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1 Introduction and results

The singular integral operator theory plays an important role in many aspects of harmonic
analysis. The Calderén—-Zygmund operator theory is one of the most important achieve-
ments of classical analysis in the last century, which has many important applications in
Fourier analysis, complex analysis, operator theory, and so on. The multilinear Calderén—
Zygmund theory was introduced by Coifman and Meyer in [1, 2]. This theory was then
further studied by Grafakos and Torres [7, 8], who considered the multilinear Calderén—
Zygmund operator with classical standard kernels. And this topic keeps attracting many
researchers.

In 1985, Yabuta [23] firstly considered Calder6n—Zygmund operators with kernels of
type w as the generalizations of Calderén—Zygmund operators when studied pseudod-
ifferential operator. In 2009, Maldonado and Naibo [15] studied the bilinear Calderén—
Zygmund operators of type w. In 2014, Lu and Zhang [14] considered the multilinear case.
Assume that w(¢) : [0,00) — [0,00) is a nondecreasing function with 0 < w(1) < co. For

a >0, we say o € Dini(a) if

1 a
o (t)
|| Dini(a) = / dt < co.
0 t
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Definition 1.1 ([14]) A locally integrable function K(x,y1,...,¥x), defined away from the
diagonal x = y; = - - - = y,, in (R")"*!, is called an m-linear Calder6n—Zygmund kernel of

type w(2) if there exists a constant A > 0 such that

A
';ym)| =< n
(Ix=y1l+- -+ [x = yml)

|I((x,y1,.. (1.1)
orall (x,y1,...,%m) € (R")"*! with x #y; for somej € {1,2,...,m}, and

|K(x,y1,...,ym)—I((x/,yl,...,ym)|

A lx — |
< w (1.2)
(e =y1l + -+l = ym)™ Nlx=y1l + - + X = Yl

whenever |x — x| < % maxi<j<m % — yjl, and

|I((x,y1,...,yj,...,ym)—K(x,yl,...,y;,...,ym)|

A w( ;=] ) (1.3)

<
Tyl =)™\ =yl X = Yl

whenever |y; - yi| < % maxi<j<m % — yjl.

We say T : .Z(R") x --- x .Z(R") - ¥'(R") is an m-linear operator with an m-linear
Calder6n—-Zygmund kernel K(x,y1,...,ym) of type w(z) if

T(h,....fm)(x) = /(;Rn)m K, y15 - ym)fi0n) - frn ) dyn - - Ay,
whenever fi,....f,, € C°(R") and x € N, suppj;.

If T can be extended to a bounded multilinear operator from L7 (R”) x - - - x L4 (R") to
LP*°(R") forsome 1< q,q1,...,qm <ocowith 1/g; +---+1/q,, = 1/g or from L9 (R") x - - - x
Lin(R") to L (R") for some 1 < q1,...,qm < 00 with 1/gq; + - - - + 1/q,, = 1, then T is called
an m-linear Calder6n—-Zygmund operator of type w, abbreviated to m-linear w-CZO.

Obviously, when w(¢) = £° for some ¢ > 0, the m-linear w-CZO is exactly the multilinear
Calder6n—Zygmund operator studied by Grafakos and Torres [7] and Lerner et al. [12].

To shorten the notation, we denotef =(f,....fm) and dy = dy; - - - dy,, in the following.

In 2014, Lu and Zhang [14] gave the endpoint estimate for the m-linear w-CZO under

some weaker assumptions of w(¢) and also got the following multiple weighted estimates.

Theorem A ([14]) Let T be an m-linear v-CZO with w € Dini(1). Let 1/p =1/py + --- +
1/pm and p € Aninipy pa,.pmt R"). If L < pj <00 forall j = 1,...,m, then

m
” T(f)HLp(m = Cl_[ ”ﬁ”L”/(u)'
j=1

Theorem B ([14]) Let T be an m-linear w-CZO with w € Dini(1). Then T can be extended
to a bounded operator from L'(R") x --- x L}(R") to LV/"™>(R").
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Let b = (by, ..., by) be a collection of locally integrable functions, the commutator gen-
erated by m-linear w-CZO, and b is defined by

Tei(ifore - fi)®) = D T (ofor- oo for) @),
j=1

where

T} (@) = b, THE ) = BT fr oo i) ®) = TFrs s iy fon) @),

7

j=1...,m.

