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Abstract
In this paper, we propose a new system called an alternate control system with
double impulses. The present system is a cyclic control system, composed of four
parts in a circle: to the first and last halves of each period of the system we add
different continuous controls, and at the half-period time and the end of each period
of the system we add different impulses. We then investigate the exponential stability
of the considered system. An example based on Chua’s circuit is provided to confirm
the effectiveness of the theoretical result.
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1 Introduction
Throughout this paper, let Rn denote an n-dimensional real Euclidean space with norm
‖ · ‖. Rm×n refers to the set of all m × n-dimensional real matrices. λmax(A), λmin(A), AT ,
and A–1 stand for the maximum, the minimum eigenvalue, the transpose, and the inverse
of matrix A, respectively. I is the identity matrix with proper dimension. We use A > 0 to
mean that A is a positive-definite matrix. Let f (x(a–)) = limt→a– f (x(t)).

There are many methods to make a nonlinear system stable, for instance, sliding mode
control [1], fuzzy control [2], feedback control [3], adaptive control [4], alternate control
[5, 6], impulsive control [7, 8], etc. Taking into account the engineering applications, the
cost of continuous control is high. Through intermittent control, the control cost and the
amount of transmitted information can be greatly reduced. As is known, impulsive control
is a discontinuous control method.

A class of nonlinear systems can be described as
⎧
⎨

⎩

ẋ(t) = Ax(t) + f (x(t)) + w(t),

x(t0) = x0,
(1.1)

where x(t) ∈ Rn is the state vector, A ∈ Rn×n is a constant matrix, f : Rn → Rn is a continu-
ous nonlinear function satisfying f (0) = 0 and ‖f (x)‖ ≤ l‖x‖, l ≥ 0 is a constant. w(t) is the
control input. Without loss of generality, let t0 = 0, x0 ∈ Rn is a given vector.
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In order to stabilize system (1.1) at the origin by means of an alternate control system
with double impulses, we set four kinds of control in one period, i.e., t ∈ (kT , kT + T

2 ),
we set w(t) = B1x(t), where B1 ∈ Rn×n is a known matrix, t ∈ (kT + T

2 , (k + 1)T), we set
w(t) = B2x(t), where B2 ∈ Rn×n is a constant matrix, at the same time, at time t = kT + T

2 ,
an impulse J1 is given, and an impulse J2 is given to the system at time t = (k + 1)T . Hence,
system (1.1) is rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + f (x(t)) + B1x(t), kT < t < kT + T
2 ,

x(t) = x(t–) + J1x(t–), t = kT + T
2 ,

ẋ(t) = Ax(t) + f (x(t)) + B2x(t), kT + T
2 < t < (k + 1)T ,

x(t) = x(t–) + J2x(t–), t = (k + 1)T ,

x(t0) = x0, t0 = 0,

(1.2)

where T > 0 is a control cycle and k is a nonnegative integer.

Remark 1.1 When B2 = 0, the system (1.2) becomes the alternate continuous-control sys-
tem with double impulses [9].

For more information on stability and applications of nonlinear systems that have been
investigated in the literature, for instance, see [10–14].

2 Main result
We begin this section with two lemmas that will turn out to be useful in the proof of our
main result.

Lemma 2.1 ([15]) Suppose that any x, y ∈ Rn, then

∣
∣xT y

∣
∣ ≤ ‖x‖‖y‖.

Lemma 2.2 ([15]) Let A ∈ Rn×n be a symmetric matrix, then for all x ∈ Rn,

λmin(A)xT x ≤ xT Ax ≤ λmax(A)xT x.

Theorem 2.1 Let 0 < P ∈ Rn×n such that the following conditions are satisfied:
(1) u1 < 0,
(2) ( u1+u2

2 )T + lnβ + lnγ < 0,
where β = λmax(P–1(I + J1)T P(I + J1)), γ = λmax(P–1(I + J2)T P(I + J2)), β1 = λmax(P–1(PA +
AT P + PB1 + BT

1 P)), β2 = λmax(P), β3 = λmin(P), β4 = λmax(P–1(PA + AT P + +PB2 + BT
2 P)),

u1 = β1 + 2l
√

β2
β3

, u2 = β4 + 2l
√

β2
β3

. Then, system (1.2) is exponentially stable at the origin.

Proof Define

V
(
x(t)

)
= xT (t)Px(t).

