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1 Introduction
Let B denote the class of functions of the form

f (z) = z +
∞∑

k=2

akzk (1.1)

that are analytic in the open unit disc E := {z ∈C : |z| < 1}. A function f ∈ B is said to be in
the class M(β) if it satisfies

�
{

zf ′(z)
f (z)

}
< β , (β > 1, z ∈ E). (1.2)

A function f ∈ B is said to be in the class N (β) if it satisfies

�
{

1 +
zf ′′(z)
f ′(z)

}
< β , (β > 1, z ∈ E). (1.3)

The classes M(β) and N (β) were introduced and studied by Nishiwaki and Owa [23] and
Owa and Nishiwaki [24] (see also [25] and [27]). It follows from (1.2) and (1.3) that, for a
function f ∈ B, we have the equivalence

f (z) ∈N (β) ⇔ zf ′(z) ∈M(β). (1.4)
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For the functions fj(z) (j = 1, 2) defined by

fj(z) =
∞∑

k=2

ak,jzk ,

let f1 ∗ f2 denote the Hadamard product (or convolution) of f1 and f2, which is defined by

(f1 ∗ f2)(z) = f1(z) ∗ f2(z) =
∞∑

k=2

ak,1ak,2zk .

It is well known that

z(f ∗ g)′ = f ∗ zg ′ = g ∗ zf ′. (1.5)

A variable x is said to be Pascal distribution if it takes the values 0, 1, 2, 3, . . . with proba-
bilities

(1 – q)n,
qn(1 – q)n

1!
,

q2n(n + 1)(1 – q)n

2!
,

q3n(n + 1)(n + 2)(1 – q)n

3!
, . . . ,

respectively, where n and q are called the parameters, and thus

P(x = r) =
(

r + n – 1
n – 1

)
qr(1 – q)n, r = 0, 1, 2, . . . .

Recently, a power series whose coefficients are probabilities of Pascal distribution was
introduced by El-Deeb et al. [6] as follows:

�n
q(z) = (1 – q)nz +

∞∑

k=2

(
k + n – 2

n – 1

)
qk–1(1 – q)nzk (z ∈ E),

where n ∈ Z
+, 0 ≤ q ≤ 1. Note that, by using the ratio test, we deduce that the radius of

convergence of the power series shown above is infinity. For n ∈ Z
+, 0 ≤ q ≤ 1, we consider

the Pascal operator

�n
q : B → B,

which is defined as follows:

�n
qf (z) = fq,n(z) ∗ f (z),

= z +
∞∑

k=2

(
k + n – 2

n – 1

)
qk–1akzk (z ∈ E),

where

fq,n(z) =
�n

q(z)
(1 – q)n = z +

∞∑

k=2

(
k + n – 2

n – 1

)
qk–1zk .
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Now, we define the operator In
q : B → B analogous to the Pascal operator �n

q as follows:

In
q f (z) = f (–1)

q,n (z) ∗ f (z) (z ∈ E) (1.6)

and

fq,n(z) ∗ f (–1)
q,n (z) =

z
1 – z

. (1.7)

By using the two operators �n
q and In

q , we define and study the properties of the following
new classes of analytic functions:

M�,n,q(β) =
{

f ∈ B : �n
qf (z) ∈M(β),β > 1, z ∈ E

}
, (1.8)

N�,n,q(β) =
{

f ∈ B : �n
qf (z) ∈N (β),β > 1, z ∈ E

}
, (1.9)

MI,n,q(β) =
{

f ∈ B : In
q f (z) ∈M(β),β > 1, z ∈ E

}
, (1.10)

NI,n,q(β) =
{

f ∈ B : In
q f (z) ∈N (β),β > 1, z ∈ E

}
. (1.11)

Many fields have used the Pascal distribution, including communications, health, cli-
matology, demographics, and engineering (see [13]). Geometric function theory has re-
cently focused on the geometric properties of analytic functions associated with the Pas-
cal distributions. According to the work of El-Deeb et al. [6], several studies have estab-
lished a connection between the Pascal distribution series and some classes of normal-
ized analytic functions. Following this, Bulboaca and Murugusundaramoorthy [4], Mu-
rugusundaramoorthy and Yalcın [22] and Murugusundaramoorthy [21] established some
sufficient conditions for the Pascal distribution series to be in certain subclasses of ana-
lytic functions. Subsequently, Amourah et al. [1] constructed a new subclass of analytic
bi-univalent functions defined by means of the Pascal distribution series and provided
estimates for the first two coefficients of Taylor–Maclaurin series for functions in this
class. Numerous recent investigations have investigated the properties of various sub-
classes of analytic functions defined by the Pascal distribution series (see, for example,
[3–5, 7–12, 14, 15, 26, 28]). The purpose of this article is to obtain some inclusion relations
for functions in the classes M�,n,q(β), N�,n,q(β), MI,n,q(β), and NI,n,q(β). In addition, it
discusses the integral operator associated with these classes of functions.

