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Abstract
In this paper, by considering some properties associated with scalar functionals of
multiple-integral type, we study the well-posedness and generalized well-posedness
for a new variational inequality-constrained optimization problems By using the set of
approximating solutions, we state some characterization theorems on
well-posedness and generalized well-posedness. Also, in order to validate the derived
results, some examples are given.
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1 Introduction
To study and solve some optimization problems by using the classical methods, in many
situations, can represent a very complicated task and, moreover, such methods may
(or may not) ensure exact solutions. In this regard, the well-posedness becomes ex-
tremely important for the study of optimization problems. More precisely, it is a useful
technique by ensuring the convergence for the sequence of approximating solutions to
the exact solution. The notion of well-posedness for unconstrained optimization prob-
lems was defined by Tykhonov [34]. Following this concept (see, for instance, [12, 28]),
many types of well-posedness for variational problems were introduced, namely: well-
posedness of Levitin–Polyak type [11, 17, 19, 20], and extended well-posedness (for in-
stance, [5, 6, 9, 14, 15, 22, 25–27, 38]), α-well-posedness [23, 36], and L-well-posedness
[21]. Also, this tool can be useful to investigate the connected problems, namely: fixed-
point problems [3], hemivariational inequality [37], variational inequality [2, 7, 18], equi-
librium problems [4, 8], Nash equilibrium [24], complementary problems [10], etc.

Jayswal and Shalini [16] studied the well-posedness of some mixed vector varia-
tional inequalities. Also, Hu et al. [13] established well-posedness for split variational–
hemivariational inequality problems. Bai et al. [1] studied, in a Banach space, generalized
mixed elliptic hemivariational–variational inequalities and obtained a well-posedness re-
sult for the considered inequality.

In the present paper, well-posedness and generalized well-posedness are studied for new
variational control problems defined by functionals of multiple-integral type. For this pur-
pose, we consider the notions of monotonicity, hemicontinuity, pseudomonotonicity, and
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lower semicontinuity for functionals of multiple-integral type. The approximating solu-
tion set is used to formulate and prove some theorems on well-posedness and generalized
well-posedness. Next, let us highlight the main merits of this paper. First, most of the for-
mer research papers have been investigated in finite-dimensional spaces (Hilbert spaces,
Banach spaces, Euclidean spaces). The results derived in this research paper are dynamic
generalizations of the static results that exist in the literature. Here, the mathematical
context is defined by function spaces of infinite dimension and controlled functionals of
multiple-integral type. It represents a completely new element in the field of well-posed
control problems. Recently, Treanţă [32] studied some similar optimization problems that
imply partial derivatives of second order, but without control functions. Also, the curvi-
linear case, but for the controlled variational inequality problem, is investigated in Treanţă
[33]. In consequence, this paper deals with a special situation in which the optimal control
problem has controlled variational inequality as a constraint.

We continue the paper as follows: in Sect. 2, we present the notions of lower semiconti-
nuity, monotonicity, hemicontinuity, and pseudomonotonicity to functionals of multiple-
integral type. We establish an auxiliary lemma that is important for the main results
formulated in the paper. In Sect. 3, by defining the approximating solution set, we ana-
lyze well-posedness and generalized well-posedness. Also, under suitable assumptions,
we state that well-posedness is the same as the existence and uniqueness of a solution
in the aforesaid problems. Moreover, some sufficient conditions for the generalized well-
posedness are provided. Illustrative examples are presented in the paper to validate the
theoretical aspects. Finally (see Sect. 4), we state the conclusions of the paper and some
immediate research directions.

2 Problem formulation
In this paper, in accordance with Treanţă [29–33], we consider T is a domain (it is sup-
posed to be compact) in R

m, the point T � t = (tα), α = 1, m, means a multivariate evo-
lution parameter, � is the space of piecewise-differentiable state functions θ : T → R

n,
having the norm

‖θ‖ = ‖θ‖∞ +
m∑

α=1

‖θα‖∞, ∀θ ∈ �,

where θα := ∂θ
∂tα , α = 1, m. Also, let P be the space of piecewise-continuous control func-

tions p : T →R
k , together with the norm ‖ · ‖∞.

In the following, consider � × P is a nonempty, closed, and convex subset of � × P ,
with (θ , p)|∂T = given and θα = X(t, θ , p) = given, and with the inner product

〈
(θ , p), (ϑ , q)

〉
=

∫

T

[
θ (t) · ϑ(t) + p(t) · q(t)

]
dt

=
∫

T

[ n∑

i=1

θ i(t)ϑ i(t) +
k∑

j=1

pj(t)qj(t)

]
dt, ∀(θ , p), (ϑ , q) ∈ � ×P

and the norm induced by it. Denote by dt = dt1 · · ·dtm the element of volume on R
m.

Let J1(Rm,Rn) := {(t, θ (t), θα(t)) ∈ R
m × R

n × R
mn} be the jet bundle associated with R

m
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and R
n. By using the real-valued continuously smooth function g : J1(Rm,Rn) ×R

k → R,
define the scalar functional governed by a multiple integral:

G : � ×P →R, G(θ , p) =
∫

T
g(t, θ , θα , p) dt.

Further, we use the notation (χθ ,p(t)) := (t, θ (t), θα(t), p(t)).

