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Abstract
In this paper we study inequalities between weighted densities of sets of natural
numbers corresponding to different weight functions. Depending on the asymptotic
relation between the weight functions, we give sharp bounds for possible values of
one density when the values of another density are given. In particular, we give a
condition for two weight functions to generate equivalent weighted densities.
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1 Introduction
Denote by N the set of positive integers. Let χA denote the characteristic function for a
given subset A ⊂N. Weighted densities were studied in [1] and [2], where a generalization
of both asymptotic and logarithmic densities was provided.

We call a positive function f : N→R
+ an Erdős–Ulam function if it satisfies f (1) = 1,

∞∑

n=1

f (n) = ∞, (1)

and

lim
n→∞ f ∗(n) = 0, where f ∗(n) =

f (n)∑n
j=1 f (j)

. (2)

With respect to an Erdős–Ulam function f (n) the weighted densities are defined as follows.
For A ⊂N denote

FA(n) =
∑n

j=1 f (j) · χA(j)
Sf (n)

, where Sf (n) =
n∑

j=1

f (j).

Clearly, 0 ≤ FA(n) ≤ 1. Now, we define the lower and upper f -densities of A by

df (A) = lim inf
n→∞ FA(n) and df (A) = lim sup

n→∞
FA(n),

respectively. In the case when df (A) = df (A) we say that A possesses the f -density df (A).
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The symbols GA(n), Sg(n), dg(A), dg(A), and dg(A) will have analogous meanings, with
respect to Erdős–Ulam function g(n).

Note that the asymptotic density corresponds to f (n) = 1, while the logarithmic density
corresponds to f (n) = 1

n . Also, note that for every weighted density df and every set A ⊂N

we have the complementary property

df (A) = 1 – df (N \ A). (3)

The weighted density d′ is called stronger than the weighted density d (d is weaker than
d′) if, for any set A ⊂N,

d′(A) ≤ d(A) ≤ d(A) ≤ d′(A).

Two weighted densities are called comparable if one of them is stronger than the other
(see [3]). It is known that the logarithmic density is weaker than the asymptotic one. More
generally, all of the nα-densities, where α ≥ –1, are comparable, namely if –1 ≤ α < β then
nα-density is weaker than nβ -density.

We say that the weighted density d extends the weighted density d′ if every set A ⊂ N

that possesses density d′, also possesses density d and d(A) = d′(A). Clearly, if d′ is stronger
than d, then d extends d′. If one weighted density extends the other one and vice-versa,
then the two densities are said to be equivalent.

The weighted densities d and d′ are strongly equivalent if for every set A ⊂N there holds
d(A) = d′(A). Of course, then d(A) = d′(A).

Kuipers and Niederreiter [4] observed that all the nα-densities with α > –1 are equiva-
lent to each other. The main tool to compare weighted densities (e.g., see [3, 5–8]) is the
classical result of Rajagopal (cf. [9], Theorem 3) which, in terms of weighted densities,
states the following.

Theorem 1 Let f , g : N → (0,∞) be Erdős–Ulam functions. If function f (n)
g(n) is decreasing

then dg is stronger than df .

The following sufficient condition is found in Hardy [10] (see also [4]).

Theorem 2 If function f (n)
g(n) is increasing and function f (n)Sg (n)

g(n)Sf (n) is bounded then the f -density
extends the g-density.

A survey on weighted densities and their connection with the first digit problem is given
in [11]. It is proved that if f (n) ∼ g(n) as n → ∞, then the corresponding f -density and
g-density are strongly equivalent.

Consider the following sequence of functions

f0(n) = 1,

fk(n) = f ∗
k–1(n) ∼ 1

∏k–1
j=0 ln[j] n

for k ≥ 1,

where ln[0] n = n and ln[j+1] n = ln ln[j] n. Then, from [12] it follows that for every k ≥ 1,
function fk is an Erdős–Ulam function and the corresponding fk+1-density strictly extends
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the fk-density. As a consequence of a more general theorem in [12], we have the fact that
for arbitrary real numbers

0 ≤ α0 ≤ α1 ≤ α2 ≤ · · · ≤ β2 ≤ β1 ≤ β0 ≤ 1

there exists an A ⊂N such that

df0 (A) = α0, df1 (A) = α1, . . . , df1 (A) = β1, df0 (A) = β0.

