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Abstract
We investigate the shape-preserving properties of λ-Bernstein operators Bn,λ(f ; x) that
were recently introduced Bernstein-type operators defined by a new Beziér basis with
shape parameter λ ∈ [–1, 1]. For this purpose, we express Bn,λ(f ; x) as a sum of a
classical Bernstein operator and a sum of first order divided differences of f . Using this
new representation, we prove that Bn,λ(f ; x) preserves monotonic functions for all
λ ∈ [–1, 1]. However, we show by a counter example that Bn,λ(f ; x) does not preserve
convex functions for some λ ∈ [–1, 1]. We present a weaker result for the case
λ ∈ [0, 1] for a special class of functions. Finally, we analyze the monotonicity of
λ-Bernstein operators with n and show that Bn,λ(f ; x) is not monotonic with n for
some λ if 1/2 < λ ≤ 1.
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1 Introduction
Bernstein [1] introduced the famous Bernstein operators that are defined by

Bn(f ; x) =
n∑

j=0

bn,j(x)f
(

j
n

)
, (1)

where f : [0, 1] →R is a function, n ∈N := {1, 2, . . .}, x ∈ [0, 1] and bn,j(x) is defined by

bn,j(x) :=

(
n
j

)
xj(1 – x)n–j, (2)

where j ∈ {0, 1, 2, . . . , n}. Bernstein [1] proved that Bn(f ; x) converges to f (x) uniformly on
[0, 1] as n → ∞ for any continuous function f : [0, 1] → R.

Among all linear positive operators, Bernstein operators are the most studied ones (see
the monograph [2] for a survey of studies). This is due to their numerous applications in
science and engineering, and also their favorable shape-preserving properties.

Since Bernstein operators possess favorable properties and are widely used in applica-
tions, there have been numerous generalizations and variants [3–8]. In particular, Ye et
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al. [9] introduced a new Bézier basis that is dependent on a shape parameter λ ∈ [–1, 1].
Using this Bézier basis, new Bernstein-type operators (called λ-Bernstein operators) were
introduced [3]

Bn,λ(f ; x) :=
n∑

j=0

bn,j(λ; x)f
(

j
n

)
,

where λ ∈ [–1, 1] and the Bézier basis is defined by [9]

bn,0(λ; x) = bn,0(x) –
λ

n + 1
bn+1,1(x),

bn,j(λ; x) = bn,j(x) + λ
n – 2j + 1

n2 – 1
bn+1,j(x) – λ

n – 2j – 1
n2 – 1

bn+1,j+1(x),

bn,n(λ; x) = bn,n(x) –
λ

n + 1
bn+1,n(x),

where bn,j(x) is given by (2). Note that taking λ = 0, one has the well-known Bernstein
operator given by (1). Moreover, introducing the shape parameter λ, one has more mod-
eling flexibility. We refer to [10–14] for more details about λ-Bernstein operators and their
variants.

Bernstein operators have favorable shape-preserving properties and studying them is
crucial for applications in computer-aided design and computer graphics (see [3, 5, 15]
for recent studies). It is well known that Bernstein operators have a convexity-preserving
property [2]. Namely, Bn(f ) is convex for every n, whenever f ∈ C[0, 1] is convex. More-
over, Bernstein operators preserve monotonic functions i.e., Bn(f ) is a decreasing (increas-
ing) function for all n ∈ N whenever f : [0, 1] → R is a decreasing (increasing) function,
respectively [2]. Temple [16] investigated the monotonicity of Bernstein operators with n.
Namely, if f is a convex function on [0, 1], then Bn(f ; x) are monotonic in n, meaning that
for all n ∈ N and x ∈ [0, 1] the inequality Bn+1(f ; x) ≤ Bn(f ; x) holds. The converse of this
property also holds [2].

The main purpose of this paper is to investigate the shape-preserving properties of re-
cently introduced λ-Bernstein operators. To this end, we introduce a new representation
of Bn,λ(f ; x) as a sum of a Bernstein operator Bn(f ; x) and a sum of first order divided dif-
ferences of f . With the help of this new expression, we show that λ-Bernstein operators
preserve monotonic functions. On the other hand, we show by a counter example that
the convexity-preserving property is not satisfied for some λ ∈ [–1, 1]. However, a weaker
result for the convexity-preserving property is proven. Finally, we show that the mono-
tonicity of λ-Bernstein operators with n fails for some λ > 1/2.