Let b = (by, ..., by) be a collection of locally integrable functions, the commutator gen-
erated by m-linear w-CZO, and b is defined by

Tes(infore - fo)®) = 3 T (ofor- oo for) @),
j=1

where

Tii(}?)(x) = [b;, T ®) = BT (oo firee s fon) = T(Fiy oo fibjs oo fin) (),

j=1,...,m.
The iterated commutator Tn;(f ) is defined as follows:

T (@) = [b1, [b2s - [Bonet, [ T,y ] ], (),

which can also be given formally by
Top () = /( ) COR R R TR AAL
Rn m }=1

Whenm =1, TEB(}?) = Tn,;(f) =[b, T|f = bT(f)— T (bf), which is the well-known classical
commutator studied in [3]. In 1995, Paluszynski [17] proved that the commutator [b, T
generated by Calder6n—-Zygmund operators T with classical kernel and b € Lip4(R") is
bounded from L?(R”) to L(R"”) whenever 0< 8<1,1/q=1/p— B/n,and 1 < p < g < 00,
and from L” to homogenous Triebel-Lizorkin spaces Fg °°(R™) which is defined in [20].

For the weighted case, Hu and Gu [9] proved when b € Lip; ,(R”), the commutators
[b, T] is bounded from L”(u) to L9(p'~%). In 2011, Lian, Ma, and Wu [13] studied the m-
linear commutators generated by the multilinear Calder6n—Zygmund operators with non-
smooth kernels and weighted Lipschitz functions bounded from the product of weighted
Lebesgue spaces to the weighted Lebesgue space. For more articles about multilinear op-
erators, see [1, 2, 4, 6,7,10-12, 14, 16, 24, 25], and [26].

In this paper, we will discuss the mapping properties of multilinear commutators gener-
ated by m-linear Dini’s type Calderén—Zygmund operators and weighted Lipschitz func-
tions on some function spaces. We obtain the following results.



Sun Journal of Inequalities and Applications (2022) 2022:149 Page 4 of 14

Theorem 1.1 Let T be an m-linear w-CZO satisfying

1
/&<1+logl>dt§oo. (1.4)
o ¢t t

Suppose 0< B <land 1/r=1/p—Bin,1<p<r<ooforl/py+- -+ 1lp,=1/p with1<
pi<oo,i=1,...,m If p € A1(R") and b; € Lipg ,(R")(1 <j < m), then T,’jj(}?) is bounded
from IPY (1) x --- x LPm(u) to L™ (ut").

Furthermore, TZB(}?) is bounded from IP* (i) x --- x LPm(w) to L™ (u!™").

Theorem 1.2 Let T be an m-linear w-CZO satisfying

1 1 m
/ @<1+log—) dt < o0.
0o ¢t t

Suppose0< B;<1,i=1,...,m,1/r;=1/p;—Bi/n, 1 <p; <r;<oowithl/p1+---+1/p, = 1/p,
Uri+--+lry=1r,B1+  +Bu=Band 0<B<1.Ifue A (R"), b; € Lipﬂl_’H(R”)(l <
i <m), then Tni;(?) is bounded from LP1 (1) x --- x LPm(w) to L™ (ut=").

Remark 1.1 Theorem 1.1 and 1.2 are also valid for commutators of multilinear Calderé6n—
Zygmund operator with standard kernels.

Remark 1.2 Theorem 1.2 extends the corresponding result in [19] and [22].

The rest of this paper is organized as follows. After recalling some notations and lemmas
in Sect. 2, we prove our results in Sect. 3.

Throughout this paper, we denote by p’ the conjugate index of p, that is, 1/p + 1/p' = 1.
The letter C, sometimes with additional parameters, will stand for positive constants, not
necessarily the same at each occurrence but independent of the main parameters.