2 Main results
To prove our main results, we shall need the following lemma.

Lemma 1 ([19, 20]) Let u = u1 + iu2, v = v1 + iv2 and let φ(u, v) be a complex valued function
satisfying:

(i) φ(u, v) is continuous in a domain D ⊂C×C;
(ii) (1, 0) ∈ D and �{φ(1, 0)} > 0;

(iii) �{φ(iu2, v1)} ≤ 0 when v1 ≤ –(1+u2
2)

2 .
Let T(z) = 1 + b1z + b2z2 + · · · be an analytic function in E such that (T(z), zT ′(z)) ∈ D

and �{φ(T(z), zT ′(z))} > 0 for all z ∈ E . Then �{T(z)} > 0.

Proposition 2 z(�n
qf (z))′ = n�n+1

q f (z) – (n – 1)�n
qf (z).
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Proof Since

�n+1
q f (z) = z +

∞∑

k=2

(
k + n – 1

n

)
qk–1akzk ,

then

�n+1
q f (z) = z +

∞∑

k=2

(k + n – 1)(k + n – 2)!
n(n – 1)!(k – 1)!

qk–1akzk ,

= z +
1
n

∞∑

k=2

k
(

k + n – 2
n – 1

)
qk–1akzk +

n – 1
n

∞∑

k=2

(
k + n – 2

n – 1

)
qk–1akzk ,

=
1
n

{
z +

∞∑

k=2

k
(

k + n – 2
n – 1

)
qk–1akzk

}

+
n – 1

n

{
z +

∞∑

k=2

(
k + n – 2

n – 1

)
qk–1akzk

}
,

=
1
n

z
(
�n

qf (z)
)′ +

n – 1
n

�n
qf (z),

which is equivalent to

n�n+1
q f (z) = z

(
�n

qf (z)
)′ + (n – 1)�n

qf (z).

This ends the proof. �

Proposition 3 z(In+1
q f (z))′ = n(In

q f (z)) – (n – 1)(In+1
q f (z)).

Proof From Proposition 2, replacing f (z) by In
q f (z), we get

z
(
�n

q
(
In

q f (z)
))′ = n�n+1

q
(
In

q f (z)
)

– (n – 1)�n
q
(
In

q f (z)
)
,

using (1.5), we have

z
(
In+1

q f (z)
)′ = n

(
In

q f (z)
)

– (n – 1)
(
In+1

q f (z)
)
. �

In Theorem 4, we obtain the containment relation M�,n+1,q(β) ⊂M�,n,q(β).

Theorem 4 Let f be an analytic function defined by (1.1). If f ∈ M�,n+1,q(β), then for all
β > 1, n ∈ Z

+, and z ∈ E , we have f ∈M�,n,q(β).

Proof Let f (z) ∈M�,n+1,q(β). We have to show that

�
{z(�n

qf (z))′

�n
qf (z)

}
< β , β > 1,

or, equivalently,

�
{β – z(�n

qf (z))′
�n

q f (z)

β – 1

}
> 0. (2.1)
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Let

z(�n
qf (z))′

�n
qf (z)

= β – (β – 1)T(z), (2.2)

where T(z) = 1 + b1z + b2z2 + · · · . Using Proposition 2 and (2.2), we have

n�n+1
q f (z) – (n – 1)�n

qf (z)
�n

qf (z)
= β – (β – 1)T(z),

or, equivalently,

�n+1
q f (z)

�n
qf (z)

=
1
n
{
β – 1 + n – (β – 1)T(z)

}
, (2.3)

differentiating logarithmically both sides, we get

β – z(�n+1
q f (z))′

�n+1
q f (z)

β – 1
= T(z) +

zT ′(z)
β – 1 + n – (β – 1)T(z)

. (2.4)