Definition 2.1 The functional
∫

T g(χθ ,p(t)) dt is monotone on � × P if the following in-
equality

∫

T

[(
θ (t) – ϑ(t)

)( ∂g
∂θ

(
χθ ,p(t)

)
–

∂g
∂θ

(
χϑ ,q(t)

))

+
(
p(t) – q(t)

)( ∂g
∂p

(
χθ ,p(t)

)
–

∂g
∂p

(
χϑ ,q(t)

))

+ Dα

(
θ (t) – ϑ(t)

)( ∂g
∂θα

(
χθ ,p(t)

)
–

∂g
∂θα

(
χϑ ,q(t)

))]
dt ≥ 0

is true, for ∀(θ , p), (ϑ , q) ∈ � × P, where Dα := ∂
∂tα is the operator of the total derivative.

Example 2.1 Consider n = k = 1, m = 2, and T = [0, 3]2. Let us define

g
(
χθ ,p(t)

)
= θ (t) + ep(t) – 1.

The functional
∫

T g(χθ ,p(t)) dt is monotone on � × P = C1(T ,R) × C(T ,R) since
∫

T

[(
θ (t) – ϑ(t)

)( ∂g
∂θ

(
χθ ,p(t)

)
–

∂g
∂θ

(
χϑ ,q(t)

))

+
(
p(t) – q(t)

)( ∂g
∂p

(
χθ ,p(t)

)
–

∂g
∂p

(
χϑ ,q(t)

))

+ Dα

(
θ (t) – ϑ(t)

)( ∂g
∂θα

(
χθ ,p(t)

)
–

∂g
∂θα

(
χϑ ,q(t)

))]
dt

=
∫

T

(
p(t) – q(t)

)(
ep(t) – eq(t))dt ≥ 0, ∀(θ , p), (ϑ , q) ∈ � × P

is valid.

Definition 2.2 The functional
∫

T g(χθ ,p(t)) dt is pseudomonotone on � × P if the follow-
ing implication

∫

T

[(
θ (t) – ϑ(t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
p(t) – q(t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
θ (t) – ϑ(t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt ≥ 0

⇒
∫

T

[(
θ (t) – ϑ(t)

) ∂g
∂θ

(
χθ ,p(t)

)
+

(
p(t) – q(t)

) ∂g
∂p

(
χθ ,p(t)

)

+ Dα

(
θ (t) – ϑ(t)

) ∂g
∂θα

(
χθ ,p(t)

)]
dt ≥ 0

holds, for ∀(θ , p), (ϑ , q) ∈ � × P.
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Example 2.2 Consider n = k = 1, m = 2, and T = [0, 3]2. Let us define

g
(
χθ ,p(t)

)
= sin θ (t) + p(t)ep(t).

The functional
∫

T g(χθ ,p(t)) dt is pseudomonotone on �×P = C1(T , [–1, 1])×C(T , [–1, 1])
since

∫

T

[(
θ (t) – ϑ(t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
p(t) – q(t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
θ (t) – ϑ(t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt

=
∫

T

[(
θ (t) – ϑ(t)

)
cosϑ(t) +

(
p(t) – q(t)

)(
eq(t) + q(t)eq(t))]dt ≥ 0

∀(θ , p), (ϑ , q) ∈ � × P

⇒
∫

T

[(
θ (t) – ϑ(t)

) ∂g
∂θ

(
χθ ,p(t)

)
+

(
p(t) – q(t)

) ∂g
∂p

(
χθ ,p(t)

)

+ Dα

(
θ (t) – ϑ(t)

) ∂g
∂θα

(
χθ ,p(t)

)]
dt

=
∫

T

[(
θ (t) – ϑ(t)

)
cos θ (t) +

(
p(t) – q(t)

)(
ep(t) + p(t)ep(t))]dt ≥ 0

∀(θ , p), (ϑ , q) ∈ � × P

is satisfied. However, it is not monotone on � × P since

∫

T

[(
θ (t) – ϑ(t)

)( ∂g
∂θ

(
χθ ,p(t)

)
–

∂g
∂θ

(
χϑ ,q(t)

))

+
(
p(t) – q(t)

)( ∂g
∂p

(
χθ ,p(t)

)
–

∂g
∂p

(
χϑ ,q(t)

))

+ Dα

(
θ (t) – ϑ(t)

)( ∂g
∂θα

(
χθ ,p(t)

)
–

∂g
∂θα

(
χϑ ,q(t)

))]
dt

=
∫

T

[(
θ (t) – ϑ(t)

)(
cos θ (t) – cosϑ(t)

)

+
(
p(t) – q(t)

)(
p(t)ep(t) + ep(t) – q(t)eq(t) – eq(t))]dt � 0,

∀(θ , p), (ϑ , q) ∈ � × P.

Taking into account Usman and Khan [35], we formulate the next definition.

Definition 2.3 The functional
∫

T g(χθ ,p(t)) dt is hemicontinuous on � × P if

λ →
〈(

θ (t), p(t)
)

–
(
ϑ(t), q(t)

)
,
(

δG
δθλ

(t),
δG
δpλ

(t)
)〉

, 0 ≤ λ ≤ 1
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is continuous at 0+, for ∀(θ , p), (ϑ , q) ∈ � × P, where

δG
δθλ

(t) :=
∂g
∂θ

(
χθλ ,pλ

(t)
)

– Dα

∂g
∂θα

(
χθλ ,pλ

(t)
) ∈ �,

δG
δpλ

(t) :=
∂g
∂p

(
χθλ ,pλ

(t)
) ∈ P,

θλ := λθ + (1 – λ)ϑ , pλ := λp + (1 – λ)q.