2 Preliminaries
Recall that Bernstein basis functions satisfy the following properties [2]

bn,j(x) = 0, if j > n or j < 0,

bn,j(x) =
(

1 –
j

n + 1

)
bn+1,j(x) +

j + 1
n + 1

bn+1,j+1(x), (3)

d
dx

bn,j(x) = n
[
bn–1,j–1(x) – bn–1,j(x)

]
. (4)
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Definition 2.1 ([2]) Let x1, x2, . . . , xr ∈ [0, 1] be distinct points and f be a real-valued func-
tion on [0, 1]. Then, the divided difference of f with order (r – 1) is defined as

[x1, x2, . . . , xr : f ] :=
r∑

j=1

f (xj)
(xj – x1)(xj – x2) · · · (xj – xj–1)(xj – xj+1) · · · (xj – xr)

.

Fix r ∈ N and f : [0, 1] → R. We say that f is a convex (respectively, concave) function of
order r, if all its divided differences with order (r + 1) are positive (respectively, negative).

Theorem 2.1 ([2]) The identity

dr

dxr Bn(f ; x) =
n!r!

(n – r)!nr

n–r∑

j=0

bn–r,j(x)
[

j
n

,
j + 1

n
, . . . ,

j + r
n

: f
]

, (5)

holds for any f : [0, 1] →R and r ∈ {0, 1, . . . , n}.

Corollary 2.1 ([2]) Bernstein operators preserve convexities of all orders. In particular,
Bn(f ) is decreasing (increasing) for every n whenever f is a decreasing (increasing) function
on [0, 1], respectively. Similarly, Bn(f ) is convex (concave) for every n whenever f is a convex
(concave) function on [0, 1], respectively.

Theorem 2.2 ([2]) Bernstein operators satisfy the identity

Bn+1(f ; x) – Bn(f ; x) = –
x(1 – x)
n(n + 1)

n–1∑

j=0

bn–1,j(x)
[

j
n

,
j + 1
n + 1

,
j + 1

n
: f

]

for f : [0, 1] →R, n ∈N, x ∈ [0, 1].

Corollary 2.2 ([2]) If f : [0, 1] → R is convex, then Bn+1(f ; x) ≤ Bn(f ; x) for all n ∈ N, x ∈
[0, 1].

Lemma 2.1 ([3]) λ-Bernstein operators satisfy

Bn,λ(1; x) = 1,

Bn,λ(t; x) = x + λ
1 – 2x + xn+1 – (1 – x)n+1

n(n – 1)
,

Bn,λ
(
t2; x

)
= x2 +

x(1 – x)
n

+ λ

[
2x – 4x2 + 2xn+1

n(n – 1)
+

xn+1 + (1 – x)n+1 – 1
n2(n – 1)

]
.

Theorem 2.3 ([3]) If f ∈ C[0, 1] and λ ∈ [–1, 1], then Bn,λ(f ; x) converges to f (x) uniformly
on [0, 1] as n → ∞.

3 Main results
From now on, we will use the notation fj := f ( j

n ) for j = 0, 1, 2, . . . , n.

Lemma 3.1 We can write Bn,λ(f ; x) in the following form

Bn,λ(f ; x) = Bn(f ; x) + λ

n∑

j=1

n – 2j + 1
n2 – 1

bn+1,j(x)[fj – fj–1]. (6)
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Proof By definition of λ-Bernstein operators, we have

Bn,λ(f ; x) =
n∑

j=0

bn,j(x)fj + λ

n∑

j=1

n – 2j + 1
n2 – 1

bn+1,j(x)fj

– λ

n–1∑

j=0

n – 2j – 1
n2 – 1

bn+1,j+1(x)fj

= Bn(f ; x) + λ

n∑

j=1

n – 2j + 1
n2 – 1

bn+1,j(x)fj

– λ

n∑

j=1

n – 2j + 1
n2 – 1

bn+1,j(x)fj–1.