2 Preliminaries and lemmas
A nonnegative locally integrable function is called a weight function.

Definition 2.1 ([5]) Let u be a weight function, 1 < p < oc. If there is a constant C > 0
such that, for every ball B C R”,

1 1 ey N
(|B| /B“(’C)d"xlm /B“(’C) dx) =G

then we say u € A,. We say i € A; if there is a constant C > 0 such that, for every ball
BCRY,

1
E /;,u(x) dx < Ceiseiélfu(x).

A weight function . € A ifit satisfies the A, condition for some 1 < p < 0o. The smallest
constant satisfying the formulas above is called A, constant of w, we denote it by [1]4,.

For1 <p<g<oo,wehave Ay CA, CA; And Ay = Ui <peccdp.

IfpueA, 1<r<oo,then u'™” € A,.
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For a functionf € L;,(R"”), the Hardy—Littlewood maximal and the sharp maximal func-
tions are defined by

Mf(x) —sugﬁflf(yﬂdy

and

nf(x)—sup@ [f(y) f3|dy supmf@ [f(y) C’dy,

where f; denotes the average of f over cube Q, that is, f = ﬁ of () dx.
For § > 0, we denote M;(f) and M:(f) by Ms(f) = M(/f1)*® and Mi(f) = [M*(|f|P)]"°.
We denote the following fractional maximal operator:

1 s 1/s
Ma,u,sf(x)=SUP(W/QVO’)| u(y)dy) .

Qox

Recall that M,, := M, 11 is the fractional maximal operator

Mo()®) -sup|Q|1 _ / )] dy.

Definition 2.2 ([5]) Let 1 < p <00, 0< B <1, u € A, the weighted Lipschitz
space Lip‘z,ﬂ contains all locally integrable functions f satisfying

1 1 e
|lf||Lip1;j,ﬂ = Sl;p e [m /B[f(x) —fa] ) pdx:| < C<oo,

where f5 = \l%l Jzf () dy, the supremum is taken over all balls B in R".

The smallest number C satisfying the above inequality was denoted by ”f”Lip‘é,M ,and we
also denote by ||f]lLip i |[f||Llp . Obviously, when 1 = 1, Lip, , = Lip.

A ~ B means there exist C; > 0 C2 > 0 such that C1A < B < C,A. When u € A, Garcia—
Cuerva in [5] proved that for 1 < p,gq < oo, ”f”Lipfi;,,L ”f”Ling'

As usual, we denote ||f [|r(u) = (fgn If (%) [P 11(x) dx) 7 for 1 < p < oo and p = 00, ||f [l 100 () =
(1f o

We will use the following Kolmogorov inequality:

<
"f”lp % = ”f”quo %
where 0 < p < g < 00. See [12, 21].

Lemma 2.1 ([18]) Let 0 < p,8 < 00, 1 € Awo, then there exists a constant C such that

/ Msf (x)P pu(x) dx < C/ Mgf(x)”,u,(x) dx (2.1)
Rﬂ RVI

for any function f for which the left-hand side is finite.
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Lemma 2.2 ([13]) Suppose € A1, 0< B <1, b € Lipg ,(R").
(i) Fork > 1,

/
165028 — b pioiy| < Chu() (B(x 2 1R)) " 1bllLip, -

(ii) For any 1 < s < 00 and any ball B > x, we have

Bin
MO [ 1014y < Mt

(iii) For any 1 < s < 0o and any ball B > x, we have

ﬁ fB| (bO) - b5)f ()| dy < Clu@)l1bllLip,, Mp,us() ().

Lemma 2.3 ([13]) Suppose that0<a <n,0<s<p<nla,l/g=1/p—a/n. If n € Ax(R"),

then

1M pef lzagy < CIf Nz -

Lemma 2.4 ([13]) Suppose that 0 < o <n, 1 < p < nla, and 1/q = 1/p —a/n. If n €
Avigy (R"), then

Mef llzay < Clfll o (urray-

3 Proofs of theorems
For simplicity, we only prove for the case m = 2. The argument for the case m > 2 is similar.
We first establish the following lemmas.