Now, we formulate the following variational inequality-constrained optimization prob-
lem (for short, CP):

Minimize
∫

T
g(χθ ,p) dt (CP)

subject to (θ , p) ∈ 
,

where 
 is the set of solutions for the following variational inequality (for short, IP):
Find (θ , p) ∈ � × P such that

∫

T

[
∂g
∂θ

(χθ ,p)(ϑ – θ ) +
∂g
∂θα

(χθ ,p)Dα(ϑ – θ )
]

dt (IP)

+
∫

T

[
∂g
∂p

(χθ ,p)(q – p)
]

dt ≥ 0, ∀(ϑ , q) ∈ � × P.

More precisely, the feasible solutions of (IP) are formulated as


 =
{

(θ , p) ∈ � × P :
∫

T

[(
ϑ(t) – θ (t)

) ∂g
∂θ

(
χθ ,p(t)

)

+ Dα

(
ϑ(t) – θ (t)

) ∂g
∂θα

(
χθ ,p(t)

)
+

(
q(t) – p(t)

) ∂g
∂p

(
χθ ,p(t)

)]
dt ≥ 0,

∀(ϑ , q) ∈ � × P
}

.

Lemma 2.1 Let the functional
∫

T g(χθ ,p(t)) dt be hemicontinuous and pseudomonotone on
the convex and closed set � × P. Then, (θ , p) ∈ � × P solves (IP) if and only if it solves the
variational inequality problem

∫

T

[(
ϑ(t) – θ (t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – p(t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
ϑ(t) – θ (t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt ≥ 0, ∀(ϑ , q) ∈ � × P.

Proof First, let us consider that (θ , p) ∈ � × P solves (IP). In consequence, it follows that

∫

T

[(
ϑ(t) – θ (t)

) ∂g
∂θ

(
χθ ,p(t)

)
+

(
q(t) – p(t)

) ∂g
∂p

(
χθ ,p(t)

)

+ Dα

(
ϑ(t) – θ (t)

) ∂g
∂θα

(
χθ ,p(t)

)]
dt ≥ 0, ∀(ϑ , q) ∈ � × P.
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By considering the property of pseudomonotonicity of the functional
∫

T g(χθ ,p(t)) dt, the
above inequality implies

∫

T

[(
ϑ(t) – θ (t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – p(t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
ϑ(t) – θ (t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt ≥ 0, ∀(ϑ , q) ∈ � × P.

Conversely, let us assume that

∫

T

[(
ϑ(t) – θ (t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – p(t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
ϑ(t) – θ (t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt ≥ 0, ∀(ϑ , q) ∈ � × P.

Further, for λ ∈ (0, 1] and (ϑ , q) ∈ � × P, we introduce

(ϑλ, qλ) =
(
(1 – λ)θ + λϑ , (1 – λ)p + λq

) ∈ � × P.

Therefore, the previous inequality can be reformulated as follows

∫

T

[(
ϑλ(t) – θ (t)

) ∂g
∂θ

(
χϑλ ,qλ

(t)
)

+
(
qλ(t) – p(t)

) ∂g
∂p

(
χϑλ ,qλ

(t)
)

+ Dα

(
ϑλ(t) – θ (t)

) ∂g
∂θα

(
χϑλ ,qλ

(t)
)]

dt ≥ 0, (ϑ , q) ∈ � × P.

Considering λ → 0 and using the hemicontinuity property of the functional∫
T g(χθ ,p(t)) dt, we obtain

∫

T

[(
ϑ(t) – θ (t)

) ∂g
∂θ

(
χθ ,p(t)

)
+

(
q(t) – p(t)

) ∂g
∂p

(
χθ ,p(t)

)

+ Dα

(
ϑ(t) – θ (t)

) ∂g
∂θα

(
χθ ,p(t)

)]
dt ≥ 0, ∀(ϑ , q) ∈ � × P,

which shows that (θ , p) is a solution of (IP). �

Definition 2.4 The functional
∫

T g(χθ ,p(t)) dt is lower semicontinuous at (θ0, p0) ∈ � × P
if

∫

T
g
(
χθ0,p0 (t)

)
dt ≤ lim

(θ ,p)→(θ0,p0)
inf

∫

T
g
(
χθ ,p(t)

)
dt.

3 Well-posedness and generalized well-posedness of (CP)
In this section, taking into account the mathematical tools in Sect. 2, we analyze the well-
posedness and generalized well-posedness of (CP).

Let � be the solution set of (CP),

� =
{

(θ , p) ∈ � × P
∣∣∣
∫

T
g(χθ ,p) dt ≤ inf

(ϑ ,q)∈


∫

T
g(χϑ ,q) dt and
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∫

T

[
(ϑ – θ )

∂g
∂θ

(χθ ,p) + (q – p)
∂g
∂p

(χθ ,p)

+ Dα(ϑ – θ )
∂g
∂θα

(χθ ,p)
]

dt ≥ 0,∀(ϑ , q) ∈ � × P
}

.

For ρ, ξ ≥ 0, we define the set of approximating solutions of (CP) as

�(ρ, ξ ) =
{

(θ , p) ∈ � × P
∣∣∣
∫

T
g(χθ ,p) dt ≤ inf

(ϑ ,q)∈


∫

T
g(χϑ ,q) dt + ρ and

∫

T

[
(ϑ – θ )

∂g
∂θ

(χθ ,p) + (q – p)
∂g
∂p

(χθ ,p)

+ Dα(ϑ – θ )
∂g
∂θα

(χθ ,p)
]

dt + ξ ≥ 0,∀(ϑ , q) ∈ � × P
}

.

Remark 3.1 Clearly, for (ρ, ξ ) = (0, 0), we have � = �(ρ, ξ ) and, for (ρ, ξ ) > (0, 0), we obtain
� ⊆ �(ρ, ξ ).