The last equation easily implies (6) and the proof is completed. �

Lemma 3.2 λ-Bernstein operators satisfy the identity

d
dx

Bn,λ(f ; x) =
n–1∑

j=0

[fj+1 – fj]bn,j(x)
[

n – j + λ
n – 2j – 1

n – 1

]
(7)

+
n–1∑

j=0

[fj+1 – fj]bn,j+1(x)
[

j + 1 – λ
n – 2j – 1

n – 1

]
,

for all f : [0, 1] →R and λ ∈ [–1, 1].

Proof Differentiating the expression (6) and using (4) and (5), we obtain

d
dx

Bn,λ(f ; x) =
n–1∑

j=0

bn–1,j(x)
[

j
n

,
j + 1

n
: f

]

+ λ

n∑

j=1

n – 2j + 1
n – 1

(
bn,j–1(x) – bn,j(x)

)
(fj – fj–1).

Using the property (3), we obtain

d
dx

Bn,λ(f ; x) = n
n–1∑

j=0

[(
1 –

j
n

)
bn,j(x) +

j + 1
n

bn,j+1(x)
]

(fj+1 – fj)

+ λ

n–1∑

j=0

n – 2j – 1
n – 1

(
bn,j(x) – bn,j+1(x)

)
(fj+1 – fj),

which gives (7) and completes the proof. �

Remark 3.1 Taking λ = 0 in equation (7), we arrive at equation (5) for r = 1.

Theorem 3.1 λ-Bernstein operators preserve monotonic functions for all λ ∈ [–1, 1], i.e.,
Bn,λ(f ) is decreasing (increasing) for all n ∈ N and λ ∈ [–1, 1] whenever f : [0, 1] → R is
decreasing (increasing), respectively.
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Proof Let f : [0, 1] →R be an increasing function. Then, for all distinct points u, v ∈ [0, 1],
one has

[u, v : f ] =
f (v) – f (u)

v – u
> 0. (8)

Since 0 ≤ j ≤ n – 1, it easily follows that –1 ≤ 1 – 2j
n–1 ≤ 1. Using –1 ≤ λ ≤ 1, one easily

obtains –1 ≤ –λ(1 – 2j
n–1 ) ≤ 1. As a result, we can write

0 ≤ n – j – 1 ≤ n – j + λ

(
1 –

2j
n – 1

)
, (9)

and

0 ≤ (j + 1) – 1 ≤ (j + 1) – λ

(
1 –

2j
n – 1

)
. (10)

Using Lemma 3.2, it follows from (8), (9), and (10) that d
dx Bn,λ(f ; x) > 0 and thus Bn,λ(f ; x)

is increasing. Analogously, one can prove that if f is decreasing, then so is Bn,λ(f ; x). �

Lemma 3.3 λ-Bernstein operators satisfy

d2

dx2 Bn,λ(f ; x) = λ
n(n + 1)

n – 1
{

bn–1,0(x)(f0 – f1) + bn–1,n–1(x)(fn – fn–1)
}

+ n
n–2∑

j=0

(fj+2 – 2fj+1 + fj)bn–1,j(x)
(

n – j – 1 + λ
n – 2j – 3

n – 1

)

+ n
n–2∑

k=0

(fj+2 – 2fj+1 + fj)bn–1,j+1(x)
(

j + 1 – λ
n – 2j – 1

n – 1

)
,

for all f : [0, 1] →R and λ ∈ [–1, 1].

Proof Differentiating (7) and using (4) one has

d2

dx2 Bn,λ(f ; x) = n
n–1∑

j=0

(fj+1 – fj)
(
bn–1,j–1(x) – bn–1,j(x)

)(
n – j + λ

n – 2j – 1
n – 1

)

+ n
n–1∑

j=0

(fj+1 – fj)
(
bn–1,j(x) – bn–1,j+1(x)

)(
j + 1 – λ

n – 2j – 1
n – 1

)
.

