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Abstract
Consider the space of weighted binomial matrices in the Nakano sequence space of
soft functions. We have offered some geometric and topological structures of the
multiplication operator acting on this space and its associated operator ideal. The
existence of a fixed point of the Kannan contraction operator in this prequasioperator
ideal is confirmed. Finally, we discuss many applications of solutions to nonlinear
stochastic dynamical matrix systems and illustrative examples of our findings.
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1 Introduction
The study of uncertainty has been greatly helped by probability theory, fuzzy set theory,
soft sets, and rough sets. However, there are problems with these ideas that must be con-
sidered, see [1–5] for more information and examples from real life. Since the book [6]
on the Banach Fixed-Point Theorem came out, many mathematicians have looked into
how the theorem could be expanded and how it could be used in different situations.
The nonlinear analysis exploits the Banach contraction principle as a strong tool [7, 8].
Kannan [9] presented a group of mappings with the same actions at fixed locations as
contractions. This collection is somewhat discontinuous. In Reference, [10], an explana-
tion of Kannan operators in modular vector spaces was attempted. Only this one attempt
was ever made as [11–15] show that much attention has been paid to the s-number map-
ping ideal and the multiplication operator hypothesis in functional analysis. Bakery and
Mohamed [16] offered the idea of a prequasinorm on the Nakano sequence space with
a variable exponent that fell somewhere in the interval (0, 1]. For the normed sequence
spaces and related topics, the reader can refer to the textbooks [17] and [18]. They dis-
cussed the conditions that must be met to generate a prequasi-Banach and closed space
when it is endowed with a specified prequasinorm, as well as the Fatou property of var-
ious prequasinorms on it. They also determined a fixed point for Kannan prequasinorm
contraction mappings on it, in addition to the ideal of prequasi-Banach mappings derived
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from s-numbers in this sequence space. Both of these ideals were established. In addition,
several fixed-point findings of Kannan nonexpansive mappings on a generalized Cesàro
backward difference sequence space of a nonabsolute type were discovered in [19]. As-
sume that R is the set of real numbers and N is the set of nonnegative integers. We denote
the collection of all nonempty bounded subsets of R by B(R) and E is the set of param-
eters. By R(A)∗ and R(A), we indicate the set of nonnegative and all soft real numbers
(corresponding to A), where A ⊂ E. The additive identity and multiplicative identity in
R(A) are denoted by ˜0 and ˜1, respectively. For more details on the arithmetic operations
on R(A), see [20]. Let μ : R(A) ×R(A) →R(A)∗, where μ(˜f , g̃) = |˜f – g̃|, for all˜f , g̃ ∈R(A).
Assume ρ̃ : R(A) ×R(A) →R

+ is defined by

ρ̃(˜f , g̃) = max
λ∈A

μ(˜f , g̃)(λ).

The binomial formula is defined by

(u + v)l =
l

∑

z=0

(

l
z

)

uzvl–z,

where u and v are nonnegative real numbers, and l ∈ N. Given that the proof of many
fixed-point theorems in a given space requires either growing the space itself or expanding
the self-mapping that acts on it, both of these options are viable, we have constructed
the space, [ES

u,v(q, w)]τ , which is the domain of a weighted binomial matrix in the Nakano
sequence space of soft functions [�P (w)]τ , where the weighted binomial matrix, Eu,v =
((λu,v)lz(q)), is defined as:

(λu,v)lz(q) =

⎧

⎨

⎩

A(l,z)ql,z
(u+v)l , 0 ≤ z ≤ l,

0, z > l,

where ql,z ∈ (0,∞), for all l, z ∈N and A(l, z) =
(l

z
)

uzvl–z .
We have offered some geometric and topological structures of a multiplication operator

acting on [ES
u,v(q, w)]τ and operators ideal of type [ES

u,v(q, w)]τ . A fixed point of the Kannan
contraction operator that exists in this prequasioperator ideal is confirmed. Finally, we
discuss many applications of solutions to nonlinear stochastic dynamical matrix systems
and illustrative examples of our findings.

2 Preliminaries and definitions
Here, we discuss the background of our study and what it means.

The spaces of null, bounded, and r-absolutely summable sequences of reals are indicated
by c0, �∞, and �r , respectively. We denote the spaces of every bounded and finite rank lin-
ear mappings from an infinite-dimensional Banach space G into an infinite-dimensional
Banach space V by D(G,V) and F(G,V), respectively. If G = V , then we denote them by
D(G) and F(G), respectively. We also denote the spaces of approximable and compact
bounded linear operators from G into V by A(G,V) and K(G,V), respectively. The ideal of
bounded, approximable, and compact mappings between each two infinite-dimensional
Banach spaces will be indicated by D, A, and K, respectively.
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Lemma 2.1 ([21]) Assume wb > 0 and xb, zb ∈ R for every b ∈ N and � = max{1, supb wb},
then

|xb + zb|wb ≤ 2�–1(|xb|wb + |zb|wb
)

. (1)

If ES is a linear space of sequences of soft functions, and [p] describes an integral part
of the real number p:

Definition 2.2 ([22]) The space ES is called a private sequence space of soft functions
(psssf) if the following settings are satisfied:

(a1) Suppose b ∈N, then ẽb ∈ ES, where ẽb = (˜0,˜0, . . . ,˜1,˜0,˜0, . . .), while˜1 displays at the
bth place;

(a2) Assume˜f = (˜fb) ∈ ωS, |̃g| = (|g̃b|) ∈ ES and |˜fb| ≤ |g̃b|, with b ∈N, then |˜f | ∈ ES;
(a3) (|˜h[ b

2 ]|)∞b=0 ∈ ES if (|˜hb|)∞b=0 ∈ ES.

Definition 2.3 ([23]) An s-number is a function s : D(G,V) → R
+N that sorts every V ∈

D(G,V) a (sd(V ))∞d=0 verifies the next settings:
(1) ‖V‖ = s0(V ) ≥ s1(V ) ≥ s2(V ) ≥ · · · ≥ 0, for every V ∈D(G,V);
(2) sd(VYW ) ≤ ‖V‖sd(Y )‖W‖ if for all W ∈D(G0,G), Y ∈D(G,V), and V ∈D(V ,V0),

where G0 and V0 are arbitrary Banach spaces;
(3) sl+d–1(V1 + V2) ≤ sl(V1) + sd(V2) if for all V1, V2 ∈ D(G,V) and l, d ∈N;
(4) assume V ∈ D(G,V) and γ ∈R, then sd(γ V ) = |γ |sd(V );
(5) assume rank(V ) ≤ d, then sd(V ) = 0 for every V ∈D(G,V);
(6) sl≥a(Ia) = 0 or sl<a(Ia) = 1, where Ia marks the unit mapping on the a-dimensional

Hilbert space �a
2 .

Some examples of s-numbers:
(i) The bth approximation number is defined as

αb(X) = inf
{‖X – Y‖ : Y ∈D(G,V) and rank(Y ) ≤ b

}

;

(ii) The bth Kolmogorov number is defined as db(X) = infdim J≤b sup‖f ‖≤1 infg∈J ‖Xf – g‖.

Notations 2.4 ([24])

˜Ds
ES :=

{

˜Ds
ES (G,V)

}

, where ˜Ds
ES (G,V) :=

{

V ∈D(G,V) : (
(

s̃j(V )
)∞

j=0 ∈ ES
}

,

˜Dα
ES :=

{

˜Dα
ES (G,V)

}

, where ˜Dα
ES (G,V) :=

{

V ∈D(G,V) : (
(

α̃j(V )
)∞

j=0 ∈ ES
}

,

˜Dd
ES :=

{

˜Dd
ES (G,V)

}

, where ˜Dd
ES (G,V) :=

{

V ∈D(G,V) : (
(

d̃j(V )
)∞

j=0 ∈ ES
}

,
(

˜Ds
ES

)γ :=
{(

˜Ds
ES

)γ (G,V)
}

, where
(

˜Ds
ES

)γ (G,V)

:=
{

V ∈D(G,V) : (
(

γ̃b(V )
)∞

b=0 ∈ ES and
∥

∥V – ρ̃
(

γ̃b(V ),˜0
)

I
∥

∥ = 0, for all b ∈N
}

.

Theorem 2.5 ([22]) If the linear sequence space ES is a psssf then ˜Ds
ES is an operator

ideal.
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If ˜θ = (˜0,˜0,˜0, . . .) and F is the space of finite sequences of soft numbers.