Definition 3.1 A sequence {(θn, pn)} is an approximating sequence of (CP) if there exists
a sequence of positive real numbers ξn → 0 as n → ∞, such that

lim
n→∞ sup

∫

T
g
(
χθn ,pn (t)

)
dt ≤ inf

(ϑ ,q)∈


∫

T
g
(
χϑ ,q(t)

)
dt

and
∫

T

[(
ϑ(t) – θn(t)

) ∂g
∂θ

(
χθn ,pn (t)

)
+

(
q(t) – pn(t)

) ∂g
∂p

(
χθn ,pn (t)

)

+ Dα

(
ϑ(t) – θn(t)

) ∂g
∂θα

(
χθn ,pn (t)

)]
dt + ξn ≥ 0, ∀(ϑ , q) ∈ � × P

are satisfied.

Definition 3.2 The variational problem (CP) is well-posed if:
(i) it admits a unique solution (θ0, p0);

(ii) an approximating sequence of (CP) converges to (θ0, p0).

Definition 3.3 The variational problem (CP) is generalized well-posed if:
(i) � �= φ0;

(ii) an approximating sequence of (CP) admits a subsequence that converges to some
pair of �.

Further, the diameter of a set B is determined as follows

diam B = sup
x,y∈B

‖x – y‖.

Theorem 3.1 Let the functional
∫

T g(χθ ,p(t)) dt be monotone, lower semicontinuous, and
hemicontinuous on � × P. The variational problem (CP) is well-posed if and only if

�(ρ, ξ ) �= φ, ∀ρ, ξ > 0 and diam�(ρ, ξ ) → 0 as (ρ, ξ ) → (0, 0).
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Proof Let us consider that (CP) is well-posed. Thus, it admits a unique solution (θ̄ , p̄) ∈ �.
Since � ⊆ �(ρ, ξ ), ∀ρ , ξ > 0, we obtain �(ρ, ξ ) �= φ, ∀ρ , ξ > 0. Suppose that diam�(ρ, ξ ) �
0 as (ρ, ξ ) → (0, 0). Then, there exist r > 0, a natural number m,ρn, ξn > 0 with ρn, ξn → 0
and (θn, pn), (θ ′

n, p′
n) ∈ �(ρn, ξn) such that

∥∥(θn, pn) –
(
θ ′

n, p′
n
)∥∥ > r, ∀n ≥ m. (1)

Since (θn, pn), (θ ′
n, p′

n) ∈ �(ρn, ξn), we obtain

∫

T
g
(
χθn ,pn (t)

)
dt ≤ inf

(ϑ ,q)∈


∫

T
g
(
χϑ ,q(t)

)
dt + ρn,

∫

T

[(
ϑ(t) – θn(t)

) ∂g
∂θ

(
χθn ,pn (t)

)
+

(
q(t) – pn(t)

) ∂g
∂p

(
χθn ,pn (t)

)

+ Dα

(
ϑ(t) – θn(t)

) ∂g
∂θα

(
χθn ,pn (t)

)]
dt + ξn ≥ 0, ∀(ϑ , q) ∈ � × P

and
∫

T
g
(
χθ ′

n ,p′
n (t)

)
dt ≤ inf

(ϑ ,q)∈


∫

T
g
(
χϑ ,q(t)

)
dt + ρn,

∫

T

[(
ϑ(t) – θ ′

n(t)
) ∂g
∂θ

(
χθ ′

n ,p′
n (t)

)
+

(
q(t) – p′

n(t)
) ∂g
∂p

(
χθ ′

n ,p′
n (t)

)

+ Dα

(
ϑ(t) – θ ′

n(t)
) ∂g
∂θα

(
χθ ′

n ,p′
n (t)

)]
dt + ξn ≥ 0, ∀(ϑ , q) ∈ � × P.

We obtain that {(θn, pn)} and {(θ ′
n, p′

n)} are approximating sequences of (CP), converging
to (θ̄ , p̄) (by hypothesis, (CP) is well-posed). By direct computation, we obtain

∥∥(θn, pn) –
(
θ ′

n, p′
n
)∥∥

=
∥∥(θn, pn) – (θ̄ , p̄) + (θ̄ , p̄) –

(
θ ′

n, p′
n
)∥∥

≤ ∥∥(θn, pn) – (θ̄ , p̄)
∥∥ +

∥∥(θ̄ , p̄) –
(
θ ′

n, p′
n
)∥∥ ≤ ξ ,

which contradicts (1), for some ξ = r. In consequence, diam�(ρ, ξ ) → 0 as (ρ, ξ ) → (0, 0).
Now, conversely, let us consider that {(θn, pn)} is an approximating sequence of (CP).