The last equation can be written as

d2

dx2 Bn,λ(f ; x) = n
n–2∑

j=0

(fj+2 – fj+1)bn–1,j(x)
(

n – j – 1 + λ
n – 2j – 3

n – 1

)

+ n
n–1∑

j=0

(fj – fj+1)bn–1,j(x)
(

n – j – 1 + λ
n – 2j – 3

n – 1

)
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+ n
n–1∑

j=0

(fj+1 – fj)bn–1,j(x)
(

j – λ
n – 2j + 1

n – 1

)

+ n
n–2∑

j=0

(fj – fj+1)bn–1,j+1(x)
(

j + 1 – λ
n – 2j – 1

n – 1

)
.

Similarly, shifting the index in the third sum completes the proof. �

Remark 3.2 Taking λ = 0 in Lemma 3.3, we obtain (5) for r = 2. Moreover, if 0 ≤ j ≤ n – 2,
then it is obvious that

–1 ≤ 1 –
2(j + 1)
n – 1

≤ 1.

Since –1 ≤ λ ≤ 1, it immediately follows that

–1 ≤ λ

(
1 –

2(j + 1)
n – 1

)
≤ 1,

and thus

0 ≤ n – j – 2 ≤ n – j – 1 + λ
n – 2j – 3

n – 1
.

Similarly, one can show that

0 ≤ j + 1 – λ
n – 2j – 1

n – 1
.

Let f : [0, 1] → R be a convex function. Then, all divided differences [x1, x2, x3 : f ] are
positive. It easily follows that

2
n2

[
j
n

,
j + 1

n
,

j + 2
n

: f
]

= fj+2 – 2fj+1 + fj > 0.

As a result

n
n–2∑

j=0

(fj+2 – 2fj+1 + fj)
[

bn–1,j(x)
(

n – j – 1 + λ
n – 2j – 3

n – 1

)

+ bn–1,j+1(x)
(

j + 1 – λ
n – 2j – 1

n – 1

)]
> 0.

However, the term

λ
n(n + 1)

n – 1

{
bn–1,0(x)

[
f (0) – f

(
1
n

)]
+ bn–1,n–1(x)

[
f (1) – f

(
n – 1

n

)]}

can be negative or positive (since –1 ≤ λ ≤ 1), which may cause d2

dx2 Bn,λ(f ; x) < 0. We
demonstrate this with an example.
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Table 1 The intervals where Bn,–1(t2; x) is convex for corresponding values of n

n the interval where
Bn,–1(t2; x) is convex

2 [0, 0.58333]
3 [0, 0.75]
4 [0, 0.83264]
5 [0, 0.88232]
6 [0, 0.91385]
7 [0, 0.93466]
8 [0, 0.94892]
9 [0, 0.95907]
10 [0, 0.96650]
15 [0, 0.98475]
20 [0, 0.99135]
25 [0, 0.99444]
30 [0, 0.99613]
35 [0, 0.99715]
40 [0, 0.99782]
45 [0, 0.99828]
50 [0, 0.99860]

Example 3.1 Consider the convex function f (t) = t2 on [0, 1]. From Lemma 2.1, we obtain

d2

dx2 Bn,λ
(
t2; x

)
= 2 –

2
n

+ λ
–8 + (n + 1)(2n + 1)xn–1 + (n + 1)(1 – x)n–1

n(n – 1)
. (11)

Taking λ = 1 and n = 2 in the last equation, we have

d2

dx2 B2,1
(
t2; x

)
= 6x –

3
2

,

and it is obvious that B2,1(t2; x) is convex on the interval ( 1
4 , 1), whereas it is concave on

the interval (0, 1
4 ). Therefore, Bn,1(f ; x) does not preserve convexity. Similarly, taking λ = –1

in equation (11), we give the intervals where Bn,–1(t2; x) is convex in Table 1 for different
values of n. From the table, it can be observed that Bn,–1(t2; x) is not convex on [0, 1] for
n ≤ 50 and thus Bn,–1(f ) does not preserve convexity. We can see this in Fig. 1 for n =
2, 3, 4, 5, and 10.

Solving the inequality

d2

dx2 Bn,λ
(
t2; x

)
> 0

for different values of λ and n, we see more examples in which Bn,λ(t2; x) is not convex on
[0, 1]. We collect these examples in Table 2, which shows the intervals where Bn,λ(t2; x) is
convex for different values of λ and n.