Definition 2.6 ([22]) A subspace of the psssf is said to be a premodular psssf if there is a
function τ : ES → [0,∞) that verifies the following conditions:

(i) Suppose˜h ∈ ES,˜h = ˜θ ⇐⇒ τ (|˜h|) = 0, and τ (˜h) ≥ 0;
(ii) assume ˜h ∈ ES and ε ∈R, then there is E0 ≥ 1 with τ (ε˜h) ≤ |ε|E0τ (˜h);

(iii) one has G0 ≥ 1 with τ (˜f + g̃) ≤ G0(τ (˜f ) + τ (̃g)) for all˜f , g̃ ∈ ES;
(iv) if |˜fb| ≤ |g̃b| for all b ∈N, then τ (|˜fb|) ≤ τ (|g̃b|);
(v) there are D0 ≥ 1 with τ (|˜f |) ≤ τ (|˜f[.]|) ≤ D0τ (|˜f |);

(vi) the closure F of F = ES
τ ;

(vii) one obtains ε > 0 so that τ (̃ν,˜0,˜0,˜0, . . .) ≥ ε|ν|τ (˜1,˜0,˜0,˜0, . . .).

Definition 2.7 ([22]) The psssf ES
τ is called a prequasinormed psssf when τ satisfies

parts (i)–(iii) of Definition 2.6. The space ES
τ is said to be a prequasi-Banach psssf if ES

is complete equipped with τ .

Theorem 2.8 ([22]) The space ES
τ is a prequasinormed psssf if it is a premodular psssf.

3 Properties of operators ideal
In this section, we examine some geometric and topological structures of the prequasiideal
type of space of a weighted binomial matrix in Nakano sequence space of soft functions
under the settings of Theorem 3.3.

Assume ωS is the class of all sequence spaces of soft reals.

Definition 3.1 Suppose (wl) ∈ R
+N, where R

+N is the space of all sequences of positive
reals. The sequence space [ES

u,v(q, w)]τ with the function τ is defined by:

[

ES
u,v(q, w)

]

τ
=

{

˜h = (˜hm) ∈ ωS : τ (δ˜h) < ∞, for some ε > 0
}

,

where τ (˜h) =
∑∞

m=0( ρ̃(
∑m

z=0 A(m,z)qm,z ˜hz ,˜0)
(u+v)m )wm .

Theorem 3.2 If (wl) ∈ �∞ ∩R
+N, then

[

ES
u,v(q, w)

]

τ
=

{

˜h = (˜hb) ∈ ωS : τ (δ˜h) < ∞, for all δ > 0
}

.

Proof It is clear since (wl) is a bounded sequence. �

The spaces of all monotonic increasing and decreasing sequences of positive reals are
indicated by ↑ and ↓, respectively.

Theorem 3.3 [ES
u,v(q, w)]τ is a prequasi-Banach psssf whenever the following settings are

satisfied:
(b1) u + v > 1;
(b2) (wp)p∈N ∈ �∞∩ ↑;
(b3) (A(a, k)qa,k)∞k=0 ∈↓ or, (A(a, k)qa,k)∞k=0 ∈↑ ∩�∞ and there exists C ≥ 1 such that

A(a, 2k + 1)qa,2k+1 ≤ CA(a, k)qk ;

(b4) (A(a, k)qa,k)∞a=0 ∈↓.



Alsolmi et al. Journal of Inequalities and Applications        (2022) 2022:152 Page 5 of 23

Proof First, to prove that [ES
u,v(q, w)]τ is a premodular psssf.

(i) Clearly, τ (|˜h|) = 0 ⇔˜h = ˜θ and τ (˜h) ≥ 0.
(a1) and (iii) Assume˜f , g̃ ∈ [ES

u,v(q, w)]τ , then

τ (˜f + g̃) =
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z(˜fz + g̃z),˜0)
(u + v)l

)wl

≤ 2�–1

( ∞
∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z˜fz,˜0)
(u + v)l

)wl

+
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,zg̃z,˜0)
(u + v)l

)wl
)

= 2�–1(τ (˜f ) + τ (̃g)
)

< ∞

hence,˜f + g̃ ∈ [ES
u,v(q, w)]τ ;

(ii) If λ ∈ R,˜f ∈ [ES
u,v(q, w)]τ , and since (wl) ∈↑ ∩�∞ then,

τ (λ˜f ) =
∞

∑

m=0

(

ρ̃(
∑m

z=0 A(m, z)qm,zλ˜fz,˜0)
(u + v)m

)wm

≤ sup
m

|λ|wm
∞

∑

m=0

(

ρ̃(
∑m

z=0 A(m, z)qm,z˜fz,˜0)
(u + v)m

)wm

≤ E0|λ|τ (˜f ) < ∞,

where E0 = max{1, supl |λ|wl–1} ≥ 1. Therefore, λ˜f ∈ [ES
u,v(q, w)]τ .

If (wl) ∈↑ ∩�∞, then

∞
∑

m=0

(

ρ̃(
∑m

z=0 A(m, z)qm,z ˜(eb)z,˜0)
(u + v)m

)wm

=
∞

∑

m=b

(

A(m, b)qm,b

(u + v)m

)wm

≤ ∞
sup
m=b

(

A(m, b)qm,b
)wm

∞
∑

m=b

1
(u + v)mwm

< ∞.

Hence, ẽb ∈ [ES
u,v(q, w)]τ for all b ∈N;

(a2) and (iv) Assume |˜fm| ≤ |g̃m| for all m ∈ N and |̃g| ∈ [ES
u,v(q, w)]τ hence

τ
(|˜f |) =

∞
∑

m=0

(

ρ̃(
∑m

z=0 A(m, z)qm,z|˜fz|,˜0)
(u + v)m

)wm

≤
∞

∑

m=0

(

ρ̃(
∑m

z=0 A(m, z)qm,z|g̃z|,˜0)
(u + v)m

)wm

= τ
(|̃g|) < ∞.

Hence, |˜f | ∈ [ES
u,v(q, w)]τ ;

(a3) and (v) If (|˜fz|) ∈ [ES
u,v(q, w)]τ so that (wl) ∈↑ ∩�∞ and (A(l, z)ql,z)∞z=0 ∈↓ then

τ
(|˜f[ z

2 ]|
)

=
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z|˜f[ z
2 ]|,˜0)

(u + v)l

)wl
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=
∞

∑

l=0

(

ρ̃(
∑2l

z=0 A(l, z)ql,z|˜f[ z
2 ]|,˜0)

(u + v)2l

)w2l

+
∞

∑

l=0

(

ρ̃(
∑2l+1

z=0 A(l, z)ql,z|˜f[ z
2 ]|,˜0)

(u + v)2l+1

)w2l+1

≤
∞

∑

l=0

(

ρ̃(
∑2l

z=0 A(l, z)ql,z|˜f[ z
2 ]|,˜0)

(u + v)l

)wl

+
∞

∑

l=0

(

ρ̃(
∑2l+1

z=0 A(l, z)ql,z|˜f[ z
2 ]|,˜0)

(u + v)l

)wl

≤
∞

∑

l=0

(

ρ̃(A(l, 2l)ql,2l|˜fl| +
∑l

z=0(A(l, 2z)q2z + A(l, 2z + 1)ql,2z+1)|˜fz|,˜0)
(u + v)l

)wl

+
∞

∑

l=0

(

ρ̃(
∑l

z=0(A(l, 2z)q2z + A(l, 2z + 1)ql,2z+1)|˜fz|,˜0)
(u + v)l

)wl

≤ 2�–1

( ∞
∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z|˜fz|,˜0)
(u + v)l

)wl

+
∞

∑

l=0

(

2ρ̃(
∑l

z=0 A(l, z)ql,z|˜fz|,˜0)
(u + v)l

)wl
)

+
∞

∑

l=0

(

2ρ̃(
∑l

z=0 A(l, z)ql,z|˜fz|,˜0)
(u + v)l

)wl

≤ D0τ
(|˜f |) < ∞,

where D0 ≥ (22�–1 + 2�–1 + 2�) ≥ 1. Therefore, (|˜f[ z
2 ]|) ∈ [ES

u,v(q, w)]τ ;
(vi) Obviously, the closure of F = ES

u,v(q, w);
(vii) One has 0 < δ ≤ supl |λ|wl–1 with τ (˜λ,˜0,˜0,˜0, . . .) ≥ δ|λ|τ (˜1,˜0,˜0,˜0, . . .) for all λ �= 0 and

δ > 0 if λ = 0.
The space [ES

u,v(q, w)]τ , given by Theorem 2.8, is a prequasinormed psssf. Secondly, to
show that [ES

u,v(q, w)]τ is a Banach space, assume ˜hi = (˜hi
k)∞k=0 is a Cauchy sequence in

[ES
u,v(q, w)]τ . Hence, for all γ ∈ (0, 1) there exists i0 ∈N, one has for all i, j ≥ i0 that

τ
(

˜hi – ˜hj
)

=
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z(˜hi
z – ˜f j

z ),˜0)
(u + v)l

)wl

< γ �.

Then, ρ̃(
∑l

z=0 A(l, z)ql,z(˜hi
z – ˜hj

z),˜0) < γ . Since (R(A), ρ̃) is a complete metric space. So (˜hj
k)

is a Cauchy sequence in R(A) for fixed k ∈ N. Then, it is convergent to ˜h0
k ∈ R(A). Hence,

τ (˜hi – ˜h0) < γ � for every i ≥ i0. Obviously, by setting (iii) one has ˜h0 ∈ [ES
u,v(q, w)]τ . �

By Theorems 2.5 and 3.3 one can obtain the following theorem:

Theorem 3.4 The space ˜Ds
ES

u,v(q,w) is an operator ideal whenever the settings of Theorem 3.3
are established.