Then, there exists a sequence of positive real numbers ξn → 0 as n → ∞ such that

lim
n→∞ sup

∫

T
g
(
χθn ,pn (t)

)
dt ≤ inf

(ϑ ,q)∈


∫

T
g
(
χϑ ,q(t)

)
dt, (2)

∫

T

[(
ϑ(t) – θn(t)

) ∂g
∂θ

(
χθn ,pn (t)

)
+

(
q(t) – pn(t)

) ∂g
∂p

(
χθn ,pn (t)

)

+ Dα

(
ϑ(t) – θn(t)

) ∂g
∂θα

(
χθn ,pn (t)

)]
dt + ξn ≥ 0, ∀(ϑ , q) ∈ � × P (3)

hold, implying (θn, pn) ∈ �(ρn, ξn), for a sequence of positive real numbers ρn → 0 as n →
∞. Since we have diam�(ρn, ξn) → 0 as (ρn, ξn) → (0, 0), therefore {(θn, pn)} is a Cauchy
sequence converging to some (θ̄ , p̄) ∈ � × P (� × P is a closed set).
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By hypothesis,
∫

T g(χθ ,p(t)) dt is monotone on �×P. Therefore, for (θ̄ , p̄), (ϑ , q) ∈ �×P,
it follows that

∫

T

[(
θ̄ (t) – ϑ(t)

)( ∂g
∂θ

(
χθ̄ ,p̄(t)

)
–

∂g
∂θ

(
χϑ ,q(t)

))

+
(
p̄(t) – q(t)

)( ∂g
∂p

(
χθ̄ ,p̄(t)

)
–

∂g
∂θ

(
χϑ ,q(t)

))

+ Dα

(
θ̄ (t) – ϑ(t)

)( ∂g
∂θα

(
χθ̄ ,p̄(t)

)
–

∂g
∂θα

(
χϑ ,q(t)

))]
dt ≥ 0,

or, equivalently,

∫

T

[(
θ̄ (t) – ϑ(t)

) ∂g
∂θ

(
χθ̄ ,p̄(t)

)
+

(
p̄(t) – q(t)

) ∂g
∂p

(
χθ̄ ,p̄(t)

)

+ Dα

(
θ̄ (t) – ϑ(t)

) ∂g
∂θα

(
χθ̄ ,p̄(t)

)]
dt

≥
∫

T

[(
θ̄ (t) – ϑ(t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
p̄(t) – q(t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
θ̄ (t) – ϑ(t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt. (4)

Taking the limit in inequality (3), we have

∫

T

[(
θ̄ (t) – ϑ(t)

) ∂g
∂θ

(
χθ̄ ,p̄(t)

)
+

(
p̄(t) – q(t)

) ∂g
∂p

(
χθ̄ ,p̄(t)

)

+ Dα

(
θ̄ (t) – ϑ(t)

) ∂g
∂θα

(
χθ̄ ,p̄(t)

)]
dt ≤ 0. (5)

On combining (4) and (5), we obtain

∫

T

[(
ϑ(t) – θ̄ (t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – p̄(t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
ϑ(t) – θ̄ (t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt ≥ 0.

Further, by considering Lemma 2.1, it follows that

∫

T

[(
ϑ(t) – θ̄ (t)

) ∂g
∂θ

(
χθ̄ ,p̄(t)

)
+

(
q(t) – p̄(t)

) ∂g
∂p

(
χθ̄ ,p̄(t)

)

+ Dα

(
ϑ(t) – θ̄ (t)

) ∂g
∂θα

(
χθ̄ ,p̄(t)

)]
dt ≥ 0, (6)

which implies that (θ̄ , p̄) ∈ 
.
Since the functional

∫
T g(χθ ,p(t)) dt is lower semicontinuous, we obtain

∫

T
g
(
χθ̄ ,p̄(t)

)
dt ≤ lim

n→∞ inf
∫

T
g
(
χθn ,pn (t)

)
dt ≤ lim

n→∞ sup
∫

T
g
(
χθn ,pn (t)

)
dt.
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By using (2), the above inequality reduces to

∫

T
g
(
χθ̄ ,p̄(t)

)
dt ≤ inf

(ϑ ,q)∈


∫

T
g
(
χϑ ,q(t)

)
dt. (7)

From (6) and (7), we obtain that (θ̄ , p̄) solves (VPC).
Now, let us prove that (θ̄ , p̄) is a unique solution of (CP). Suppose that (θ1, p1), (θ2, p2)

are two different solutions of (CP). Then,

0 <
∥∥(θ1, p1) – (θ2, p2)

∥∥ ≤ diam�(ρ, ξ ) → 0 as (ρ, ξ ) → (0, 0),

which is not possible. �

Theorem 3.2 Let the functional
∫

T g(χθ ,p(t)) dt be monotone, lower semicontinuous, and
hemicontinuous on � × P. The variational problem (CP) is well-posed if and only if (CP)
admits a unique solution.

Proof Let us consider that (CP) is well-posed. Therefore, it admits a unique solution
(θ0, p0). Now, conversely, we consider that (CP) has a sole solution (θ0, p0), that is,

∫

T
g(χθ0,p0 ) dt ≤ inf

(ϑ ,q)∈


∫

T
g(χϑ ,q) dt,

∫

T

[
(ϑ – θ0)

∂g
∂θ

(χθ0,p0 ) + (q – p0)
∂g
∂p

(χθ0,p0 )

+ Dα(ϑ – θ0)
∂g
∂θα

(χθ0,p0 )
]

dt ≥ 0, ∀(ϑ , q) ∈ � × P, (8)

but it is not well-posed. By Definition 3.2, there exists an approximating sequence {(θn, pn)}
of (CP) that does not converge to (θ0, p0). On the other hand, there exist a sequence of
positive real numbers ξn → 0 as n → ∞ such that the following inequalities

lim
n→∞ sup

∫

T
g
(
χθn ,pn (t)

)
dt ≤ inf

(ϑ ,q)∈


∫

T
g
(
χϑ ,q(t)

)
dt

and

∫

T

[(
ϑ(t) – θn(t)

) ∂g
∂θ

(
χθn ,pn (t)

)
+

(
q(t) – pn(t)

) ∂g
∂p

(
χθn ,pn (t)

)

+ Dα

(
ϑ(t) – θn(t)