The numerical data shows us that for λ = – 1
2 , Bn,λ(t2; x) is convex on [0, 1] only for n ≥ 5,

for λ = 1
2 , Bn,λ(t2; x) is convex on [0, 1] only for n ≥ 3. Similarly, we see that Bn,λ(f ) does not

preserve convexity for λ = – 15
16 and λ = – 35

36 when we look at the simple example f (t) = t2.
Therefore, we conclude the next result.

Remark 3.3 λ-Bernstein operators do not preserve convexity of functions for certain λ ∈
[–1, 1].
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Figure 1 Graphs of Bn,–1(t2; x) for n = 2, 3, 4, 5, and 10

Table 2 The intervals where Bn,λ(t2; x) is convex for the corresponding values of λ and n

n λ = 1 λ = 1/2 λ = –1/2 λ = –15/16 λ = –35/36

2 [0, 0.25] [0.08333] [0, 0.75] [0, 0.05944] [0, 0.05881]
3 [0, 1] [0, 1] [0, 0.92539] [0, 0.76319] [0, 0.07557]
4 [0, 1] [0, 1] [0, 0.99254] [0, 0.84532] [0, 0.83812]
5 [0, 1] [0, 1] [0, 1] [0, 0.89386] [0, 0.88732]
10 [0, 1] [0, 1] [0, 1] [0, 0.97314] [0, 0.96939]
15 [0, 1] [0, 1] [0, 1] [0, 0.98921] [0, 0.98670]
20 [0, 1] [0, 1] [0, 1] [0, 0.99469] [0, 0.99281]
25 [0, 1] [0, 1] [0, 1] [0, 0.99710] [0, 0.99560]

We have seen that λ-Bernstein operators do not preserve convexity in general. However,
we see that in some special cases, they preserve convexity as a result of the representation
of d2

dx2 Bn,λ(f ; x) given in Lemma 3.3.

Theorem 3.2 If f : [0, 1] → R is a convex function that is nonincreasing on (0, x0) and
nondecreasing on (x0, 1) for an interior point x0 ∈ (0, 1), then Bn,λ(f ) is also convex for all
λ ∈ [0, 1] and n > n0 where n0 is dependent on x0.

Proof From Remark 3.2, it is enough to show that

λ
n(n + 1)

n – 1

{
bn–1,0(x)

[
f (0) – f

(
1
n

)]
+ bn–1,n–1(x)

[
f (1) – f

(
n – 1

n

)]}
≥ 0. (12)

If x0 < 1
2 , then we can choose n such that 1

n < x0. Then, f is nonincreasing on the interval
(0, 1

n ) and nondecreasing on the interval ( n–1
n , 1) for all such n ∈N and thus

f (0) – f
(

1
n

)
≥ 0, f (1) – f

(
n – 1

n

)
≥ 0. (13)
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Therefore, we have the inequality (12) for all n such that 1
n < x0 and for all λ ∈ [0, 1]. Sim-

ilarly if x0 > 1
2 , then we can choose n such that 1 – 1

n > x0. Then, f is nonincreasing on
(0, 1

n ) and nondecreasing on ( n–1
n , 1) for all such n ∈N, which yields the inequality (12) for

λ ∈ [0, 1]. Finally, if x0 = 1
2 , then the inequality (12) holds for all n ≥ 2 and λ ∈ [0, 1]. �

Definition 3.1 ([17]) Let f : [0, 1] →R be continuous. f is called quasiconvex on [0, 1] if

f
(
ηu + (1 – η)v

) ≤ max
{

f (u), f (v)
}

, ∀u, v,η ∈ [0, 1].

f is quasiconvex on [0, 1] iff f is nonincreasing and nondecreasing on the intervals [0, c]
and [c, 1], respectively, where c ∈ [0, 1]. Obviously, every nondecreasing, nonincreasing or
convex function is quasiconvex on [0, 1].

Remark 3.4 Note that in the hypothesis of the last theorem, we have excluded the cases
x0 = 0 or x0 = 1. This is because if f is nondecreasing or nonincreasing on [0, 1], we can
not have both inequalities in (13). If f is a function that satisfies the hypothesis of the last
theorem, then f is a quasiconvex function. Therefore, the assertion of the last theorem
does not hold for all quasiconvex functions.