2 New results
In this paper we study the relations between the weighted densities defined by Erdős–
Ulam functions f (n) and g(n). We show that the relation between f -density and g-density
mainly depends on the asymptotic behavior of the function

f ∗(n)
g∗(n)

=
f (n)

Sf (n)
g(n)

Sg (n)

=

f (n)∑n
j=1 f (j)

g(n)∑n
j=1 g(j)

.

We prove the following results, depending on the asymptotic behavior of the function
f ∗(n)
g∗(n) .

• If f ∗(n)
g∗(n) → 1, then the df -density and dg -density are strongly equivalent.

• If f ∗(n)
g∗(n) → p > 1, then the f -density is stronger than the g-density and for every A ⊂N

we give the best possible bounds for df (A) and df (A) in terms of dg(A), dg(A).
• If f ∗(n)

g∗(n) → ∞ and moreover f (n) and g(n) are monotone then for arbitrary real
numbers 0 ≤ α ≤ β ≤ γ ≤ δ ≤ 1 there exists an A ⊂N such that

df (A) = α, dg(A) = β , dg(A) = γ , df (A) = δ.

3 Properties of Erdős–Ulam functions
In this section we present several general properties of Erdős–Ulam functions that we will
use later in the proofs.

From (2) it follows that each Erdős–Ulam function f satisfies

Sf (n)
Sf (n + 1)

= 1 – f ∗(n + 1) → 1 as n → ∞. (4)

Similarly, we obtain

f (n + 1)
Sf (n)

=
f (n + 1)

Sf (n + 1)(1 – f (n+1)
Sf (n+1) )

∼ f (n + 1)
Sf (n + 1)

= f ∗(n + 1) → 0. (5)

Using the backward difference operator

(∇ϕ)(n) = ϕ(n) – ϕ(n – 1),

together with (2) and (5) we obtain

∇ ln Sf (n) = ln
Sf (n)

Sf (n – 1)
= ln

(
1 +

f (n)
Sf (n – 1)

)
∼ f ∗(n). (6)
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Lemma 1 Let f be an Erdős–Ulam function and A ⊂N. Then, for every n > 1

∣∣FA(n) – FA(n – 1)
∣∣ ≤ f ∗(n).

Proof This inequality immediately follows from the following identity

FA(n) – FA(n – 1) =
∑n–1

k=1 f (k)χA(k) + f (n)χA(n)
∑n–1

k=1 f (k) + f (n)
–

∑n–1
k=1 f (k)χA(k)
∑n–1

k=1 f (k)

=
f (n)(χA(n)

∑n–1
k=1 f (k) –

∑n–1
k=1 f (k)χA(k))

∑n
k=1 f (k)

∑n–1
k=1 f (k)

= f ∗(n)
(
χA(n) – FA(n – 1)

)

and from the fact that |χA(n) – FA(n – 1)| ≤ 1. �

4 The case f∗(n)
g∗(n) → p > 1

In [13] it was proved that for Erdős–Ulam functions f (n), g(n) satisfying

lim
n→∞

f ∗(n)
g∗(n)

= p > 1 (7)

the f -density is stronger than the g-density. Inequalities between upper and lower
weighted densities of the type np (p > –1) were proved in [5]. For example, let A ⊂ N

be such that

d1(A) = β < γ = d1(A).

Then, for p > 1 for the lower np–1-density of the set A we have

βp

γ p–1 ≤ dp–1(A) ≤ β .

The purpose of this section is to generalize this type of result. Note, in the case f (n) = np–1,
g(n) = 1, p > 1 there holds f ∗(n)

g∗(n) → p.
The following lemmas will be used in the proof of Theorem 3.