Theorem 3.5 ([22]) Assume s-type ES
τ := {˜h = (s̃j(H)) ∈ R

N : H ∈ D(G,V) and τ (˜h) < ∞}.
If ˜DsEτ is an operator ideal then the next settings are established:

a. s-type ES
τ ⊃F ;

b. Assume (s̃j(H1))∞j=0 ∈ s-type ES
τ and (s̃j(H2))∞j=0 ∈ s-type ES

τ , then

( ˜sj(H1 + H2))∞j=0 ∈ s-type ES
τ ;

c. Suppose ε ∈R and (s̃j(H))∞j=0 ∈ s-type ES
τ , then |ε|(s̃j(H))∞j=0 ∈ s-type ES

τ ;
d. If (s̃j(U))∞j=0 ∈ s-type ES

τ and ˜sj(T) ≤ s̃j(U) for all j ∈N where T , U ∈D(G,V), then
( ˜sj(T))∞j=0 ∈ s-type ES

τ , i.e., ES
τ is a solid space.
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Some properties of s-type [ES
u,v(q, w)]τ are examined in the next theorem in view of The-

orem 3.5 and Theorem 3.4.

Theorem 3.6 The following statements hold:
a. s-type [ES

u,v(q, w)]τ ⊃F ;
b. If (s̃n(X1))∞n=0, (s̃n(X2))∞n=0 ∈ s-type [ES

u,v(q, w)]τ , then ( ˜sn(X1 + X2))∞n=0 ∈ s-type [ES
u,v(q,

w)]τ ;
c. If λ ∈R and (s̃n(X))∞n=0 ∈ s-type [ES

u,v(q, w)]τ then |λ|(s̃n(X))∞n=0 ∈ s-type [ES
u,v(q, w)]τ ;

d. s-type [ES
u,v(q, w)]τ is a solid space.

Definition 3.7 ([25]) A subclass U of D is called a mappings’ ideal assume all U (G,V) =
U ∩D(G,V) verifies the next conditions:

(i) I ∈ U , where  is a one-dimensional Banach space;
(ii) The space U (G,V) is linear over R;

(iii) Assume W ∈D(G0,G), X ∈ U (G,V), and Y ∈D(V ,V0), then YXW ∈ U (G0,V0).

Definition 3.8 ([26]) A function H ∈ [0,∞)U is called a prequasinorm on the ideal U if
the next settings hold:

(1) Assume V ∈ U (G,V), H(V ) ≥ 0 and H(V ) = 0, if and only if, V = 0;
(2) there are Q ≥ 1 so that H(αV ) ≤ D|α|H(V ) for all V ∈ U (G,V) and α ∈R;
(3) one has P ≥ 1 with H(V1 + V2) ≤ P[H(V1) + H(V2)] for all V1, V2 ∈ U (G,V);
(4) one obtains σ ≥ 1, if V ∈D(G0,G), X ∈ U (G,V) and Y ∈D(V ,V0), then

H(YXV ) ≤ σ‖Y‖H(X)‖V‖.

Theorem 3.9 ([26]) Every quasinorm on the ideal U is a prequasinorm.

Some properties of the ideal generated by our soft space and extended s-numbers are
offered if the settings of Theorem 3.3 are established.

By ↓S, we denote the space of all monotonic decreasing sequences of soft functions.

Theorem 3.10 The settings of Theorem 3.3 are sufficient only for ˜Dα
[ES

u,v(q,w)]τ (G,V) =
F(G,V).

Proof Obviously, F(G,V) ⊆ ˜Dα
[ES

u,v(q,w)]τ (G,V) by the linearity of the space [ES
u,v(q, w)]τ and

ẽm ∈ (ES
u,v(q, w))τ for every m ∈ N. To prove that ˜Dα

[ES
u,v(q,w)]τ (G,V) ⊆ F(G,V). When H ∈

˜Dα
[ES

u,v(q,w)]τ (G,V) then (α̃l(H))∞m=0 ∈ [ES
u,v(q, w)]τ . Since τ (α̃m(H))∞m=0 < ∞ and assume γ ∈

(0, 1) then there exists l0 ∈ N – {0} with τ ((α̃m(H))∞m=l0 ) < γ

2�+3δj for some j ≥ 1 and δ =

max{1,
∑∞

l=l0 ( 1
(u+v)l )wl }. As α̃l(H) ∈↓S one has

2l0
∑

l=l0+1

(

ρ̃(
∑l

z=0 A(l, z)ql,zα̃2l0 (H),˜0)
(u + v)l

)wl

≤
2l0
∑

l=l0+1

(

ρ̃(
∑l

z=0 A(l, z)ql,zα̃z(H),˜0)
(u + v)l

)wl

≤
∞

∑

l=l0

(

ρ̃(
∑l

z=0 A(l, z)ql,zα̃z(H),˜0)
(u + v)l

)wl

<
γ

2�+3δj
.

(2)
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Therefore, U ∈ F2l0 (G,V) so that rank(U) ≤ 2l0 and

3l0
∑

l=2l0+1

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜‖H – U‖,˜0)
(u + v)l

)wl

≤
2l0
∑

l=l0+1

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜‖H – U‖,˜0)
(u + v)l

)wl

<
γ

2�+3δj
. (3)

As (wl) ∈↑ ∩�∞ one has

∞
sup
l=l0

ρ̃wl

( l0
∑

z=0

A(l, z)ql,z ˜‖H – U‖,˜0

)

<
γ

22�+2δ
. (4)

Hence,

l0
∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜‖H – U‖,˜0)
(u + v)l

)wl

<
γ

2�+3δj
. (5)

By inequalities (1)–(5), we have

d(H , U) = τ
(

˜αl(H – U)
)∞

l=0

=
3l0–1
∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜αz(H – U),˜0)
(u + v)l

)wl

+
∞

∑

l=3l0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜αz(H – U),˜0)
(u + v)l

)wl

≤
3l0
∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜‖H – U‖,˜0)
(u + v)l

)wl

+
∞

∑

l=l0

(

ρ̃(
∑l+2l0

z=0 A(l + 2l0, z)ql+2l0,z ˜αz(H – U),˜0)
(u + v)l+2l0

)wl+2l0

≤
3l0
∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜‖H – U‖,˜0)
(u + v)l

)wl

+
∞

∑

l=l0

(

ρ̃(
∑l+2l0

z=0 A(l + 2l0, z)ql+2l0,z ˜αz(H – U),˜0)
(u + v)l

)wl

≤ 3
l0

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜‖H – U‖,˜0)
(u + v)l

)wl

+
∞

∑

l=l0

(

ρ̃(
∑2l0–1

z=0 A(l + 2l0, z)ql+2l0,z ˜αz(H – U) +
∑l+2l0

z=2l0 A(l + 2l0, z)ql+2l0,z ˜αz(H – U),˜0)
(u + v)l

)wl

≤ 3
l0

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜‖H – U‖,˜0)
(u + v)l

)wl
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+ 2�–1
∞

∑

l=l0

(

ρ̃(
∑2l0–1

z=0 A(l + 2l0, z)ql+2l0,z ˜αz(H – U),˜0)
(u + v)l

)wl

+ 2�–1
∞

∑

l=l0

(

ρ̃(
∑l+2l0

z=2l0 A(l + 2l0, z)ql+2l0,z ˜αz(H – U),˜0)
(u + v)l

)wl

≤ 3
l0

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜‖H – U‖,˜0)
(u + v)l

)wl

+ 2�–1
∞

∑

l=l0

(

ρ̃(
∑2l0–1

z=0 A(l + 2l0, z)ql+2l0,z ˜αz(Z – U),˜0)
(u + v)l

)wl

+ 2�–1
∞

∑

l=l0

(

ρ̃(
∑l

z=0 A(l + 2l0, z + 2l0)qz+2l0
˜αz+2l0 (H – U),˜0)

(u + v)l

)wl

≤ 3
l0

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜‖H – U‖,˜0)
(u + v)l

)wl

+ 22�–1 ∞
sup
l=l0

ρ̃wl

( l0
∑

z=0

A(l, z)ql,z ˜‖H – U‖,˜0

) ∞
∑

l=l0

(

1
(u + v)l

)wl

+ 2�–1
∞

∑

l=l0

(

ρ̃(
∑l

z=0 A(l, z)ql,zα̃z(H),˜0)
(u + v)l

)wl

< γ .