) ∂g
∂θα

(
χθn ,pn (t)

)]
dt + ξn ≥ 0, ∀(ϑ , q) ∈ � × P (9)

are fulfilled. Further, to establish the boundedness of {(θn, pn)}, we proceed by contra-
diction. Suppose {(θn, pn)} is not bounded, therefore, ‖(θn, pn)‖ → +∞ as n → +∞. Let
us consider δn = 1

‖(θn ,pn)–(θ0,p0)‖ and (θn, p
n
) = (θ0, p0) + δn[(θn, pn) – (θ0, p0)]. We have that

{(θn, p
n
)} is bounded in � × P. Hence, if we pass to a subsequence if necessary, we can

assume that

(θn, p
n
) → (θ , p) weakly in � × P �= (θ0, p0).
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It is not difficult to check that (θ , p) �= (θ0, p0) as ‖δn[(θn, pn)–(θ0, p0)‖ = 1 for all n ∈N. Since
(θ0, p0) is a solution of (CP), therefore the inequalities in (8) are satisfied. By Lemma 2.1,
we obtain

∫

T
g(χθ0,p0 ) dt ≤ inf

(ϑ ,q)∈


∫

T
g(χϑ ,q) dt,

∫

T

[
(ϑ – θ0)

∂g
∂θ

(χϑ ,q) + (q – p0)
∂g
∂p

(χϑ ,q)

+ Dα(ϑ – θ0)
∂g
∂θα

(χϑ ,q)
]

dt ≥ 0, ∀(ϑ , q) ∈ � × P. (10)

By hypothesis, the functional
∫

T g(χθ ,p(t)) dt is monotone on � × P. Therefore, for
(θn, pn), (ϑ , q) ∈ � × P, we have

∫

T

[(
θn(t) – ϑ(t)

)( ∂g
∂θ

(
χθn ,pn (t)

)
–

∂g
∂θ

(
χϑ ,q(t)

))

+
(
pn(t) – q(t)

)( ∂g
∂p

(
χθn ,pn (t)

)
–

∂g
∂θ

(
χϑ ,q(t)

))

+ Dα

(
θn(t) – ϑ(t)

)( ∂g
∂θα

(
χθn ,pn (t)

)
–

∂g
∂θα

(
χϑ ,q(t)

))]
dt ≥ 0,

or, equivalently,

∫

T

[(
ϑ(t) – θn(t)

) ∂g
∂θ

(
χθn ,pn (t)

)
+

(
q(t) – pn(t)

) ∂g
∂p

(
χθn ,pn (t)

)

+ Dα

(
ϑ(t) – θn(t)

) ∂g
∂θα

(
χθn ,pn (t)

)]
dt

≤
∫

T

[(
ϑ(t) – θn(t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – pn(t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
ϑ(t) – θn(t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt. (11)

Combining with (9) and (11), we have

∫

T

[(
ϑ(t) – θn(t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – pn(t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
ϑ(t) – θn(t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt ≥ –ξn, ∀(ϑ , q) ∈ � × P.

Because δn → 0 as n → ∞, we can take n0 ∈ N to be large enough so that δn < 1, for all
n ≥ n0. By multiplying the above inequality and (10) by δn > 0 and 1 – δn > 0, respectively,
we make the sum of the resulting inequalities to obtain

∫

T

[(
ϑ(t) – θn(t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – p

n
(t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
ϑ(t) – θn(t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt ≥ –ξn, ∀(ϑ , q) ∈ � × P,∀n ≥ n0.
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Since (θn, p
n
) → (θ , p) �= (θ0, p0) and (θn, p

n
) = (θ0, p0) + δn[(θn, pn) – (θ0, p0)], we have

∫

T

[(
ϑ(t) – θ (t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – p(t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
ϑ(t) – θ (t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt

= lim
n→∞

∫

T

[(
ϑ(t) – θn(t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – p

n
(t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
ϑ(t) – θn(t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt

≥ – lim
n→∞ ξn = 0, ∀(ϑ , q) ∈ � × P.

By using Lemma 2.1 and considering the lower semicontinuity property, we obtain

∫

T
g
(
χθ ,p(t)

)
dt ≤ inf

(ϑ ,q)∈


∫

T
g
(
χϑ ,q(t)

)
dt,

∫

T

[(
ϑ(t) – θ (t)

) ∂g
∂θ

(
χθ ,p(t)

)
+

(
q(t) – p(t)

) ∂g
∂p

(
χθ ,p(t)

)

+ Dα

(
ϑ(t) – θ (t)

) ∂g
∂θα

(
χθ ,p(t)

)]
dt ≥ 0, ∀(ϑ , q) ∈ � × P. (12)

We obtain that (θ , p) is a solution of (CP), which is a contradiction with the uniqueness
of (θ0, p0). Therefore, {(θn, pn)} is a bounded sequence having a convergent subsequence
{(θnk , pnk )} that converges to (θ̄ , p̄) ∈ � × P as k → ∞. Again, from monotonicity, for
(θnk , pnk ), (ϑ , q) ∈ � × P, we have (see (11))

∫

T

[(
ϑ(t) – θnk (t)

) ∂g
∂θ

(
χθnk ,pnk

(t)
)

+
(
q(t) – pnk (t)

) ∂g
∂p

(
χθnk ,pnk

(t)
)

+ Dα

(
ϑ(t) – θnk (t)

) ∂g
∂θα

(
χθnk ,pnk

(t)
)]

dt

≤
∫

T

[(
ϑ(t) – θnk (t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – pnk (t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
ϑ(t) – θnk (t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt. (13)