Lemma 2 Assume that f and g are Erdős–Ulam functions satisfying (7). Then, for every
set A ⊂N we have the following inequalities.

df (A) ≤ dg(A) ≤ dg(A) ≤ df (A). (8)

Proof See Theorem 3.2 of [13]. �

Lemma 3 Assume that f and g are Erdős–Ulam functions satisfying (7). Then, for arbi-
trary ε ∈ (0, p) there is N1(ε) such that for every m > n ≥ N1(ε) we have

(
Sg(m)
Sg(n)

)p–ε

<
Sf (m)
Sf (n)

<
(

Sg(m)
Sg(n)

)p+ε

.
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Proof Let ε ∈ (0, p). Then, from (6) and (7) it follows that

lim
n→∞

∇ ln Sf (n)
∇ ln Sg(n)

= p

and hence there is N1(ε) such that for every k ≥ N1(ε)

∇ ln Sf (k)
∇ ln Sg(k)

∈ (p – ε, p + ε).

Then, for every m > n ≥ N1(ε)

ln
Sf (m)
Sf (n)

ln
Sg (m)
Sg (n)

=
ln Sf (m) – ln Sf (n)
ln Sg(m) – ln Sg(n)

=
∑m

k=n+1 ∇ ln Sf (k)∑m
k=n+1 ∇ ln Sg(k)

∈ (p – ε, p + ε)

by the mediant inequality. The result follows by exponentiation of this equation. �

Lemma 4 Assume that f and g are Erdős–Ulam functions satisfying (7). Let A ⊂ N be a
set such that dg(A) = β > 0 and dg(A) = γ > 0. Let ε > 0 be given by

1 + ε + ε2 < p. (9)

Denote

tε = (1 + ε)2pγ p–1+ε .

Then, there is N2 such that for every n ≥ N2 we have

GA(n)p+ε < tεFA(n). (10)

Proof Let ε > 0 satisfying (9) be given. Then, there is N3 such that for every n ≥ N3

GA(n) < γ (1 + ε). (11)

From (2), (7), and the fact that

f (n+1)
Sf (n)

g(n+1)
Sg (n)

=
f ∗(n + 1)
g∗(n + 1)

· 1 – g∗(n + 1)
1 – f ∗(n + 1)

we obtain that there in N4 ≥ N3 such that for every n ≥ N4 we have

f (n + 1)
Sf (n)

>
(
p – ε2)g(n + 1)

Sg(n)
. (12)

From lim infn→∞ GA(n) = dg(A) > 0 and from (5) for function g we obtain that

g(n + 1)
GA(n)Sg(n)

→ 0
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and hence there is N5 ≥ N4 such that for every n ≥ N5

g(n + 1)
GA(n)Sg(n)

< (1 + ε)
1

p–1+ε – 1. (13)

Now, Lemma 2 implies that

0 < dg(A) = lim sup
n→∞

GA(n) ≤ lim sup
n→∞

FA(n) = df (A)

and hence there are infinitely many integers nk ≥ N5 such that

GA(nk) < (1 + ε)2FA(nk).

For such numbers we have

GA(nk)p+ε = GA(nk)p–1+εGA(nk) <
(
γ (1 + ε)

)p–1+ε(1 + ε)2FA(nk)

= γ p–1+ε(1 + ε)p+1+εFA(nk)

< γ p–1+ε(1 + ε)2pFA(nk) = tεFA(nk),

i.e., (10) holds for every nk .
Take k0 such that nk0 ≥ max{N5, N1(ε)} where N1(ε) is given by Lemma 3, and denote

N2 = nk0 . We will finish the proof by proving that (10) holds for every n ≥ N2.
Hence, we assume that (10) holds for some n ≥ N2 and we prove that it holds for n + 1.
From the second inequality in Lemma 3 we obtain

(
Sg(n)

Sg(n + 1)

)p+ε

<
Sf (n)

Sf (n + 1)
. (14)

Now, consider two cases.
1. First assume that n + 1 /∈ A. Then,

GA(n + 1) =
GA(n)Sg(n)

Sg(n + 1)
and FA(n + 1) =

FA(n)Sf (n)
Sf (n + 1)

.