Now, we form the function φ(u, v) by taking u = T(z) and v = zT ′(z), therefore

φ(u, v) = u +
v

β – 1 + n – (β – 1)u
. (2.5)

We note that the function φ(u, v) fulfills conditions (i) and (ii) of Lemma 1, where D =
(C – { β+n–1

β–1 }) × C . To prove condition (iii), we have

�{
φ(iu2, v1)

}
= �

{
v1

β + n – 1 – (β – 1)iu2

}
,

=
v1(β + n – 1)

{(β – 1 + n)2 + (β – 1)2u2
2}

≤ –(1 + u2
2)(β + n – 1)

2{(β – 1 + n)2 + (β – 1)2u2
2}

≤ 0,

where v1 ≤ –(1+u2
2)

2 and (iu2, v1) ∈ D. Therefore, the function φ(u, v) fulfills all conditions of
Lemma 1, which shows that if �{φ(T(z), zT ′(z))} > 0, then �{T(z)} > 0. Hence (2.1) holds,
which means f (z) ∈M�,n,q(β). This ends the proof. �

In the following theorem, an inclusion relation between the classes MI,n,q(β) and
MI,n+1,q(β) is obtained.

Theorem 5 Let f be an analytic function defined by (1.1). If f ∈ MI,n,q(β), then for all
β > 1, n ∈ Z

+, and z ∈ E , we have f ∈MI,n+1,q(β).
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Proof Let f (z) ∈MI,n,q(β). We have to show that

�
{z(In+1

q f (z))′

In+1
q f (z)

}
< β , β > 1,

or, equivalently,

�
{β – z(In+1

q f (z))′
In+1

q f (z)

β – 1

}
> 0. (2.6)

Let

z(In+1
q f (z))′

In+1
q f (z)

= β – (β – 1)T(z), (2.7)

where T(z) = 1 + b1z + b2z2 + · · · . Using Proposition 3 and (2.7), we have

n(In
q f (z)) – (n – 1)(In+1

q f (z))
In+1

q f (z)
= β – (β – 1)T(z),

or, equivalently,

In
q f (z)

In+1
q f (z)

=
1
n

{
β + n – 1 – (β – 1)T(z)

}
, (2.8)

using logarithmic differentiation, we have

β – z(In
q f (z))′

In
q f (z)

β – 1
= T(z) +

zT ′(z)
n – 1 + β – (β – 1)T(z)

. (2.9)

Now, we form the function φ(u, v) by taking u = T(z) and v = zT ′(z), therefore

φ(u, v) = u +
v

n – 1 + β – (β – 1)u
.

We note that the function φ(u, v) fulfills conditions (i) and (ii) of Lemma 1, where D =
(C – { n–1+β

β–1 }) ×C. To prove condition (iii), we have

�{
φ(iu2, v1)

}
= �

{
iu2 +

v1

n – 1 + β – (β – 1)iu2

}

=
{n – 1 + β}v1

(n – 1 + β)2 + (β – 1)2u2
2

≤ –(1 + u2
2)(n – 1 + β)

2{(n – 1 + β)2 + (β – 1)2u2
2}

≤ 0,

where v1 ≤ –(1+u2
2)

2 and (iu2, v1) ∈ D. Therefore, the function φ(u, v) fulfills all conditions of
Lemma 1, which shows that if �{φ(T(z), zT ′(z))} > 0, then �{T(z)} > 0, which means that
f ∈MI,n+1,q(β). This ends the proof. �
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Theorem 6 gives an inclusion property between the classes N�,n+1,q(β) and N�,n,q(β).

Theorem 6 Let f be an analytic function given by (1.1). If f ∈N�,n+1,q(β), where β > 1, n ∈
Z

+, and z ∈ E , then we have f ∈N�,n,q.

Proof Let f (z) ∈N�,n+1,q(β). From (1.9), we get

�n+1
q f (z) ∈N (β).

By using (1.4), we get

z
(
�n+1

q f (z)
)′ ∈M(β).

From (1.5), we have

�n+1
q

(
zf ′(z)

) ∈M(β),

which is equivalent to

zf ′(z) ∈M�,n+1,q(β).

By using Theorem 4, we have

zf ′(z) ∈M�,n,q(β),

which is equivalent to

�n
q
(
zf ′(z)

) ∈M(β).