Lemma 3.1 Let T be a 2-linear w-CZO satisfying (1.4). Suppose 1 € A{(R") and b; €
Lipg, (R") with0< B <1,j=1,2. Let0< 5 <1/2<1<s<n/B. Then we have

ME[T, ()] = C)byllipg,, [Mpus(T (i f2)) )

+ Mp s () @)M(f) (x) + M(F) ()M 15(f2) (%) ] (3.1)
forj=1,2.

Proof We only estimate M?(Tbl1 (f1,f2)) and write by = b for simplicity. A similar discussion
also works for Mg(szz(fl, ).
Fix x € R” for any cube Q(xq,lq) containing x with side-length [y, set Q* = 8,/nQ =

Q(xq,8+/nly). We decompose f; =]§° +£, whereﬁ0 =fixq and £ = f xgm\q+, j = 1, 2.
Since 0 < § < 1/2, then for any constant ¢, we have

1/8
(st -

<|Q| f|Tb(ﬁ’f2)(z) - dz)

/8

Page 6 of 14
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| /\

1/8
<|Q|/| b(z) bQ*)T(fl’fZ)(Z)| dz>

<|Q|/|T(b b 1)@ dz)

1/8
<|Q|/|T ((b-bo )™ ) @[ dz)

. s 1/8
o o wers)

/8

1/8
+C<|Q|/yT ((b=bo ). f5) @) — ¢ dz)

2=11 +[2+13+14 +I5.

Since 0 <8 <1, u € Aj,and b € Lipg ,, by Lemma 2.2(iii) and Hélder’s inequality, we get

< Cﬁ /(;‘(b(Z) - bQ*)T(fl,fz)(Z)| dz < C'LL(x)”b”LiPﬁ,MMﬂ,[L,S(T(ﬁ}ﬁ))(x).

For the second term I, since 0 < § < 1/2, by Kolmogorov’s inequality, Theorem B, and

Lemma 2.2(iii), we obtain

b = P (- 0 )
< C|Q|_2 ” T((b — b )florfzo) HLuz,oc(Q)
< C|Q|72 || T((b - bQ*),flOr 20) ||L1/2,oc R™)

= (IQ*/’ ~belfie ‘dz>(|Q*/V”)’dz>

< Cu@)bllip, , Mpus(f1) RM(f2) ().

For the term I3, noting the fact that |z — y1| ~ |y1 —x¢| for any y; € (Q*)° and z € Q, then
by (1.1) and Lemma 2.2(i)(ii), we obtain

I < |£ f | T((b= b ). 1y)(@)| dz

|Q|//*/* (|z - y1|-:4|z y2|)2n|b(y1) bg

b box
SC/ PO - (22 Vl |dy1/ lfz()’z)|dy2
@) ly1—xql*”

A [A02)] dy dy dz

|b(y1) — b+ |
=cle IZ f R e UL DL

+ |b2kQ* = bg |] Vl()’l)| dy1 M(f2) (x)

)
Q"
= CZ |2kQ*|2 \/;k *Hb()/l bsz*

< CM(fz)(x)Z2 [M(x 15Lipg,, M0 (1) ()

Page 7 of 14
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2h Q"
< CU@Blluipy, My s () @Mf) ().

k() b, , A D" Q)/ Lfl(yn}dyl}

Similarly, we have

C
b / IT((b- bo )f.f°) @) de

A
bo
|Q|//*/* (lz - il +lz- )/2|)2”’ (yl) Q

= CfQ*|b()’1)—bQ* Vl()’1)|dy1/ Mdyz

@ 172 — x|

A0 || (2)] dy2 dyy dz

oo

9] /
<C Dlliip. Mg s E —_—
< Culal ”Lpﬁ’ﬂ P (ﬁ)(x) el |2kQ*|2 2k+3 /nQ\2k+2 /nQ

< Cu@)1blLiny , Mp s () M) ().

lf20’2)‘ dy,

For the last term I5, since (R” \ Q)2 € R \ (Q*)? € U, (2M3/nQ)* \ (2¢2/nQ)?,

making use of assumption (1.2), we have

b=1g /‘T (b= b )f*.157) @) = T((b = b )™ 57) () | dz

5—/ / K (2,51, y2) = K(xq, 31,92 || (b01) = b )f 002 (02)| dyn dyadz
1Rl Jo Jmm o2