Using this and (14) multiplied by (10) we obtain

GA(n + 1)p+ε =
(

GA(n)Sg(n)
Sg(n + 1)

)p+ε

< tε
FA(n)Sf (n)
Sf (n + 1)

= tεFA(n + 1),

i.e., (10) holds for n + 1.
2. Now, assume that n + 1 ∈ A. Then,

FA(n + 1) =
FA(n)Sf (n) + f (n + 1)

Sf (n + 1)
=

Sf (n)
Sf (n + 1)

(
FA(n) +

f (n + 1)
Sf (n)

)
(15)

and similarly

GA(n + 1)p+ε =
(

Sg(n)
Sg(n + 1)

)p+ε(
GA(n) +

g(n + 1)
Sg(n)

)p+ε

. (16)
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Consider the function

h(x) = 1 + (1 + ε)(p + ε)x – (1 + x)p+ε .

We have h(0) = 0 and h′(x) > 0 for x ∈ (0, (1 + ε)
1

p–1+ε – 1). Hence,

h(x) > 0 for x ∈ (
0, (1 + ε)

1
p–1+ε – 1

)
.

From (13) we obtain that

1 + (1 + ε)(p + ε)
g(n + 1)

GA(n)Sg(n)
–

(
1 +

g(n + 1)
GA(n)Sg(n)

)p+ε

= h
(

g(n + 1)
GA(n)Sg(n)

)
> 0,

hence

1 + (1 + ε)(p + ε)
g(n + 1)

GA(n)Sg(n)
>

(
1 +

g(n + 1)
GA(n)Sg(n)

)p+ε

. (17)

Inequality (9) is equivalent with

(1 + ε)
(
p – ε2) > p + ε. (18)

From (11) we have

tε = (1 + ε)2pγ p–1+ε > (1 + ε)2((1 + ε)γ
)p–1+ε > (1 + ε)2GA(n)p–1+ε . (19)

Now from (10), (12), (18), (19), and (17) multiplied by GA(n)p+ε we obtain

tεFA(n) + tε
f (n + 1)

Sf (n)
> GA(n)p+ε + tε

f (n + 1)
Sf (n)

> GA(n)p+ε + tε
(
p – ε2)g(n + 1)

Sg(n)

> GA(n)p+ε + (1 + ε)2(p – ε2)GA(n)p–1+ε g(n + 1)
Sg(n)

> GA(n)p+ε + (1 + ε)(p + ε)GA(n)p–1+ε g(n + 1)
Sg(n)

>
(

GA(n) +
g(n + 1)

Sg(n)

)p+ε

. (20)

Finally, from (15), from (14) multiplied by (20), and from (16) we obtain

tεFA(n + 1) =
Sf (n)

Sf (n + 1)

(
tεFA(n) + tε

f (n + 1)
Sf (n)

)

>
(

Sg(n)
Sg(n + 1)

)p+ε(
GA(n) +

g(n + 1)
Sg(n)

)p+ε

= GA(n + 1)p+ε ,

i.e., (10) holds for n + 1. �
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In what follows, we are looking for bounds for df (A), df (A), knowing the values dg(A)
and dg(A) and under the restriction (7).

Theorem 3 Assume that f and g are Erdős–Ulam functions satisfying (7) and let A ⊂ N.
Then,

1) in the case dg(A) > 0 we have

df (A) ≥ dg(A)p

dg(A)p–1
, (21)

2) in the case dg(A) < 1 we have

df (A) ≤ 1 –
(1 – dg(A))p

(1 – dg(A))p–1 . (22)

Proof First, we prove part 1. If dg(A) = 0 then (21) is satisfied as the right-hand side of (21)
is zero.