Also, as a result of (9), we can write

lim
k→∞

∫

T

[(
ϑ(t) – θnk (t)

) ∂g
∂θ

(
χθnk ,pnk

(t)
)

+
(
q(t) – pnk (t)

) ∂g
∂p

(
χθnk ,pnk

(t)
)

+ Dα

(
ϑ(t) – θnk (t)

) ∂g
∂θα

(
χθnk ,pnk

(t)
)]

dt ≥ 0. (14)

Combining (13) and (14), we have

lim
k→∞

∫

T

[(
ϑ(t) – θnk (t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – pnk (t)

) ∂g
∂p

(
χϑ ,q(t)

)
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+ Dα

(
ϑ(t) – θnk (t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt ≥ 0

⇒
∫

T

[(
ϑ(t) – θ̄ (t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – p̄(t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
ϑ(t) – θ̄ (t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt ≥ 0.

By using Lemma 2.1 and considering the lower semicontinuity property, we obtain

∫

T
g
(
χθ̄ ,p̄(t)

)
dt ≤ inf

(ϑ ,q)∈


∫

T
g
(
χϑ ,q(t)

)
dt,

∫

T

[(
ϑ(t) – θ̄ (t)

) ∂g
∂θ

(
χθ̄ ,p̄(t)

)
+

(
q(t) – p̄(t)

) ∂g
∂p

(
χθ̄ ,p̄(t)

)

+ Dα

(
ϑ(t) – θ̄ (t)

) ∂g
∂θα

(
χθ̄ ,p̄(t)

)]
dt ≥ 0,

which shows that (θ̄ , p̄) is a solution of (CP). Hence, (θnk , pnk ) → (θ̄ , p̄), that is, (θnk , pnk ) →
(θ0, p0), involving (θn, pn) → (θ0, p0). �

Theorem 3.3 Let the functional
∫

T g(χθ ,p(t)) dt be hemicontinuous, lower semicontinuous,
and monotone on the compact and convex set �× P. The variational control problem (CP)
is generalized well-posed if and only if � is nonempty.

Proof Let us consider that (CP) is generalized well-posed. Hence, by Definition 3.2, � is
nonempty. Now, conversely, let {(θn, pn)} be an approximating sequence of (CP). There-
fore, there exists a sequence of positive real numbers ξn → 0 such that

lim
n→∞ sup

∫

T
g
(
χθn ,pn (t)

)
dt ≤ inf

(ϑ ,q)∈


∫

T
g
(
χϑ ,q(t)

)
dt, (15)

∫

T

[(
ϑ(t) – θn(t)

) ∂g
∂θ

(
χθn ,pn (t)

)
+

(
q(t) – pn(t)

) ∂g
∂p

(
χθn ,pn (t)

)

+ Dα

(
ϑ(t) – θn(t)

) ∂g
∂θα

(
χθn ,pn (t)

)]
dt + ξn ≥ 0, ∀(ϑ , q) ∈ � × P (16)

are satisfied. Since � × P is a compact set, {(θn, pn)} has a subsequence {(θnk , pnk )}, con-
verging to some pair (θ0, p0) ∈ � × P. Since the functional

∫
T g(χθ ,p(t)) dt is monotone on

� × P, for

(θnk , pnk ), (ϑ , q) ∈ � × P,

it follows that
∫

T

[(
ϑ(t) – θnk (t)

) ∂g
∂θ

(
χθnk ,pnk

(t)
)

+
(
q(t) – pnk (t)

) ∂g
∂p

(
χθnk ,pnk

(t)
)

+ Dα

(
ϑ(t) – θnk (t)

) ∂g
∂θα

(
χθnk ,pnk

(t)
)]

dt

≤
∫

T

[(
ϑ(t) – θnk (t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – pnk (t)

) ∂g
∂p

(
χϑ ,q(t)

)
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+ Dα

(
ϑ(t) – θnk (t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt.

Taking the limit k → ∞, we obtain

lim
k→∞

∫

T

[(
ϑ(t) – θnk (t)

) ∂g
∂θ

(
χθnk ,pnk

(t)
)

+
(
q(t) – pnk (t)

) ∂g
∂p

(
χθnk ,pnk

(t)
)

+ Dα

(
ϑ(t) – θnk (t)

) ∂g
∂θα

(
χθnk ,pnk

(t)
)]

dt

≤ lim
k→∞

∫

T

[(
ϑ(t) – θnk (t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – pnk (t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
ϑ(t) – θnk (t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt. (17)

Since {(θnk , pnk )} is an approximating subsequence in � × P, by (16), we obtain

lim
k→∞

∫

T

[(
ϑ(t) – θnk (t)

) ∂g
∂θ

(
χθnk ,pnk

(t)
)

+
(
q(t) – pnk (t)

) ∂g
∂p

(
χθnk ,pnk

(t)
)

+ Dα

(
ϑ(t) – θnk (t)

) ∂g
∂θα

(
χθnk ,pnk

(t)
)]

dt ≥ 0, ∀(ϑ , q) ∈ � × P. (18)

Combining (17) and (18), we obtain

lim
k→∞

∫

T

[(
ϑ(t) – θnk (t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – pnk (t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
ϑ(t) – θnk (t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt ≥ 0, ∀(

ϑ(t), q(t)
) ∈ � × P

⇒
∫

T

[(
ϑ(t) – θ0(t)

) ∂g
∂θ

(
χϑ ,q(t)

)
+

(
q(t) – p0(t)

) ∂g
∂p

(
χϑ ,q(t)

)

+ Dα

(
ϑ(t) – θ0(t)

) ∂g
∂θα

(
χϑ ,q(t)

)]
dt ≥ 0, ∀(ϑ , q) ∈ � × P.