- C // 1 ( |z — xql )
< — w
[Ql JoJmmor2 (Ix—y1l+ [x—y2D)2  \Ix —y1] + [x — ya]

x |(b0n) = b )i (y2)| dy1 dyz dz

|z=xl

/ / S=nnr=m
|Q| Q1T @k ynQ2\@k42 2 (Ix = y11 + |x = y2])2"
x |h(yl)—bo* i 01)f()] dyr dya dz

a)(2 k) 1
|Q| 0 |2kQ* ‘b(yl)‘bQ* [fil)] dyr x W/%Q*VZ(J’M‘% dz
< CM(fy) (%) w27 b(y,) b b b )| d
(2)x Z|2kQ* H 1) - 2k Q* +] 2kQx — Q*|:Hf10’1 ’ Y1

<c2kw ) CONbllLip, Mp s (1) VM) ()

1
<c /0 @ (1 +log ;) A @) 1Bl 2iny , Mppos () M) )

< Cp@)1bllLipy,, Mps (Y@M B) ).

Page 8 of 14
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Proof of Theorem 1.1 Since u € Ay C Ay and u!™ € A, C A, by Lemma 2.1 and

Lemma 3.1, for any j = 1,2, we get

I sz(fl’fZ) e = “M‘S[Tzf(fl’ﬁ)]
< ||M§[Ti,(fl»f2)] Lr(uln)
< ClluMpus(TFiofo)) | ryor
+ Cl| My s FOME) ey + CMFMp 5 (F5)

= LIl +UZ+LI3.

Lr(pl=r)

L' (ul-")

For U, since 1/r = 1/p — B/n and select s satisfying 1 < s < p < n/B, by Theorem A and

Lemma 2.3, we have

”/’*Mﬂ,M,S(T(fler))

Lr(pl-r) = ”Mﬂ,M,S(T(fleZ))

=C|T¢.fo

L7 ()

)”Lp(p.)
= Clliller g 2 llz2 o) -

For Uy, let 1/r = 1/p, + 1/1, then we have 1// = 1/p; — B/n. Then, by Holder’s inequality

and Lemma 2.3, we obtain

“//«Mﬁ,u,s(fl)M(fZ) Lr(ul-r) = ”Mﬂ,u.s(fl)M(fZ) L(w)
= CMp s 1 [ M) | 1

< Cllfillzzr g 2l 72 (u)-

Similarly as the estimate of U5, we may get

Uz < CllAller o 12 llze2 u)-

Thus Theorem 1.1 is proved. d

Lemma 3.2 Let T be a 2-linear v-CZO satisfying fol @(1 + log %)zdt < 00. Suppose 1 €
A1(R") and b; € Lipﬂj‘M(R”),j =1,2. Let B1+Pr=B,0<B<1l,and0<8<1/3<1<s<n/B.
Then we have

M[ T ()] @) < Cr@) b lluipy, , b2l ,
X (Moo (T(10f5)) () + My 105 () @) My 105 () ()]
+ 1b1lluipy, , @) PV M, (T3, (1, 2)) ()
+ 1b21lLipg, , 140 72" Mg, (T, (1, 12)) ()

Proof We fix x € R” for any cube Q(x(, /) containing x with side-length lp, i=1,2, Q* =
8/nQ. Set A; = (b;) o+, let ¢ be a constant to be fixed along the proof. Since 0 < § < 1/3, we

Page 9 of 14
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have

(lQI/ | T, )@ ~ Ie] Idz)m

1/
< <|LQ|/Q|THb(fI’f2)(Z)—C|BdZ>

) s 1/8
§C<_ / |(51(2) - 11) (02(0) = 1) T(, 1)) dz)
[Ql Jo
1 1/8
+C(@/QKE’I(Z)_M)T(ZM—M)(}(I’ 2)(z)|5dz>

1 s\
+C(@/(;’(bz(Z)—kz)T(lbl_m(fl, )(2)] dz)