On the other hand, we have a negative example since I2 ∈ ˜Dα
[ES

u,v(q,w)]τ (G,V), where
A(l, z)ql,z = 1 for all l, z ∈ N and v = (0, –1, 2, 2, 2, . . .). However, (vl) /∈↑, which implies a
negative answer of Rhoades’ [27] open problem about the linearity of s-type [ES

u,v(q, w)]τ
spaces. �

Theorem 3.11 The class (˜Ds
[ES

u,v(q,w)]τ ,�) is a prequasi-Banach ideal, where �(H) =

τ ((s̃b(H))∞b=0).

Proof Clearly, � is a prequasinorm on ˜Ds
[ES

u,v(q,w)]τ since τ is a prequasinorm on [ES
u,v(q,

w)]τ . If (Xm)m∈N is a Cauchy sequence in ˜Ds
(ES

u,v(q,w))τ (G,V) and as D(G,V) ⊇ ˜Ds
(ES

u,v(q,w))τ (G,
V), then

�(Hj – Hm) =
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜sz(Hj – Hm),˜0)
(u + v)l

)wl

≥ (

q0,0‖Hj – Hm‖)w0 .

Hence, (Hm)m∈N is a Cauchy sequence in D(G,V). Since D(G,V) is a Banach space, then
H ∈ D(G,V) with limm→∞ ‖Hm – H‖ = 0. Since (s̃l(Hm))∞l=0 ∈ [ES

u,v(q, w)]τ for every m ∈ N.
By Parts (ii), (iii), and (v) of Definition 2.6, one can observe that

�(H) =
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,zs̃z(H),˜0)
(u + v)l

)wl

≤ 2�–1
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜s[ z
2 ](H – Hm),˜0)

(u + v)l

)wl
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+ 2�–1
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜s[ z
2 ](Hm),˜0)

(u + v)l

)wl

≤ 2�–1
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜‖H – Hm‖,˜0)
(u + v)l

)wl

+ 2�–1D0

∞
∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,zs̃z(Hm),˜0)
(u + v)l

)wl

< ∞.

Hence, (s̃b(H))∞b=0 ∈ [ES
u,v(q, w)]τ , and H ∈ ˜Ds

[ES
u,v(q,w)]τ (G,V). �

Theorem 3.12 Assume 1 < w(1)
b < w(2)

b and 0 < q(2)
b,z ≤ q(1)

b,z for every b, z ∈N, then

˜Ds
[ES

u,v((q(1)
b,z),(w(1)

b ))]τ
(G,V) � ˜Ds

[ES
u,v((q(2)

b,z),(w(2)
b ))]τ

(G,V) �D(G,V).

Proof Suppose H ∈ ˜Ds
[ES

u,v((q(1)
b,z),(w(1)

b ))]τ
(G,V). Then, (s̃b(H)) ∈ [ES

u,v((q(1)
b,z), (w(1)

b ))]τ . We have

∞
∑

b=0

(

ρ̃(
∑b

z=0 A(b, z)q(2)
b,zs̃z(H),˜0)

(u + v)b

)w(2)
b

<
∞

∑

b=0

(

ρ̃(
∑b

z=0 A(b, z)q(1)
b,zs̃z(H),˜0)

(u + v)b

)w(1)
b

< ∞.

Hence, H ∈ ˜Ds
[ES

u,v((q(2)
b,z),(w(2)

b ))]τ
(G,V). Put (s̃b(H))∞b=0 so that ρ̃(

∑b
z=0 A(b, z)q(1)

b,zs̃z(H),˜0) =
(u+v)b

w(1)
b
√

b+1
then H ∈D(G,V) so that

∞
∑

b=0

(

ρ̃(
∑b

z=0 A(b, z)q(1)
b,zs̃z(H),˜0)

(u + v)b

)w(1)
b

=
∞

∑

b=0

1
b + 1

= ∞,

and

∞
∑

b=0

(

ρ̃(
∑b

z=0 A(b, z)q(2)
b,zs̃z(H),˜0)

(u + v)b

)w(2)
b ≤

∞
∑

b=0

(

ρ̃(
∑b

z=0 A(b, z)q(1)
b,zs̃z(H),˜0)

(u + v)b

)w(2)
b

=
∞

∑

b=0

(

1
b + 1

)

w(2)
b

w(1)
b < ∞.

Therefore, H /∈ ˜Ds
[ES

u,v((q(1)
b,z),(w(1)

b ))]τ
(G,V) and H ∈ ˜Ds

[ES
u,v((q(2)

b,z),(w(2)
b ))]τ

(G,V).

Evidently, ˜Ds
[ES

u,v((q(2)
b,z),(w(2)

b ))]τ
(G,V) ⊂ D(G,V). Put (s̃b(H))∞b=0 such that ρ̃(

∑b
z=0 A(b, z) ×

q(2)
b,zs̃z(H),˜0) = (u+v)b

w(2)
b
√

b+1
. Hence, H ∈D(G,V) and H /∈ ˜Ds

[ES
u,v((q(2)

b,z),(w(2)
b ))]τ

(G,V). �

Suppose G and V are infinite-dimensional, in view of Dvoretzky’s theorem [28] one has
G/Yj and Mj ⊆ V operated onto �

j
2 through isomorphisms Vj and Xj with ‖Vj‖‖V –1

j ‖ ≤ 2
and ‖Xj‖‖X–1

j ‖ ≤ 2 for all j ∈ N. Assume Tj is the quotient mapping from G onto G/Yj, Ij

is the identity operator on �
j
2, and Jj is the natural embedding operator from Mj into V .

Suppose mj are the Bernstein numbers [11].
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Theorem 3.13 The class ˜Dα
[ES

u,v(q,w)]τ is minimum if (
∑l

z=0 A(l,z)ql,z
(u+v)l )∞l=0 /∈ �(w).

Proof Suppose ˜Dα
ES

u,v(q,w)(G,V) = D(G,V). Then, there exists γ > 0 with �(H) ≤ γ ‖H‖ for

all H ∈D(G,V) and �(H) =
∑∞

b=0( ρ̃(
∑b

z=0 A(b,z)qb,zα̃z(H),˜0)
(u+v)b )wb . One can see that

1 = mz(Ij) = mz
(

XjX–1
j IjVjV –1

j
)

≤ ‖Xj‖mz
(

X–1
j IjVj

)∥

∥V –1
j

∥

∥

= ‖Xj‖mz
(

JjX–1
j IjVj

)∥

∥V –1
j

∥

∥

≤ ‖Xj‖dz
(

JjX–1
j IjVj

)∥

∥V –1
j

∥

∥

= ‖Xj‖dz
(

JjX–1
j IjVjTj

)∥

∥V –1
j

∥

∥

≤ ‖Xj‖αz
(

JjX–1
j IjVjTj

)∥

∥V –1
j

∥

∥.

Let 0 ≤ m ≤ j. Then, we derive that

m
∑

z=0

A(m, z)qm,z ≤ ρ̃

( m
∑

z=0

‖Xj‖A(m, z)qm,z
˜αz

(

JjX–1
j IjVjTj

)∥

∥V –1
j

∥

∥,˜0

)

⇒
(∑m

z=0 A(m, z)qm,z

(u + v)m

)wm

≤ (‖Xj‖
∥

∥V –1
j

∥

∥

)wm
(

ρ̃(
∑m

z=0 A(m, z)qm,z
˜αz(JjX–1

j IjVjTj),˜0)
(u + v)m

)wm

.

Hence, for some λ ≥ 1, one has

j
∑

m=0

(∑m
z=0 A(m, z)qm,z

(u + v)m

)wm

≤ λ‖Xj‖
∥

∥V –1
j

∥

∥

j
∑

m=0

(

ρ̃(
∑m

z=0 A(m, z)qm,z
˜αz(JjX–1

j IjVjTj),˜0)
(u + v)m

)wm

⇒
j

∑

m=0

(∑m
z=0 A(m, z)qm,z

(u + v)m

)wm

≤ λ‖Xj‖
∥

∥V –1
j

∥

∥�
(

JjX–1
j IjVjTj

) ≤ λγ ‖Xj‖
∥

∥V –1
j

∥

∥

∥

∥JjX–1
j IjVjTj

∥

∥ ≤ 4λγ ,

by letting j → ∞. Then, there is a contradiction. Therefore, G and V both cannot be
infinite-dimensional if ˜Dα

ES
u,v(q,w)(G,V) = D(G,V). �

Theorem 3.14 The class ˜Dd
ES

u,v(q,w) is minimum if (
∑l

z=0 A(l,z)ql,z
(u+v)l )∞l=0 /∈ �(w).

Lemma 3.15 ([12]) Assume W ∈D(G,V) and W /∈A(G,V). Then, there are P ∈D(G) and
A ∈D(V) with AWPej = ej for all j ∈N.