From (1.5) and (1.4), we get

z
(
�n

qf (z)
)′ ∈M(β) ⇔ �n

qf (z) ∈N (β),

which means f (z) ∈N�,n,q(β). This ends the proof. �

In Theorem 7, the containment relation NI,n,q(β) ⊂NI,n+1,q(β) is obtained.

Theorem 7 Let f be an analytic function given by (1.1). If f ∈ NI,n,q(β), where β > 1, n ∈
Z

+, and z ∈ E , then we have f ∈NI,n+1,q(β).

Proof Let f (z) ∈NI,n,q(β). From (1.11), we get

In
q f (z) ∈N (β).

By using (1.4), we have

z
(
In

q f (z)
)′ ∈M(β).
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From (1.5), we have

In
q
(
zf ′(z)

) ∈M(β),

which is equivalent to

zf ′(z) ∈MI,n,q(β).

By using Theorem 5, we get

zf ′(z) ∈MI,n+1,q(β),

which means that

In+1
q

(
zf ′(z)

) ∈M(β).

From (1.4) and (1.5), we have

z
(
In+1

q f (z)
)′ ∈M(β) ⇔ In+1

q f (z) ∈N (β),

which means that f (z) ∈NI,n+1,q(β). This ends the proof. �

3 Integral operator
For the function f ∈ B, Bernardi [2] in 1969 introduced the following operator:

Lγ

(
f (z)

)
=

γ + 1
z

∫ z

0
tγ –1f (t) dt, γ > –1. (3.1)

The operator L1(γ = 1) was studied earlier by Libera [16, 17] and Liviningston [18]. From
(3.1), it is not difficult to demonstrate the following relations:

z
(
�n

qLγ

(
f (z)

))′ = (γ + 1)�n
qf (z) – γ�n

qLγ

(
f (z)

)
(3.2)

and

z
(
In

q Lγ

(
f (z)

))′ = (γ + 1)In
q f (z) – γIn

q Lγ

(
f (z)

)
. (3.3)

The following theorem proves that the integral operator Lγ preserves class M�,n,q(β)
properties.

Theorem 8 Let f be an analytic function given by (1.1). If f ∈ M�,n,q(β) for β > 1,γ >
–1, n ∈ Z

+, and z ∈ E , then we have Lγ (f (z)) ∈M�,n,q(β).

Proof Let f (z) ∈M�,n,q(β). We have to show that

�
{z(�n

qLγ (f (z)))′

�n
qLγ (f (z))

}
< β , β > 1,
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or, equivalently,

�
{β – z(�n

qLγ (f (z)))′
�n

qLγ (f (z))

β – 1

}
> 0, β > 1. (3.4)

Let

z(�n
qLγ (f (z)))′

�n
qLγ (f (z))

= β – (β – 1)T(z), (3.5)

where T(z) = 1 + b1z + b2z2 + · · · . Using (3.2) and (3.5), we get

�n
qf (z)

�n
qLγ (f (z))

=
1

γ + 1
{
γ + β – (β – 1)T(z)

}
, (3.6)

differentiating logarithmically both sides, we have

β – z(�n
qf (z))′

�n
q f (z)

β – 1
= T(z) +

zT ′(z)
γ + β – (β – 1)T(z)

. (3.7)

Now, we form the function φ(u, v) by taking u = T(z), v = zT ′(z), where u = u1 + iu2, v =
v1 + iv2, and u1, u2, v1, v2 ∈R. Therefore

φ(u, v) = u +
v

γ + β – (β – 1)u
. (3.8)

We note that the function φ(u, v) satisfies conditions (i) and (ii) of Lemma 1, where D =
(C – { γ +β

β–1 }) × C . To prove condition (iii), we have

�{
φ(iu2, v1)

}
= �

{
iu2 +

v1

γ + β – (β – 1)iu2

}

=
(γ + β)v1

(γ + β)2 + (β – 1)2u2
2

,

≤ –(γ + β)(1 + u2
2)

2{(γ + β)2 + (β – 1)2u2
2}

≤ 0,

where v1 ≤ –(1+u2
2)

2 and (iu2, v1) ∈ D. Therefore, the function φ(u, v) satisfies all conditions
of Lemma 1, which shows that if �{φ(T(z), zT ′(z))} > 0, then �{T(z)} > 0. Hence (3.4)
holds, which means Lγ (f (z)) ∈M�,n,q(β). This finishes the proof. �

Theorem 9 proves that integral operator Lγ preserves class MI,n,q(β) properties.