) RN
+C<@/Q’T((b1—)»l)fl’(bZ_)\Z)fZ)(z)_C’ dz)

= I(l + I<2 + 1<3 + 1<4

Firstly we consider K;. For 0 < § < 1/3, it follows from Holder’s inequality and Lemma

2.2(ii) that

1(1<C<|Q|/|b1(z)—kl|38dz)l/35(|él/|b2 (2) = s’ dz>m
(|Q|/|T(f1’2 r dz)m
< <|Q|/|b1(z) x1|dz)<é/Q|b2(z)—x2|dz)
(|Q|/|T(f1’ Z(Z)W)

M(Q*)ﬂl/ml M(Q*)ﬁzlml

=C 1611ILipg, , Ql

1
<oz 12l o /Q IT(3./)(2)| dz

Mt
< Ci 11 iy, Wb, Q)" o /Q IT(3,/)()] dz

< Cu@)? b1 lluipy, , 102 1ipy, , Mp,s (T f2)) ().

For the terms K, K3, notice that 0 < § < 1/3, we use the facts 1/6 = 1 + (1 — §)/8 and

0 < 175 < 1/2. By Holder’s inequality, we get

K, < C<|Q |/ |l’)1(Z)—(b1)Q*

( *)ﬁl/n+1 1
< C‘”ﬁTnblnupﬂl,ﬂ (@ /Q 15,0, /) @) dZ)

1
< cnbl||Lipﬂ1,ﬂu(x>“ﬁl’"<w /Q T, @) dz)

(1-8)/8
) s

Page 10 of 14
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< Clbilluipy, , )" Mg, (T3, ., (1, £2)) )

< Clbulluip,, , )P Mg, (T3, (i, 2)) ().
Similarly, we have
K3 < Clballuip,, , ()" Mg, (T}, (fi. o)) (%)

Now, we consider the last term Kj. For each i = 1,2, we decompose f; = fo +f°, where
ﬁo :ﬁXQ*’ then

Ky < C(i / |T((b1—Al)ff),(bz—wz")(z)ﬁdz)“
1Ql Jo
1 0 s 1/8
+C<@/;|T((b1—Al)fl,(bz—)»z)fzoo)(zﬂ dz)
1 1/8
+C<@/Q’T( )\1_](1 ,(bg—)»gfz) ’ dZ)

1 RN
+C<@/Q]T((b1—)»1)](100,(192—)»2)1300)(‘5)_6‘ dz>

= [(41 + K42 + ](43 + 1(44..

We first estimate Ky;. Applying Kolmgorov’s inequality, Theorem B, and Lemma 2.2(iii),
we have

Ky = CIQIPIT (b1 = 240R) (b2 = 220 3

= CIRIPIT(Br = 20R)s (b2 = 220 4o

< (IQI / Iy0) — (B lflm)|dy1)<@ /Q Ja2) ~ ()

< CL 161 l1ing, , 1B2lliny, , My o) My 5(£2) ()

12 (32)| dj/2>

Next, we consider the term Kj,. Note that for any z € Q, y; € (Q*)S, |z — y2| ~ |y2 — %ql,
by (1.1) and Lemma 2.2(iii), we have

Ky < Cl_él /Q|T((b1 =) (b2 = M2)f5°)(2)| de

Q / / /" z z 2
<

x |b1(y1) = M| [i0n)||B2(32) — 22| [2(32) | dyz dy1dz
b —(b1) o+ d
SCfQ*| 101) = (1) o+ || 00| y1/

r\Q* Y2 =X |2”

——————|ba(32) = (B2) o+ | [o(02) | Ay

< CM(x)”bl||LipBl,MMﬂ1,u,s(ﬁ)(x)|Q*|

h - h * d
" kZ;/k*3fQ\zk+2fQ ly2 — |2n| 2072) = (b2)or [ [o(92) | dy
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|Q]
2kQ|2

= Cu(x) ”bl”LipﬂHL ”bZ”Lisz’MMﬂl,;L,S(fl)(x)Mﬁz,;L,S(fZ)(x)