Theorem 3.16 ([12]) Suppose ES is an infinite-dimensional Banach space. Then, we have

F
(

ES
)

�A
(

ES
)

�K
(

ES
)

�D
(

ES
)

.
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Theorem 3.17 Assume 1 < w(1)
l < w(2)

l and 0 < q(2)
l,z ≤ q(1)

l,z for all l, z ∈ N. Then,

D
(

˜Ds
[ES

u,v((q(2)
l,z ),(w(2)

l ))]τ
(G,V), ˜Ds

[ES
u,v((q(1)

l,z ),(w(1)
l ))]τ

(G,V)
)

= A
(

˜Ds
[ES

u,v((q(2)
l,z ),(w(2)

l ))]τ
(G,V), ˜Ds

[ES
u,v((q(1)

l,z ),(w(1)
l ))]τ

(G,V)
)

.

Proof Suppose

X ∈D
(

˜Ds
[ES

u,v((q(2)
l,z ),(w(2)

l ))]τ
(G,V), ˜Ds

[ES
u,v((q(1)

l,z ),(w(1)
l ))]τ

(G,V)
)

,

and

X /∈A
(

˜Ds
[ES

u,v((q(2)
l,z ),(w(2)

l ))]τ
(G,V), ˜Ds

[ES
u,v((q(1)

l,z ),(w(1)
l ))]τ

(G,V)
)

.

From Lemma 3.15 one has

Y ∈D
(

˜Ds
[ES

u,v((q(2)
l,z ),(w(2)

l ))]τ
(G,V)

)

and

Z ∈D
(

˜Ds
[ES

u,v((q(1)
l,z ),(w(1)

l ))]τ
(G,V)

)

such that ZXYIb = Ib. Hence, for all b ∈N we have

‖Ib‖˜Ds
[ESu,v((q(1)

l,z ),(w(1)
l ))]τ

(G,V) =
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)q(1)
l,z s̃z(Ib),˜0)

(u + v)l

)w(1)
l

≤ ‖ZXY‖‖Ib‖˜Ds
[ESu,v((q(2)

l,z ),(w(2)
l ))]τ

(G,V)

≤
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)q(2)
l,z s̃z(Ib),˜0)

(u + v)l

)w(2)
l

.

This contradicts Theorem 3.12. Therefore,

X ∈A
(

˜Ds
[ES

u,v((q(2)
l,z ),(w(2)

l ))]τ
(G,V), ˜Ds

[ES
u,v((q(1)

l,z ),(w(1)
l ))]τ

(G,V)
)

. �

Corollary 3.18 Assume 1 < w(1)
l < w(2)

l and 0 < q(2)
l,z ≤ q(1)

l,z for all l, z ∈N. Then,

D
(

˜Ds
[ES

u,v((q(2)
l,z ),(w(2)

l ))]τ
(G,V), ˜Ds

[ES
u,v((q(1)

l,z ),(w(1)
l ))]τ

(G,V)
)

= K
(

˜Ds
[ES

u,v((q(2)
l,z ),(w(2)

l ))]τ
(G,V), ˜Ds

[ES
u,v((q(1)

l,z ),(w(1)
l ))]τ

(G,V)
)

.

Proof Since A⊂K, this is obvious. �

Definition 3.19 ([12]) A Banach space ES is called simple if D(ES) contains a unique
nontrivial closed ideal.
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Theorem 3.20 The class ˜Ds
[ES

u,v(q,w)]τ is simple.

Proof Assume the closed ideal K(˜Ds
[ES

u,v(q,w)]τ (G,V)) has a mapping H /∈ A(˜Ds
[ES

u,v(q,w)]τ (G,
V)). From Lemma 3.15, there are P, A ∈ D(˜Ds

[ES
u,v(q,w)]τ (G,V)) with AHPIj = Ij. Hence,

I
˜Ds

[ESu,v(q,w)]τ
(G,V) ∈ K(˜Ds

[ES
u,v(q,w)]τ (G,V)). Then, D(˜Ds

[ES
u,v(q,w)]τ (G,V)) = K(˜Ds

[ES
u,v(q,w)]τ (G,V)).

Hence, ˜Ds
[ES

u,v(q,w)]τ is a simple Banach space. �

Theorem 3.21 If infl(
∑l

z=0 A(l,z)qz
(u+v)l )wl > 0, then (˜Ds

[ES
u,v(q,w)]τ )γ (G,V) = ˜Ds

[ES
u,v(q,w)]τ (G,V).

Proof Assume H ∈ (˜Ds
[ES

u,v(q,w)]τ )γ (G,V), hence (γ̃m(H))∞m=0 ∈ [ES
u,v(q, w)]τ and ‖H – ρ̃ ×

(γ̃m(H),˜0)I‖ = 0 for all m ∈N. We have H = ρ̃(γ̃m(H),˜0)I for every m ∈N, then

ρ̃
(

s̃m(H),˜0
)

= ρ̃
( ˜
sm

(

ρ̃
(

γ̃m(H),˜0
)

I
)

,˜0
)

= ρ̃
(

γ̃m(H),˜0
)

for every m ∈ N. Therefore, (s̃m(H))∞m=0 ∈ [ES
u,v(q, w)]τ . Hence, H ∈ ˜Ds

[ES
u,v(q,w)]τ (G,V).

Next, suppose H ∈ ˜Ds
[ES

u,v(q,w)]τ (G,V). Hence, (s̃m(H))∞m=0 ∈ [ES
u,v(q, w)]τ . Hence, we ob-

tain

∞
∑

m=0

(

ρ̃(
∑m

z=0 A(m, z)qm,zs̃z(H),˜0)
(u + v)m

)wm

≥ inf
m

(∑m
z=0 A(m, z)qm,z

(u + v)m

)wm ∞
∑

m=0

(

ρ̃
(

s̃m(H),˜0
))wm .

Hence, limm→∞ s̃m(H) =˜0. Assume ‖H – ρ̃(s̃m(H),˜0)I‖–1 exists for every m ∈ N. Hence,
‖H – ρ̃(s̃m(H),˜0)I‖–1 exists and bounded for all m ∈N. Therefore, limm→∞ ‖H – ρ̃(s̃m(H),
˜0)I‖–1 = ‖H‖–1 exists and is bounded. As (˜Ds

[ES
u,v(q,w)]τ ,�) is prequasiideal, then

I = HH–1 ∈ ˜Ds
[ES

u,v(q,w)]τ (G,V) ⇒ (

s̃m(I)
)∞

m=0 ∈ ES
u,v(q, w) ⇒ lim

m→∞ s̃m(I) =˜0.

This implies a contradiction since limm→∞ s̃m(I) = ˜1. Hence, ‖H – ρ̃(s̃m(H),˜0)I‖ = 0
for every m ∈ N. Therefore, ‖H – ρ̃(γ̃m(H),˜0)I‖ = 0 for every m ∈ N. Hence, H ∈
(˜Ds

[ES
u,v(q,w)]τ )γ (G,V). �

4 Multiplication mappings on [ES
u,v(q, w)]τ

Some properties of the multiplication mapping acting on [ES
u,v(q, w)]τ are discussed in this

section, assuming that the conditions of Theorem 3.3 are established.
Assume (Range(V ))c is the complement of Range(V ), I is the space of every set with a

finite number of elements, and �S∞ is the space of bounded sequences of soft functions.

Definition 4.1 If ES
τ is a prequasinormed psssf and λ = (λk) ∈ R

N. The mapping Hλ :
ES

τ → ES
τ is called a multiplication mapping on ES

τ if Hλ
˜f = (λb˜fb) ∈ ES

τ for every f ∈ ES
τ .

The multiplication mapping is said to be generated by λ whenever Hλ ∈D(ES
τ ).

Definition 4.2 ([29]) A mapping V ∈D(E) is called Fredholm whenever dim(Range(V ))c <
∞, Range(V ) is closed and dim(ker(V )) < ∞.
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Theorem 4.3 The following statements hold:
(1) λ ∈ �∞ ⇐⇒ Hλ ∈D([ES

u,v(q, w)]τ );
(2) |λa| = 1 for all a ∈N, if and only if, Hλ is an isometry;
(3) Hλ ∈A([ES

u,v(q, w)]τ ) ⇐⇒ (λa)∞a=0 ∈ c0;
(4) Hλ ∈K([ES

u,v(q, w)]τ ) ⇐⇒ (λb)∞b=0 ∈ c0;
(5) K([ES

u,v(q, w)]τ ) �D([ES
u,v(q, w)]τ );

(6) 0 < α < |λa| < η for all a ∈ (ker(λ))c, if and only if, Range(Hλ) is closed;
(7) 0 < α < |λa| < η for every a ∈N, if and only if, Hλ ∈D([ES

u,v(q, w)]τ ) is invertible;
(8) Hλ is a Fredholm operator, if and only if, (g1) ker(λ) �N∩ I and (g2) |λa| ≥ �, for

every a ∈ (ker(λ))c.

Proof
(1) Let λ ∈ �∞. Then, there exists ν > 0 so that |λa| ≤ ν for every a ∈N. Suppose

˜f ∈ [ES
u,v(q, w)]τ , hence

τ (Hλ
˜f ) = τ (λ˜f )

=
∞

∑

l=0

(

ρ̃(
∑l

z=0 λzA(l, z)ql,z˜fz,˜0)
(u + v)l

)wl

≤ sup
l

νwl

∞
∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z˜fz,˜0)
(u + v)l

)wl

= sup
l

νwlτ (˜f ).