By using Lemma 2.1 and considering the lower semicontinuity property, we obtain

∫

T
g
(
χθ0,p0 (t)

)
dt ≤ inf

(ϑ ,q)∈


∫

T
g
(
χϑ ,q(t)

)
dt,

∫

T

[(
ϑ(t) – θ0(t)

) ∂g
∂θ

(
χθ0,p0 (t)

)
+

(
q(t) – p0(t)

) ∂g
∂p

(
χθ0,p0 (t)

)

+ Dα

(
ϑ(t) – θ0(t)

) ∂g
∂θα

(
χθ0,p0 (t)

)]
dt ≥ 0, ∀(ϑ , q) ∈ � × P,

which shows that (θ0, p0) ∈ �. �

Theorem 3.4 Let the functional
∫

T g(χθ ,p(t)) dt be lower semicontinuous, hemicontinuous,
and monotone on the compact and convex set �× P. The variational control problem (CP)
is generalized well-posed if there exists ξ > 0 so that �(ξ , ξ ) is (nonempty) bounded.
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Proof Let ξ > 0 be such that �(ξ , ξ ) is bounded (nonempty). Let us consider that {(θn, pn)}
is an approximating sequence of (CP). Hence, there exists a sequence of positive real num-
bers ξn → 0 such that

lim
n→∞ sup

∫

T
g
(
χθn ,pn (t)

)
dt ≤ inf

(ϑ ,q)∈


∫

T
g
(
χϑ ,q(t)

)
dt,

∫

T

[(
ϑ(t) – θn(t)

) ∂g
∂θ

(
χθn ,pn (t)

)
+

(
q(t) – pn(t)

) ∂g
∂p

(
χθn ,pn (t)

)

+ Dα

(
ϑ(t) – θn(t)

) ∂g
∂θα

(
χθn ,pn (t)

)]
dt + ξn ≥ 0, ∀(ϑ , q) ∈ � × P

are satisfied, involving that (θn, pn) ∈ �(ξ , ξ ), ∀n > m (m is a natural number). There-
fore, we obtain that {(θn, pn)} is a bounded sequence having a convergent subsequence
{(θnk , pnk )}, weakly converging to (θ0, p0) as k → ∞. Proceeding in a similar way as in The-
orem 3.3, we obtain (θ0, p0) ∈ �. �

Next, we provide a concrete application that can be studied only with the mathematical
tools and results developed in the current paper.

Illustrative Application. Minimize the mass of the flat plate [0, 3]2 = [0, 3]× [0, 3], having
a controlled density given by p4(t) + eθ (t) – θ (t), that depends on the current point, such
that the following controlled dynamical system θα(t) = p(t), ∀t ∈ [0, 3]2, together with the
boundary conditions (θ , p)|∂T = 0, and the positivity property

∫

[0,3]2

[
4
(
q(t) – p(t)

)
p3(t) +

(
ϑ(t) – θ (t)

)(
eθ (t) – 1

)]
dt ≥ 0,

∀(ϑ , q) ∈ C1(T , [–5, 5]
) × C

(
T , [–5, 5]

)

are satisfied.
In order to solve the above concrete mechanical-physics problem, we take m = 2, n =

k = 1, T = [0, 3]2 (see Sect. 2), and consider

g
(
χθ ,p(t)

)
= p4(t) + eθ (t) – θ (t)

and the variational inequality-constrained control problem:

Minimize
∫

T
g
(
χθ ,p(t)

)
dt (CP-1)

subject to
∫

T

[
4
(
q(t) – p(t)

)
p3(t) +

(
ϑ(t) – θ (t)

)(
eθ (t) – 1

)]
dt ≥ 0,

(θ , p)|∂T = 0, θα = p, ∀(ϑ , q) ∈ � × P = C1(T , [–5, 5]
) × C

(
T , [–5, 5]

)
.

We have � = {(0, 0)} and, also, it can be easily seen that
∫

T g(χθ ,p(t)) dt is monotone, lower
semicontinuous, and hemicontinuous on � × P. Since Theorem 3.2 is fulfilled, we con-
clude that the variational problem (CP-1) is well-posed. Moreover, we have �(ρ, ξ ) =
{(0, 0)} and, consequently, �(ρ, ξ ) �= φ and diam�(ρ, ξ ) → 0 as (ρ, ξ ) → (0, 0). Taking into
account Theorem 3.1, the variational problem (CP-1) is well-posed.
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4 Conclusions
In this paper, we have studied the well-posedness and generalized well-posedness for
new variational control problems. Namely, by using the concepts of lower semicontinu-
ity, pseudomonotonicity, monotonicity, and hemicontinuity associated with functionals
of multiple-integral type, under suitable assumptions, we have established that the well-
posedness is characterized in terms of the existence and uniqueness of their solutions.
Moreover, sufficient conditions were provided for the generalized well-posedness by as-
suming the nonemptiness and boundedness of the approximating solution set. A concrete
application, which can be studied only with the mathematical tools and results developed
in the current paper, was presented.

As immediate further developments of this paper, we mention the following two: (a) re-
formulating the main results derived in this paper by using the variational/functional
derivative of integral functionals; (b) the study of the saddle-point optimality criteria as-
sociated with this type of constrained optimization problems.
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29. Treanţă, S.: Some results on (ρ ,b,d)-variational inequalities. J. Math. Inequal. 14, 805–818 (2020)
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