< Cu@)b: ||L1pﬁ1 uMﬂl us(fl)(x) Z

/ *in(yZ)_(bZ)Q* fa(y2)| dya

Similarly,

Kag < Cu@)*[1b1llLipg, , 152 l1Lipg, , My s (1) ()M 5 (o) ()
Finally, we consider the term Ky4. For any z € Q and (y1,,) € (2K*3/nQ)? \ (2K2/nQ)?,

w(27)
|2443./nQl’

Set ¢ = T((b1 — 21)f°, (b2 — A2)f5°)(x), then by (3.2) and Lemma 2.2(iii), we have

|I((Z;ylry2) - I((x;y1,y2)| < C (32)

Ky < —// |K (2, y1,52) = K@, y1,92) [ (T17, [ Bi(y:) = A4 [fi(9:)]) dy1 dy dz
1Rl Jo Jmor2

(27 )
1|bi(yi) — A [fi(yi)|) dyr d
CZ |2k+3\/—Q|2n /21@3\/;@2(1-[[1} ()/) A Hf()’)D Y1 dy2

oo

< Cu@)* Y Ko(27) 1billuipy, , 152 1Lips, , Mpy s (i) @My 1 (2) (6
k=1

) 1\?
< C,u(x)Q/(; T(l +log ;) Aatl|byllLipg, , 1D21Lipy, , Mprus 1) (X)Mpy 0,5 (F2) (%)

< C P 1B luipg,, 162 i, , M 051 ()M (£2) ()

This, together with the estimates for K3, K3, K3, Ky gives

M Tz ()] (6) < Cu@1balluipy,, 15211ip,
X [Mp s (T(fr,£2) () + Mgy s (@M () ()]
+ 11 lluipg, , )PV Mg, (T, (. £2)) (%)

+ 1alluipy, , () 2" Mg, (T}, (i, o)) (%)
Thus we finish the proof of Lemma 3.2. g

Proof of Theorem 1.2 Similarly as the proof of Theorem 1.1, since u € A;, by Lemma 2.1
and Lemma 3.2, for 0 < § < 1/2,

| T i) ary < CIMs (T lfiofo) -2y
< CIM(Trj (i fo) i ui2n

< Cllu*Mpos(TH L)

+ C||u2Mm,u,s(ﬁ>Mﬁz,ﬂ,s<ﬁ)

+ Cllut My (T3, (1. 15))

1 2r)

Lr(p’l—2r)

Lr(ul—2r)
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+ Cll P My, (T, (.12) |

Lr(MI—Zr)
=Vi+Vo+ V34V,
For Vi, by Lemma 2.3 and Theorem A, we have
”MzMﬁ,;l.,S(T(fll 2)) Lr(ul-2r) = ||Mﬁ,M,S(T(f17 2))’Lr(p,)

= C| TR

=< Cllfillzrr g 2l 72 (u)-

For V3, since 1/r; + 1/r, = 1/r, by Holder’s inequality and Lemma 2.3, we get

”MzMﬂl,u,s(ﬁ)Mﬁz,u,s(ﬁ)| L7 (ul-2r) = “Mﬂl,u,s(ﬁ)Mﬁz,/A,s(ﬁ)| L7(w)
= CHMﬂw:S(fl) ’ L1 () ||M/32vu,5(f2)‘

< Clfillzzr g 12l 272 -

L2 (w)

For the term V3, by Theorem 1.1 and Lemma 2.4, let 1/r = 1/l; — 81/n,and then 1 +r/l;" =
r—rBi/n>1,1/l; = 1/p - Bo/n. Since p € Ay, then u!"+"P1" € A, .+, then we have

[P0, (T3, o)

L7 (ul-2r) = HMﬂl (Tb22(f1’.f2)) | L (ul-r+rBiiny
= C” TZz(fl’ 2)||L11(MH1)

=< CliballLipg, ,, IV llzzr oy 2l 222 -

Similarly as the discussion of V3, we have

Vi < ClibrllLip, ,, Villzer g 2222 -

By combining the estimates of V7, V5, V3, V4, we finish the proof of Theorem 1.2. O
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