For t ∈ (kT , kT + T
2 ), using Lemmas 2.1 and 2.2, we obtain

D+(
V

(
x(t)

))
= 2xT (t)P

(
Ax(t) + f

(
x(t)

)
+ B1x(t)

)
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= 2xT (t)PAx(t) + 2xT (t)Pf
(
x(t)

)
+ 2xT (t)PB1x(t)

= xT (t)
(
PA + AT P + PB1 + BT

1 P
)
x(t) + 2xT (t)P

1
2 P

1
2 f

(
x(t)

)

≤ β1xT (t)Px(t) + 2
√

xT (t)Px(t)f T
(
x(t)

)
Pf

(
x(t)

)

≤ β1xT (t)Px(t) + 2
√

xT (t)Px(t)β2f T
(
x(t)

)
f
(
x(t)

)

≤ β1xT (t)Px(t) + 2
√

xT (t)Px(t)β2l2xT (t)x(t)

≤ β1xT (t)Px(t) + 2l

√

xT (t)Px(t)
β2

β3
xT (t)Px(t)

= u1V
(
x(t)

)
,

which implies that

V
(
x(t)

) ≤ V
(
x(kT)

)
eu1(t–kT). (2.1)

For t = kT + T
2 , we obtain

V
(
x(t)

)
=

(
x
(
t–)

+ J1x
(
t–))T P

(
x
(
t–)

+ J1x
(
t–))

= xT(
t–)

(I + J1)T P(I + J1)x
(
t–)

= xT(
t–)

P
1
2 P– 1

2 (I + J1)T P(I + J1)P– 1
2 P

1
2 x

(
t–)

≤ βV
(
x
(
t–))

.

(2.2)

For t ∈ (kT + T
2 , (k + 1)T), using Lemmas 2.1 and 2.2, we obtain

D+(
V

(
x(t)

))
= 2xT (t)P

(
Ax(t) + f

(
x(t)

)
+ B2x(t)

)

= 2xT (t)PAx(t) + 2xT (t)Pf
(
x(t)

)
+ 2xT (t)PB2x(t)

= xT (t)
(
PA + AT P + PB2 + BT

2 P
)
x(t) + 2xT (t)P

1
2 P

1
2 f

(
x(t)

)

≤ β4xT (t)Px(t) + 2
√

xT (t)Px(t)f T
(
x(t)

)
Pf

(
x(t)

)

≤ β4xT (t)Px(t) + 2
√

xT (t)Px(t)β2f T
(
x(t)

)
f
(
x(t)

)

≤ β4xT (t)Px(t) + 2
√

xT (t)Px(t)β2l2xT (t)x(t)

≤ β4xT (t)Px(t) + 2l

√

xT (t)Px(t)
β2

β3
xT (t)Px(t),

which implies that

V
(
x(t)

) ≤ V
(

x
(

kT +
T
2

))

eu2(t–kT– T
2 ). (2.3)
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By (2.2) and (2.3), we deduce that

V
(
x(t)

) ≤ βV
(

x
((

kT +
T
2

)–))

eu2(t–kT– T
2 ), (2.4)

where t ∈ [kT + T
2 , (k + 1)T).

For t = (k + 1)T , we obtain

V
(
x(t)

)
=

(
x
(
t–)

+ J2x
(
t–))T P

(
x
(
t–)

+ J2x
(
t–))

= xT(
t–)

(I + J2)T P(I + J2)x
(
t–)

= xT(
t–)

P
1
2 P– 1

2 (I + J2)T P(I + J2)P– 1
2 P

1
2 x

(
t–)

≤ γ V
(
x
(
t–))

.

(2.5)

When k = 0, for t ∈ (0, T
2 ), from (2.1), we can obtain

V
(
x(t)

) ≤ V
(
x(0)

)
eu1t .

Consequently,

V
(

x
((

T
2

)–))

≤ V
(
x(0)

)
e

u1T
2 . (2.6)

For t ∈ [ T
2 , T), applying (2.4) and (2.6), we obtain

V
(
x(t)

) ≤ βV
(

x
((

T
2

)–))

eu2(t– T
2 )

≤ βV
(
x(0)

)
e

u1T
2 +u2(t– T

2 ).