Hence, Hλ ∈D([ES
u,v(q, w)]τ ).

When Hλ ∈D([ES
u,v(q, w)]τ ) and λ /∈ �∞. We have xb ∈N for all b ∈N so that

λxb > b. Hence,

τ (Hλẽxb ) = τ (λẽxb ) =
∞

∑

l=0

(

ρ̃(
∑l

z=0 λzA(l, z)ql,z (̃exb )z,˜0)
(u + v)l

)wl

=
∞

∑

l=xb

(

λ(xb)A(l, xb)ql,xb

(u + v)l

)wl

>
∞

∑

l=xb

(

bA(l, xb)ql,xb

(u + v)l

)wl

> bw0τ (ẽxb ).

Hence, Hλ /∈D([ES
u,v(q, w)]τ ). Therefore, λ ∈ �∞.

(2) Assume˜f ∈ [ES
u,v(q, w)]τ and |λb| = 1 for all b ∈N. Then,

τ (Hλ
˜f ) = τ (λ˜f ) =

∞
∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,zλz˜fz,˜0)
(u + v)l

)wl

=
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z˜fz,˜0)
(u + v)l

)wl

= τ (˜f ).

Hence, Hλ is an isometry.
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Next, suppose for some b = b0 that |λb| < 1 we obtain

τ (Hλẽb0 ) = τ (λẽb0 )

=
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,zλz (̃eb0 )z,˜0)
(u + v)l

)wl

=
∞

∑

l=b0

( |λb0 |A(l, b0)ql,b0

(u + v)l

)wl

<
∞

∑

l=b0

(

A(l, b0)ql,b0

(u + v)l

)wl

= τ (ẽb0 ).

If |λb0 | > 1, then τ (Hλẽb0 ) > τ (ẽb0 ). Therefore, |λa| = 1 for all a ∈N.
(3) Suppose Hλ ∈A([ES

u,v(q, w)]τ ), then Hλ ∈K([ES
u,v(q, w)]τ ). Assume limb→∞ λb �= 0.

We have � > 0 so that K� = {a ∈N : |λa| ≥ �} � I. Suppose {αa}a∈N ⊂ K� . Then,
{ẽαa : αa ∈ K�} ∈ �S∞ is an infinite set in [ES

u,v(q, w)]τ . For every αa,αb ∈ K� we have

τ (Hλẽαa – Hλẽαb ) = τ (λẽαa – λẽαb )

=
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,zλz((̃eαa )z – (̃eαb )z),˜0)
(u + v)l

)wl

≥
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z�((̃eαa )z – (̃eαb )z),˜0)
(u + v)l

)wl

≥ inf
l

�wlτ (ẽαa – ẽαb ).

Therefore, {ẽαb : αb ∈ K�} ∈ �S∞ has no convergent subsequence under Hλ. Hence,
Hλ /∈K([ES

u,v(q, w)]τ ). Therefore, Hλ /∈A([ES
u,v(q, w)]τ ), which implies a

contradiction. Hence, limb→∞ λb = 0. Next, take lima→∞ λa = 0. Hence, for all � > 0
one has K� = {b ∈N : |λb| ≥ �} ⊂ I. Hence, for every � > 0, we obtain
dim(([ES

u,v(q, w)]τ )K� ) = dim(RK� ) < ∞. Therefore, Hλ ∈ F(([ES
u,v(q, w)]τ )K� ). Suppose

λa ∈ R
N for every a ∈ N, where

(λa)b =

⎧

⎨

⎩

λb, b ∈ K 1
a+1

,

0, otherwise.

Clearly, Hλa ∈ F(([ES
u,v(q, w)]τ )K 1

a+1
), as dim(([ES

u,v(q, w)]τ )K 1
a+1

) < ∞ for every a ∈N.
By (wl) ∈↑ ∩�∞ one obtains

τ
(

(Hλ – Hλa )˜f
)

= τ
(((

λb – (λa)b
)

˜fb
)∞

b=0

)

=
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z(λz – (λa)z)˜fz,˜0)
(u + v)l

)wl

=
∞

∑

l=0,l∈K 1
a+1

(

ρ̃(
∑l

z=0 A(l, z)ql,z(λz – (λa)z)˜fz,˜0)
(u + v)l

)wl
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+
∞

∑

l=0,l /∈K 1
a+1

(

ρ̃(
∑l

z=0 A(l, z)ql,z(λz – (λa)z)˜fz,˜0)
(u + v)l

)wl

=
∞

∑

l=0,l /∈K 1
a+1

(

ρ̃(
∑l

z=0 A(l, z)ql,zλz˜fz,˜0)
(u + v)l

)wl

≤ 1
(a + 1)w0

∞
∑

l=0,l /∈K 1
a+1

(

ρ̃(
∑l

z=0 A(l, z)ql,z˜fz,˜0)
(u + v)l

)wl

<
1

(a + 1)w0

∞
∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z˜fz,˜0)
(u + v)l

)wl

=
1

(a + 1)w0
τ (˜f ).

Hence, ‖Hλ – Hλa‖ ≤ 1
(a+1)w0 . Hence, Hλ is a limit of finite rank mappings.

(4) Since A([ES
u,v(q, w)]τ ) �K([ES

u,v(q, w)]τ ), the proof is immediate.
(5) As I = Iλ, where λ = (1, 1, . . .), we have I /∈K([ES

u,v(q, w)]τ ) and I ∈D([ES
u,v(q, w)]τ ).

(6) Assume the sufficient conditions are established. Then, there exists � > 0 so that
|λa| ≥ � for all a ∈ (ker(λ))c. To prove that Range(Hλ) is closed, assume g̃ is a limit
point of Range(Hλ). We obtain Hλ

˜fb ∈ [ES
u,v(q, w)]τ for every b ∈N so that

limb→∞ Hλ
˜fb = g̃ . Evidently, Hλ

˜fb is a Cauchy sequence. As (vl) ∈↑ ∩�∞, then

τ (Hλ
˜fa – Hλ

˜fb) =
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z(λz ˜(fa)z – λz (̃fb)z),˜0)
(u + v)l

)wl

=
∞

∑

l=0,l∈(ker(λ))c

(

ρ̃(
∑l

z=0 A(l, z)ql,z(λz ˜(fa)z – λz (̃fb)z),˜0)
(u + v)l

)wl

+
∞

∑

l=0,l /∈(ker(λ))c

(

ρ̃(
∑l

z=0 A(l, z)ql,z(λz ˜(fa)z – λz (̃fb)z),˜0)
(u + v)l

)wl

≥
∞

∑

l=0,l∈(ker(λ))c

(

ρ̃(
∑l

z=0 A(l, z)ql,z(λz ˜(fa)z – λz (̃fb)z),˜0)
(u + v)l

)wl

=
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z(λz ˜(ua)z – λz (̃ub)z),˜0)
(u + v)l

)wl

>
∞

∑

l=0

(

ρ̃(�
∑l

z=0 A(l, z)ql,z( ˜(ua)z – (̃ub)z),˜0)
(u + v)l

)wl

≥ inf
l

�wlτ (ũa – ũb),

where

(̃ua)k =

⎧

⎨

⎩

˜(fa)k , k ∈ (ker(λ))c,

0, k /∈ (ker(λ))c.

Hence, {ũa} is a Cauchy sequence in [ES
u,v(q, w)]τ . As [ES

u,v(q, w)]τ is complete. We
obtain˜f ∈ [ES

u,v(q, w)]τ such that limb→∞ ũb =˜f . Since Hλ ∈D([ES
u,v(q, w)]τ ) one

obtains limb→∞ Hλũb = Hλ
˜f . Since limb→∞ Hλũb = limb→∞ Hλ

˜fb = g̃ . Therefore,
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Hλ
˜f = g̃ . Hence, g̃ ∈ Range(Hλ), i.e., Range(Hλ) is closed. Next, if the necessary setup

is verified, we have � > 0, so that τ (Hλ
˜f ) ≥ �τ (˜f ) and˜f ∈ ([ES

u,v(q, w)]τ )(ker(λ))c . For
K = {b ∈ (ker(λ))c : |λb| < �} �= ∅ one has for a0 ∈ K that

τ (Hλẽa0 ) = τ
((

λb (̃ea0 )b
))∞

b=0)

=
∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,zλz (̃ea0 )z,˜0)
(u + v)l

)wl

<
∞

∑

l=0

(

ρ̃(�
∑l

z=0 A(l, z)ql,z (̃ea0 )z,˜0)
(u + v)l

)wl

≤ sup
l

�wlτ (ẽa0 ).

This implies a contradiction. Hence, K = φ, one obtains |λa| ≥ � for every
a ∈ (ker(λ))c.

