

we have
K -K ptq 2
‘ Q(qc)l — Q(p) _ Z(Qa: 1)’CQ+1(U)) + % [ﬁlcg*,z(w) + 2’Cg+l(w)]'
) T
“\2p+1) [2(q-p)

w »? 2 1
« (|m [m’CmB(w) + 3KQ+2(0))]|q + |m [(;Tg),CQ+3(p) + 3/Cg+2()3)]|q> q

s+1
G )
T 2q-p)
« (|m[(g+3) Kos3(@) + 3K 2(@)]]7 + |m[(g+3 Koss(q) + 3’Cg+2(Q)]|q) :|
s+1 ’

Proposition 4.9 Considering all the conditions of Proposition 4.7 and applying Corol-
lary 2.3, we have

Kg(q) - Kg(p) w (a) — pqu) w?
‘ q-p '2(Q+1)K9*1(”’+m[<

5 <1>1-5[<w—p>3
~\3 2(q—-p)
i (55 Ko (@) + 3K (@)1
x s+3

m’cg+2(w) + 2,Cg+1(w)]'

+ 2| m [(Q+3 g+3(P) + 3’CQ+2(p)]|q>
(s+1)(s+2)(s+3)
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G w)?
" 2q-p)
2
« ltem@ [/ Kers3(@) + 3Kg.a(w)] |
(s+3)

2| W [(g+3 g+3(CI) + 3’Cg+2(CI)]Iq
(s+1)(s+2)(s+3) ) :|

Proposition 4.10 Counusidering all the conditions of Proposition 4.7 and applying Corol-
lary 2.8, we have

K -K (w— 29 w?
g(qa)l_p o(®) 2(@‘1 5 Ko (@) + 74(“21) [(Q +_2)/cg+2(w)+2icg+1(w)])
- (w—p)3[ 1
~ 2(q-p) (2p+1)p
|m[ +3) ’CQ+3( )+3Kg+2(w)]|q+Iﬁ[%lcg+3(p)+3lcg+2(p)”q
L M) o3 )@ @3 ]
2g
(q—w)3[ 1
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Proposition 4.11 Counsidering all the conditions of Proposition 4.7 and applying Corol-
lary 3.2, we have
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Proposition 4.12 Counusidering all the conditions of Proposition 4.7 and applying Corol-

lary 3.5, we have
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5 Conclusion

In recent times most of the work on inequality is based on revealing new bounds of some
well-known inequalities using fractional calculus. In this direction, we have investigated
the correlation between the theory of inequality and fractional calculus. We have consid-
ered the Ostrowski-type inequality in the setting of Atangana—Baleanu fractional calcu-
lus. Fractional integral operators play a major role in the advancement of the theory of
mathematical inequalities. For this reason, first, we established a new equality for differ-
entiable functions, and using this we have proved our main results. The main objective
is to employ Atangana—Baleanu fractional integrals and an s-convex function to provide
new bounds of the Ostrowski-type inequality. Several special cases of the main results are
rediscovered as well. To be more specific in our main results, if we put s = 1, we obtain new
Ostrowski-type inequalities for the convex function. Hence, in this paper, we show results
for both s-convex and convex functions. In the future, we will use the novel concepts and
the modified fractional operators introduced by Refai and Baleanu [42].
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