Consequently,

V
(
x
(
T–)) ≤ βV

(
x(0)

)
e

u1T+u2T
2 . (2.7)

For t = T , applying (2.5) and (2.7), we obtain

V
(
x(T)

) ≤ γ V
(
x
(
T–))

≤ βγ V
(
x(0)

)
e

u1T+u2T
2 .

(2.8)

When k = 1, for t ∈ (T , T + T
2 ), applying (2.1) and (2.8), we obtain

V
(
x(t)

) ≤ V
(
x
(
T+))

eu1(t–T)

≤ V
(
x(T)

)
eu1(t–T)

≤ βγ V
(
x(0)

)
eu1(t– T

2 )+ u2T
2 .
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Consequently,

V
(

x
((

T +
T
2

)–))

≤ βγ V
(
x(0)

)
eu1T+ u2T

2 . (2.9)

For t ∈ [T + T
2 , 2T), applying (2.4) and (2.9), we obtain

V
(
x(t)

) ≤ βV
(

x
((

T +
T
2

)–))

eu2(t– 3T
2 )

≤ β2γ V
(
x(0)

)
eu1T+u2(t–T).

Consequently,

V
(
x
(
(2T)–)) ≤ β2γ V

(
x(0)

)
e(u1+u2)T . (2.10)

For t = 2T , applying (2.5) and (2.10), we obtain

V
(
x(2T)

) ≤ γ V
(
x
(
(2T)–))

≤ β2γ 2V
(
x(0)

)
e(u1+u2)T .

(2.11)

When k = 2, for t ∈ (2T , 2T + T
2 ), applying (2.1) and (2.11), we obtain

V
(
x(t)

) ≤ V
(
x(2T)+)

eu1(t–2T)

≤ V
(
x(2T)

)
eu1(t–2T)

≤ β2γ 2V
(
x(0)

)
eu1(t–T)+u2T .

Consequently,

V
(

x
((

2T +
T
2

)–))

≤ β2γ 2V
(
x(0)

)
e

3u1T
2 +u2T . (2.12)

For t ∈ [2T + T
2 , 3T), applying (2.4) and (2.12), we obtain

V
(
x(t)

) ≤ βV
(

x
((

2T +
T
2

)–))

eu2(t– 5T
2 )

≤ β3γ 2V
(
x(0)

)
e

3u1T
2 +u2(t– 3T

2 ).

Consequently,

V
(
x
(
(3T)–)) ≤ β3γ 2V

(
x(0)

)
e

3u1T+3u2T
2 . (2.13)

For t = 3T , applying (2.5) and (2.13), we obtain

V
(
x(3T)

) ≤ γ V
(
x
(
(3T)–))

≤ β3γ 3V
(
x(0)

)
e

3u1T+3u2T
2 .
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By induction, when k = m, m = 0, 1, . . . , for t ∈ (mT , mT + T
2 ), we obtain

V
(
x(t)

) ≤ βmγ mV
(
x(0)

)
eu1(t– mT

2 )+ u2mT
2 . (2.14)

For t ∈ [mT + T
2 , (m + 1)T), we obtain

V
(
x(t)

) ≤ βm+1γ mV
(
x(0)

)
e

(m+1)u1T
2 +u2(t– (m+1)T

2 ). (2.15)

For t = (m + 1)T , we obtain

V
(
x(t)

) ≤ βm+1γ m+1V
(
x(0)

)
e

(m+1)u1T
2 + (m+1)u2T

2 . (2.16)

By (2.14), for t ∈ (mT , mT + T
2 ), let t = mT

V
(
x(t)

) ≤ βmγ mV
(
x(0)

)
eu1(t– mT

2 )+ u2mT
2

≤ βmγ mV
(
x(0)

)
e( u1+u2

2 )mT

= e(lnβ+lnγ )mV
(
x(0)

)
e( u1+u2

2 )mT

= V
(
x(0)

)
e(( u1+u2

2 )T+lnβ+lnγ )m.

(2.17)

By (2.15), for t ∈ [mT + T
2 , (m + 1)T), we have

Case 1. When u2 > 0, let t = (m + 1)T

V
(
x(t)

) ≤ βm+1γ mV
(
x(0)

)
e

(m+1)u1T
2 +u2(t– (m+1)T

2 ).

≤ βm+1γ mV
(
x(0)

)
e( u1+u2

2 )(m+1)T

= V
(
x(0)

)
e( u1+u2

2 )(m+1)T+(m+1) lnβ+m lnγ

= V
(
x(0)

)
e(( u1+u2

2 )T+lnβ+lnγ )m+( u1+u2
2 )T+lnβ .