(7) First, if κ ∈R
N with κa = 1

λa
. From Theorem 4.3 setting (1) then

Hλ, Hκ ∈ D([ES
u,v(q, w)]τ ). We have Hλ.Hκ = Hκ .Hλ = I . Hence, Hκ = H–1

λ . Secondly,
when Hλ is invertible. Hence, Range(Hλ) = ([ES

u,v(q, w)]τ )N. Hence, Range(Hλ) is
closed. By Theorem 4.3 setting (5) then there is α > 0 such that |λa| ≥ α for every
a ∈ (ker(λ))c. Hence, ker(λ) = ∅ if λa0 = 0, where a0 ∈N. This implies ea0 ∈ ker(Hλ),
which is a contradiction, as ker(Hλ) is trivial. Hence, |λa| ≥ α for every a ∈N. Since
Hλ ∈ �∞. By Theorem 4.3 setting (1) then there exists η > 0 such that |λa| ≤ η for
every a ∈N. Hence, α ≤ |λa| ≤ η for every a ∈N.

(8) Suppose Hλ is a Fredholm operator. If ker(λ) �N and ker(λ) /∈ I we have
ẽa ∈ ker(Hλ) for all a ∈ ker(λ). Since ẽas are linearly independent, then
dim(ker(Hλ)) = ∞. This implies a contradiction. Hence, ker(λ) �N ∈ I and the
setting (g1) holds. The setting (g2) follows from Theorem 4.3 setting (6). In the
opposite direction, if the settings (g1) and (g2) are established, by Theorem 4.3
setting (6), then the condition (g2) implies that Range(Hλ) is closed. The setting (g1)
explains that dim((Range(Hλ))c) < ∞ and dim(ker(Hλ)) < ∞. So Hλ is Fredholm. �

5 Fixed points of Kannan contraction type
The existence of a fixed point of a Kannan contraction mapping acting on the prequasiideal
type of weighted binomial matrix in a Nakano sequence space of soft functions under the
settings of Theorem 3.3 is investigated in this section. Several numerical examples are
discussed to explain our results.

In this part, we will use �(V ) = τ ((s̃b(V ))∞b=0) = (
∑∞

l=0( ρ̃(
∑l

z=0 A(l,z)ql,zs̃z(V ),˜0)
(u+v)l )wl )

1
� , for every

V ∈ ˜Ds
[ES

u,v(q,w)]τ (G,V).

Definition 5.1 ([22]) A function � on ˜Ds
ES confirms the Fatou property when for every

{Vb}b∈N ⊆ ˜Ds
ES (G,V) so that limb→∞ �(Vb – V ) = 0 and every T ∈ ˜Ds

ES (G,V), one has

�(T – V ) ≤ sup
b

inf
j≥b

�(T – Vj).

Theorem 5.2 The function � does not satisfy the Fatou property.
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Proof Assume {Wm}m∈N ⊆ ˜Ds
[ES

u,v(q,w)]τ (G,V) with limm→∞ �(Wm – W ) = 0. Then, W ∈
˜Ds

[ES
u,v(q,w)]τ (G,V). Hence, for all V ∈ ˜Ds

[ES
u,v(q,w)]τ (G,V) one has

�(V – W ) =

( ∞
∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜sz(V – W ),˜0)
(u + v)l

)wl
) 1

�

≤
( ∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜s[ z
2 ](V – Wi),˜0)

(u + v)l

)wl
) 1

�

+

( ∞
∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜s[ z
2 ](W – Wi),˜0)

(u + v)l

)wl
) 1

�

≤ (

22�–1 + 2�–1 + 2�
) 1
�

× sup
m

inf
i≥m

( ∞
∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z ˜sz(V – Wi),˜0)
(u + v)l

)wl
) 1

�

.

Hence, � does not satisfy the Fatou property. �

Definition 5.3 ([24]) A mapping W : ˜Ds
ES (G,V) → ˜Ds

ES (G,V) is called a Kannan �-
contraction if one has ζ ∈ [0, 1

2 ) so that �(WV – WT) ≤ ζ (�(WV – V ) + �(WT – T)) for
every V , T ∈ ˜Ds

ES (G,V).

Definition 5.4 ([22]) If G : ˜Ds
ES (G,V) → ˜Ds

ES (G,V). The mapping G is said to be �-
sequentially continuous at B ∈ ˜Ds

ES (G,V), if and only if, for every {Wm}m∈N ⊆ ˜Ds
ES (G,V)

so that limm→∞ �(Wm – B) = 0 then limm→∞ �(GWm – GB) = 0.

Theorem 5.5 Suppose G : ˜Ds
[ES

u,v(q,w)]τ (G,V) → ˜Ds
[ES

u,v(q,w)]τ (G,V). The operator A ∈
˜Ds

[ES
u,v(q,w)]τ (G,V) is the only fixed point of G if the next settings are established:

(i) G is a Kannan �-contraction;
(ii) G is �-sequentially continuous at A ∈ ˜Ds

[ES
u,v(q,w)]τ (G,V);

(iii) there is B ∈ ˜Ds
[ES

u,v(q,w)]τ (G,V), so that {GmB} contains {Gmi B} converges to A.

Proof If A is not a fixed point of G then GA �= A. From the settings (ii) and (iii), then

lim
mi→∞�

(

Gmi B – A
)

= 0 and lim
mi→∞�

(

Gmi+1B – GA
)

= 0.

Since G is a Kannan �-contraction operator, one has

0 < �(GA – A)

= �
((

GA – Gmi+1B
)

+
(

Gmi B – A
)

+
(

Gmi+1B – Gmi B
))

≤ (

22�–1 + 2�–1 + 2�
) 1
� �

(

Gmi+1B – GA
)

+
(

22�–1 + 2�–1 + 2�
) 2
� �

(

Gmi B – A
)

+
(

22�–1 + 2�–1 + 2�
) 2
� ζ

(

ζ

1 – ζ

)mi–1

�(GB – B).

Take mi → ∞. This implies a contradiction. Hence, A is a fixed point of G. To prove
the uniqueness of the fixed point A, assume we have two different fixed points A, D ∈
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˜Ds
[ES

u,v(q,w)]τ (G,V) of G. Then,

�(A – D) ≤ �(GA – GD) ≤ ζ
(

�(GA – A) + �(GD – D)
)

= 0.

Hence, A = D. �

Example 5.6 Consider

M : ˜Ds
[ES

u,v(( 1
(l+z+4)A(l,z) )∞l=0,( 2l+3

l+2 )∞l=0)]τ (G,V) → ˜Ds
[ES

u,v(( 1
(l+z+4)A(l,z) )∞l=0,( 2l+3

l+2 )∞l=0)]τ (G,V) and

M(H) =

⎧

⎨

⎩

H
6 , �(H) ∈ [0, 1),
H
7 , �(H) ∈ [1,∞).

Assume H1, H2 ∈ ˜Ds
[ES

u,v(( 1
(l+z+4)A(l,z) )∞l=0,( 2l+3

l+2 )∞l=0)]τ (G,V). For �(H1),�(H2) ∈ [0, 1), then we ob-
tain that

�(MH1 – MH2) = �

(

H1

6
–

H2

6

)

≤
√

2
4√125

(

�

(

5H1

6

)

+ �

(

5H2

6

))

=
√

2
4√125

(

�(MH1 – H1) + �(MH2 – H2)
)

.

If �(H1),�(H2) ∈ [1,∞) then,

�(MH1 – MH2) = �

(

H1

7
–

H2

7

)

≤
√

2
4√216

(

�

(

6H1

7

)

+ �

(

6H2

7

))

=
√

2
4√216

(

�(MH1 – H1) + �(MH2 – H2)
)

.

Suppose �(H1) ∈ [0, 1) and �(H2) ∈ [1,∞). Then,

�(MH1 – MH2) = �

(

H1

6
–

H2

7

)

≤
√

2
4√125

�

(

5H1

6

)

+
√

2
4√216

�

(

6H2

7

)

≤
√

2
4√125

(

�(MH1 – H1) + �(MH2 – H2)
)

.

Therefore, M is a Kannan �-contraction and

Mm(H) =

⎧

⎨

⎩

H
6m , �(H) ∈ [0, 1),
H
7m , �(H) ∈ [1,∞).
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Obviously, M is �-sequentially continuous at the zero operator � and {MmH} contains a
{Mmj H} that converges to �. By Theorem 5.5 the zero operator is the only fixed point of M.

Assume {H (a)} ⊆ ˜Ds
[ES

u,v(( 1
(l+z+4)A(l,z) )∞l=0,( 2l+3

l+2 )∞l=0)]τ (G,V) such that lima→∞ �(H (a) – H (0)) = 0,

where H (0) ∈ ˜Ds
[ES

u,v(( 1
(l+z+4)A(l,z) )∞l=0,( 2l+3

l+2 )∞l=0)]τ (G,V) with �(H (0)) = 1. Since � is continuous,
then

lim
a→∞�

(

MH (a) – MH (0)) = lim
a→∞�

(

H (0)

6
–

H (0)

7

)

= �

(

H (0)

42

)

> 0.