Theorem 9 For β > 1 and γ > –1, if f (z) ∈MI,n,q(β), then Lγ (f (z)) ∈MI,n,q(β).

Proof Let f (z) ∈MI,n,q(β). We have to show that

�
{z(In

q Lγ (f (z)))′

In
q Lγ (f (z))

}
< β , β > 1,
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or, equivalently,

�
{β – z(In

q Lγ (f (z)))′
In

q Lγ (f (z))

β – 1

}
> 0, β > 1. (3.9)

Let

z(In
q Lγ (f (z)))′

In
q Lγ (f (z))

= β – (β – 1)T(z), (3.10)

where T(z) = 1 + b1z + b2z2 + · · · . Using (3.3) and (3.10), we have

In
q f (z)

In
q Lγ (f (z))

=
1

γ + 1
{

(γ + β) – (β – 1)T(z)
}

, (3.11)

taking logarithmic differentiation, we have

β – z(In
q f (z))′

In
q f (z)

β – 1
= T(z) +

zT ′(z)
γ + β – (β – 1)T(z)

. (3.12)

Now, we form the function φ(u, v) by taking u = T(z) and v = zT ′(z), therefore

φ(u, v) = u +
v

γ + β – (β – 1)u
.

We note that the function φ(u, v) fulfills conditions (i) and (ii) of Lemma 1, where D =
(C – { γ +β

β–1 }) ×C. To prove condition (iii), we have

�{
φ(iu2, v1)

}
= �

{
iu2 +

v1

γ + β – (β – 1)iu2

}

=
(γ + β)v1

(γ + β)2 + (β – 1)2u2
2

≤ –(γ + β)(1 + u2
2)

2{(γ + β)2 + (β – 1)2u2
2}

≤ 0,

where v1 ≤ –(1+u2
2)

2 and (iu2, v1) ∈ D. Therefore, the function φ(u, v) fulfills all conditions of
Lemma 1, which shows that if �{φ(T(z), zT ′(z))} > 0, then �{T(z)} > 0, which means that
Lγ (f (z)) ∈N�,n,q(β). This ends the proof. �

The preserving property of the class N�,n,q(β) under the integral operator Lγ is proved
in the following theorem.

Theorem 10 For β > 1 and γ > –1, if f (z) ∈N�,n,q(β), then Lγ (f (z)) ∈N�,n,q(β).

Proof Let f (z) ∈N�,n,q(β). From (1.9), we get

�n
qf (z) ∈N (β).
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By using (1.4), we have

z
(
�n

qf (z)
)′ ∈M(β),

applying (1.5), we have

�n
q
(
zf ′(z)

) ∈M(β),

which means that

zf ′(z) ∈M�,n,q(β).

By using Theorem 8, we have

Lγ

(
zf ′(z)

) ∈M�,n,q(β),

by using (1.5), we have

z
(
Lγ

(
f (z)

))′ ∈M�,n,q(β).

Applying again (1.4), we get

Lγ

(
f (z)

) ∈N�,m,q(β),

which ends the proof. �

Theorem 11 proves that integral operator Lγ preserves class NI,n,q(β) properties.

Theorem 11 For β > 1 and γ > –1, if f (z) ∈NI,n,q(β), then Lγ (f (z)) ∈NI,n,q(β).

Proof Let f (z) ∈NI,n,q(β). From (1.11), we get

In
q f (z) ∈N (β).

By using (1.4), we have

z
(
In

q
(
f (z)

))′ ∈M(β),

(1.5) gives

In
q (zf ′(z) ∈M(β),

which means that

zf ′(z) ∈MI,n,q(β).
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By using Theorem 9, we get

Lγ

(
zf ′(z)

) ∈MI,n,q(β),

(1.5) gives

z
(
Lγ

(
f (z)

))′ ∈MI,n,q(β).

Using again (1.4), we have

Lγ

(
f (z)

) ∈NI,n,q(β),

which ends the proof. �

4 Conclusion
There are several known results on connections between various subclasses of analytic
and univalent functions using the Pascal distribution series (see, for example, [4, 6, 22]).
In the present work, we have constructed some new subclasses of analytic functions in
the open unit disc using the Pascal distribution series. In addition, inclusion relations and
integral preserving properties of these subclasses are studied. However, one can extend
this work to new subclasses of analytic functions.
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