Now, we investigate the monotonicity of Bn,λ(f ; x) with n. Namely, we try to answer the
question “is the inequality Bn+1,λ(f ; x) ≤ Bn,λ(f ; x) satisfied for every n ∈ N and x ∈ [0, 1]
for fixed λ ∈ [–1, 1] if f : [0, 1] → R is an arbitrary convex function?” Again, we consider
f (t) = t2 and check if this property is satisfied. Basically, from Lemma 2.1 the problem
reduces to checking when the inequality

x(1 – x)
n + 1

+ λ

[
2x – 4x2 + 2xn+2

n(n + 1)
+

xn+2 + (1 – x)n+2 – 1
(n + 1)2n

]
(14)

≤ x(1 – x)
n

+ λ

[
2x – 4x2 + 2xn+1

n(n – 1)
+

xn+1 + (1 – x)n+1 – 1
n2(n – 1)

]

is satisfied. We solve this inequality using computer algebra and obtain the data given in
Table 3. We have observed that for different negative values of λ, the inequality (14) holds
for all n ∈ N and x ∈ [0, 1]. As for the positive values of λ, we have seen that the inequality
(14) is satisfied for all n ∈N and x ∈ [0, 1] if λ ≤ 1/2. However, if λ > 1/2, then the inequality
(14) does not hold for some x. In Table 3, we give the solutions of the inequality (14) for
the corresponding values of n and λ.

From these observations, the next result easily follows.

Table 3 Solutions of the inequality (14) for the corresponding values of n and λ

n λ = 2/3 λ = 3/4 λ = 9/10 λ = 99/100 λ = 1

2 [0, 1] [0, 1] [0, 0.68406] [0, 0.60235] [0, 0.59549]
3 [0, 1] [0, 0.85964] [0, 0.70958] [0, 0.65802] [0, 0.65314]
4 [0, 0.93051] [0, 0.82643] [0, 0.72916] [0, 0.68982] [0, 0.68598]
5 [0, 0.89504] [0, 0.82452] [0, 0.74676] [0, 0.71358] [0, 0.71029]
10 [0, 0.89650] [0, 0.86049] [0, 0.81344] [0, 0.79140] [0, 0.78916]
15 [0, 0.91618] [0, 0.89009] [0, 0.85422] [0, 0.83676] [0, 0.83496]
20 [0, 0.93072] [0, 0.91000] [0, 0.88073] [0, 0.86616] [0, 0.86464]
25 [0, 0.94122] [0, 0.92397] [0, 0.89918] [0, 0.88666] [0, 0.88535]
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Remark 3.5 λ-Bernstein operators do not have monotonicity property with n for some
λ > 1/2. Namely, the inequality

Bn+1,λ(f ; x) ≤ Bn,λ(f ; x)

does not hold for all n ∈ N and x ∈ [0, 1] for some fixed 1/2 < λ ≤ 1 and arbitrary convex
function f ∈ C[0, 1].

4 Conclusion
In this study, the shape-preserving properties of recently introduced λ-Bernstein opera-
tors Bn,λ(f ; x) have been revealed. These properties are fundamental for the applications
in computer graphics and computer-aided design. It has been seen that the monotonicity-
preserving property is satisfied for every λ ∈ [–1, 1]. However, it has been demonstrated
with a counter example that the convexity-preserving property fails for some λ ∈ [–1, 1].
In this case, it has been proven that for a special class of convex functions, Bn,λ(f ; x) is
convex for λ ∈ [0, 1] and n > n0 (see Theorem 3.2). Furthermore, it has been shown with
a counter example that the monotonicity of λ-Bernstein operators with n also fails for
λ > 1/2. For further studies, a special class of functions for which λ-Bernstein operators
preserve convexity for every λ ∈ [–1, 1] can be investigated. Moreover, as for the mono-
tonicity property of λ-Bernstein operators with n, we have shown that this property is not
satisfied, at least for some λ > 1/2. However, we were not able to obtain results for the other
cases of λ. For this reason, it could be interesting to investigate whether this property is
satisfied for –1 ≤ λ ≤ 1/2 or not.
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