Hence, M is not �-sequentially continuous at H (0). This implies M is not continuous at
H (0).

6 Applications on a stochastic nonlinear dynamical system
The solution of nonlinear matrix equations (6) at D ∈ ˜Ds

[ES
u,v(q,w)]τ (G,V) under the settings

of theorem 3.3 are investigated in this part, where �(G) = (
∑∞

l=0( ρ̃(
∑l

z=0 A(l,z)ql,zs̃z(G),˜0)
(u+v)l )wl )

1
�

for every G ∈ ˜Ds
[ES

u,v(q,w)]τ (G,V). Assume the stochastic nonlinear dynamical system [22]:

s̃z(G) = ˜sz(P) +
∞

∑

m=0

�(z, m)f
(

m, s̃m(G)
)

(6)

and suppose W : ˜Ds
[ES

u,v(q,w)]τ (G,V) → ˜Ds
[ES

u,v(q,w)]τ (G,V) is defined by

W (G) =

(

˜sz(P) +
∞

∑

m=0

�(z, m)f
(

m, s̃m(G)
)

)

I. (7)

Theorem 6.1 The stochastic nonlinear dynamical system (6) has a unique solution D ∈
˜Ds

[ES
u,v(q,w)]τ (G,V) if the next settings are confirmed:

(1) � : N2 →R, f : N×R(A) →R(A), P ∈D(G,V), T ∈D(G,V), and for every z ∈ N

there is a positive real κ with supz κ
wz
� ∈ [0, 0.5) so that

∣

∣

∣

∣

∑

m∈N
�(z, m)

(

f
(

m, s̃m(G)
)

– f
(

m, s̃m(T)
))

∣

∣

∣

∣

˜≤κ

(∣

∣

∣

∣

˜sz(P) – s̃z(G) +
∑

m∈N
�(z, m)f

(

m, s̃m(G)
)

∣

∣

∣

∣

+
∣

∣

∣

∣

˜sz(P) – s̃z(T) +
∑

m∈N
�(z, m)f

(

m, s̃m(T)
)

∣

∣

∣

∣

)

;

(2) W is �-sequentially continuous at a point D ∈ ˜Ds
[ES

u,v(q,w)]τ (G,V);
(3) one has B ∈ ˜Ds

[ES
u,v(q,w)]τ (G,V) with {W aB} has a {W ai B} converging to D.

Proof Assume W : ˜Ds
[ES

u,v(q,w)]τ (G,V) → ˜Ds
[ES

u,v(q,w)]τ (G,V) is defined by (7). Then,

�(WG – WT)

=

( ∞
∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z(s̃z(G) – s̃z(T)),˜0)
(u + v)l

)wl
) 1

�
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=

( ∞
∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z
∑

m∈N �(z, m)(f (m, s̃m(G)) – f (m, s̃m(T))),˜0)
(u + v)l

)wl
) 1

�

≤ sup
z

κ
tz
�

×
( ∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z( ˜sz(P) – s̃z(G) +
∑

m∈N �(z, m)f (m, s̃m(G))),˜0)
(u + v)l

)wl
) 1

�

+ sup
z

κ
tz
�

×
( ∞

∑

l=0

(

ρ̃(
∑l

z=0 A(l, z)ql,z( ˜sz(P) – s̃z(T) +
∑

m∈N �(z, m)f (m, s̃m(T))),˜0)
(u + v)l

)wl
) 1

�

= sup
z

κ
tz
�

(

�(WG – G) + �(WT – T)
)

.

By Theorem 5.5 we have a unique solution of equation (6) at D ∈ ˜Ds
[ES

u,v(q,w)]τ (G,V). �

Example 6.2 Consider ˜Ds
[ES

u,v(( 1
(l+z)! ),( 2l+3

l+2 ))]τ (G,V), where

�(G) =

√

√

√

√

∞
∑

l=0

(

ρ̃(
∑l

z=0
A(l,z)
(l+z)! s̃z(G),˜0)

(u + v)l

) 2l+3
l+2

for every G ∈ ˜Ds
[ES

u,v(( 1
(l+z)! ),( 2l+3

l+2 ))]τ (G,V).

Assume the stochastic nonlinear dynamical system:

s̃z(G) = ẽ–(2z+3) +
∞

∑

m=0

tan(2m + 1) cosh(3m – z) cosb |s̃z–2(G)|
sinhd |s̃z–1(G)| + s̃in mz +˜1

, (8)

for all z ≥ 2, b, d > 0, and assume W : ˜Ds
[ES

u,v(( 1
(l+z)! ),( 2l+3

l+2 ))]τ (G,V) → ˜Ds
[ES

u,v(( 1
(l+z)! ),( 2l+3

l+2 ))]τ (G,V)
is defined by

W (G) =

(

ẽ–(2z+3) +
∞

∑

m=0

tan(2m + 1) cosh(3m – z) cosb |s̃z–2(G)|
sinhd |s̃z–1(G)| + s̃in mz +˜1

)

I. (9)

Assume W is �-sequentially continuous at a point D ∈ ˜Ds
[ES

u,v(( 1
(l+z)! ),( 2l+3

l+2 ))]τ (G,V) and one

has B ∈ ˜Ds
[ES

u,v(( 1
(l+z)! ),( 2l+3

l+2 ))]τ (G,V) with {W aB} has a {W ai B} converging to D. Obviously,

∣

∣

∣

∣

∣

∞
∑

m=0

cosh(3m – z) cosb |s̃z–2(G)|
sinhd |s̃z–1(G)| + s̃in mz +˜1

(

tan(2m + 1) – tan(2m + 1)
)

∣

∣

∣

∣

∣

˜≤ 1
25

∣

∣

∣

∣

∣

ẽ–(2z+3) – s̃z(G) +
∞

∑

m=0

tan(2m + 1) cosh(3m – z) cosb |s̃z–2(G)|
sinhd |s̃z–1(G)| + s̃in mz +˜1

∣

∣

∣

∣

∣

+
1

25

∣

∣

∣

∣

∣

ẽ–(2z+3) – s̃z(T) +
∞

∑

m=0

tan(2m + 1) cosh(3m – z) cosb |s̃z–2(T)|
sinhd |s̃z–1(T)| + s̃in mz +˜1

∣

∣

∣

∣

∣

.

In view of Theorem 6.1 the stochastic nonlinear dynamical system (8) has a unique solu-
tion D.
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7 Conclusion
Some geometric and topological structures of the multiplication operator acting on the
weighted binomial matrices in the Nakano sequence space of soft functions and the oper-
ators ideal are presented. The existence of a fixed point of the Kannan contraction operator
in this prequasioperator ideal is confirmed. Finally, we discussed many applications of so-
lutions to nonlinear stochastic dynamical matrix systems and illustrative examples of our
findings.
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21. Altay, B., Başar, F.: Generalization of the sequence space �(p) derived by weighted means. J. Math. Anal. Appl. 330(1),

147–185 (2007)
22. Alsolmi, M.M., Bakery, A.A.: Decision-making on the solution of a stochastic non-linear dynamical system of

Kannan-type in new sequence space of soft functions. J. Funct. Spaces (2022). https://doi.org/10.1155/2022/9011506
23. Pietsch, A.: Eigenvalues and s-Numbers. Cambridge University Press, New York (1986)
24. Bakery, A.A., Mohammed, M.M.: Kannan non-expansive mappings on Nakano sequence space of soft reals with some

applications. J. Funct. Spaces (2022). https://doi.org/10.1155/2022/2307519
25. Bakery, A.A., Mohamed, O.S.K.: Orlicz generalized difference sequence space and the linked pre-quasi operator ideal.

J. Math. (2020). https://doi.org/10.1155/2020/6664996
26. Faried, N., Bakery, A.A.: Small operator ideals formed by s numbers on generalized Cesàro and Orlicz sequence spaces.

J. Inequal. Appl. 2018(1), 357 (2018). https://doi.org/10.1186/s13660-018-1945-y
27. Rhoades, B.E.: Operators of A – p type. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. (8) 59(3–4), 238–241 (1975)
28. Pietsch, A.: Operator Ideals. VEB, Berlin (1978)
29. Mrowka, T.: A Brief Introduction to Linear Analysis: Fredholm Operators, Geometry of Manifolds. MIT OpenCouseWare,

Fall (2004)

https://doi.org/10.1186/s13660-021-02631-w
https://doi.org/10.1155/2022/9011506
https://doi.org/10.1155/2022/2307519
https://doi.org/10.1155/2020/6664996
https://doi.org/10.1186/s13660-018-1945-y

	Prequasiideal of the type weighted binomial matrices in the Nakano sequence space of soft functions with some applications
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries and deﬁnitions
	Properties of operators ideal
	Multiplication mappings on  [Eu,vS(q,w) ]tau
	Fixed points of Kannan contraction type
	Applications on a stochastic nonlinear dynamical system
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Competing interests
	Author contributions
	Author details
	Publisher's Note
	References