(2.18)

Case 2. When u2 ≤ 0, let t = mT + T
2

V
(
x(t)

) ≤ βm+1γ mV
(
x(0)

)
e

(m+1)u1T
2 +u2(t– (m+1)T

2 ).

≤ βm+1γ mV
(
x(0)

)
e

(m+1)u1T
2 + mu2T

2

= V
(
x(0)

)
e

(m+1)u1T
2 + mu2T

2 +(m+1) lnβ+m lnγ

= V
(
x(0)

)
e(( u1+u2

2 )T+lnβ+lnγ )m+ u1T
2 +lnβ .

(2.19)

By (2.16), for t = (m + 1)T , we have

V
(
x(t)

) ≤ βm+1γ m+1V
(
x(0)

)
e

(m+1)u1T
2 + (m+1)u2T

2

= V
(
x(0)

)
e

(m+1)u1T
2 + (m+1)u2T

2 +(m+1) lnβ+(m+1) lnγ

= V
(
x(0)

)
e(( u1+u2

2 )T+lnβ+lnγ )(m+1).

(2.20)
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From (2.17)–(2.20), we conclude that the system (1.2) is exponentially stable at the ori-
gin.

This completes the proof. �

3 A numerical example
In this section, we study the control of Chua’s oscillator by applying Theorem 2.1.

Example 3.1 Consider Chua’s system [16]:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = α(x2 – x1 – h(x1)),

ẋ2 = x1 – x2 + x3,

ẋ3 = –βx2,

(3.1)

where α and β are two parameters,

h(x1) = bx1 +
1
2

(a – b)
(|x1 + 1| – |x1 – 1|),

where a and b are two given constants satisfying a < b < 0.
In order to apply Theorem 2.1, we may rewrite system (3.1) as

ẋ(t) = Ax + f (x),

where

A =

⎡

⎢
⎣

–α – αb α 0
1 –1 1
0 –β 0

⎤

⎥
⎦ ,

f (x) =

⎡

⎢
⎣

– 1
2α(a – b)(|x1 + 1| – |x1 – 1|)

0
0

⎤

⎥
⎦ .

By easy computation, we obtain

∥
∥f (x)

∥
∥2 =

1
4
α2(a – b)2[(x1 + 1)2

+ (x1 – 1)2 – 2
∣
∣(x1 + 1)(x1 – 1)

∣
∣
]

=
1
2
α2(a – b)2(x2

1 + 1 –
∣
∣x2

1 – 1
∣
∣
)

=

⎧
⎨

⎩

α2(a – b)2, x2
1 > 1

α2(a – b)2x2, x2
1 ≤ 1

≤ α2(a – b)2x2
1

≤ α2(a – b)2(x2
1 + x2

2 + x2
3
)
.

Hence, we choose l2 = α2(a – b)2.
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Figure 1 The chaotic phenomenon of (3.1) with the initial condition x(0) = (22, –2, –15)T

Figure 2 Time response curves of (3.1) via an alternate control system with double impulses

In the initial condition x(0) = (22, –2, –15)T , Chua’s system exhibits chaotic phe-
nomenon when

α = 9.2156, β = 15.9946, a = –1.24905, b = –0.75735,

as shown in Fig. 1.
Meanwhile, for simplicity of calculation, we choose P = I , J1 = J2 = diag(0.3, 0.3, 0.3),

B1 = diag(–49, –42, –32), B2 = diag(–1, –1, –1). A small calculation shows that β = γ =
1.69, β1 = –55.0889, β2 = β3 = 1, β4 = 15.4359, l = 4.5313, u1 = –46.0263, u2 = 24.4985.
By the condition of Theorem 2.1, we have T > 0.0975. Thus, in the initial condition
x(0) = (22, –2, –15)T , system (3.1) is exponentially stable by Theorem 2.1, The simulation
results with T = 0.1000 are shown in Fig. 2.

4 Conclusions
The paper presents a new model of a control system, namely an alternate control system
with double impulses. Theorem 2.1 gives the exponential stability criteria of the consid-
ered system. The stability conditions avoid solving linear matrix inequalities. Moreover,
the chaotic Chua’s circuit can be controlled by Theorem 2.1.
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