Hence, assume dg(A) > 0. Then, for every ε > 0 with 1 + ε + ε2 < p, Lemma 4 implies

df (A) = lim inf
n→∞ FA(n) ≥ lim inf

n→∞
GA(n)p+ε

tε

=
dg(A)p+ε

(1 + ε)2pdg(A)p–1+ε
=

1
(1 + ε)2p

(dg(A)

dg(A)

)p+ε

dg(A).

From this we obtain

df (A) ≥ lim sup
ε→0+

1
(1 + ε)2p

(dg(A)

dg(A)

)p+ε

dg(A) =
dg(A)p

dg(A)p–1
.

Part 2 follows from part 1 applied to the set N \ A, using the complementary property
(3). �

Theorem 3 has the following immediate consequence.

Corollary 1 Assume that f and g are Erdős–Ulam functions satisfying (7). Then, the den-
sities df and dg are equivalent.

Proof This follows from inequalities (8), (21), and (22). �

Corollary 2 Assume that f and g are Erdős–Ulam functions satisfying (7) and let A ⊂ N.
Then, we have

1. df (A) = 0 if and only if dg(A) = 0,
2. df (A) = 1 if and only if dg(A) = 1.

Proof This follows from inequalities (8), (21), and (22). �

Next, we show that the bounds (21) and (22) are essentially the best possible.
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Theorem 4 Assume that f and g are Erdős–Ulam functions satisfying (7). Let numbers
α, β , γ , δ be given so that

0 ≤ α ≤ β ≤ γ ≤ δ ≤ 1 (23)

with

α ≥ βp

γ p–1 if γ > 0, (24)

and with

1 – δ ≥ (1 – γ )p

(1 – β)p–1 if β < 1. (25)

Then, there exists a set A ⊂ N such that

df (A) = α, dg(A) = β , dg(A) = γ , df (A) = δ.

In the case γ = 0, inequalities (23) imply that we have α = 0 instead of (24). Similarly, in
the case β = 1, inequalities (23) imply that we have δ = 1 instead of (25).

Lemma 5 Let f be an Erdős–Ulam function and L < M be positive integers. Assume that
T , U ⊂N satisfy χT (n) = χU (n) for every n with L < n ≤ M. Then, for every n with L < n ≤ M
we have

FT (n) ≥ min
{

FU (n), FU (n) + FT (L) – FU (L)
}

,

FT (n) ≤ max
{

FU (n), FU (n) + FT (L) – FU (L)
}

.

Proof See Lemma 3 in [12]. �

Lemma 6 Let f be an Erdős–Ulam function. Then, for every α ∈ [0, 1] there is a set T ⊂N

such that df (T) = α.

Proof This immediately follows from Proposition 1 of [14]. �

Proof of Theorem 4 In the case that β = γ we have from (23), (24), and (25) that α = β =
γ = δ. By Lemma 6 there exists a set A ⊂N such that df (A) = α. For such a set by Lemma 2
we have dg(A) = α and we are done.

Hence, in the rest of the proof assume that β < γ .
To generate the set A, we construct two sequences of sets with different weighted den-

sities, and then we interleave them. First, take sequences of real numbers βi, γi for i ≥ 0,
such that

β < βi < γi < γ

such that

lim
i→∞βi = β , lim

i→∞γi = γ .
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Put

si =

⎧
⎨

⎩

p–1
√

β
p
i
α

if α �= 0,

βi if α = 0
and ri =

⎧
⎨

⎩
1 – p–1

√
(1–γi)p

1–δi
if δ �= 1,

γi if δ = 1.
(26)

According to (24)

α < βi ≤ si and β ≤ lim
i→∞ si ≤ γ (27)

and from (25)

ri ≤ γi < δ and β ≤ lim
i→∞ ri ≤ γ . (28)

Again, by Lemma 6 there exist sets Bi and Ci of positive integers such that

df (Bi) = si and df (Ci) = ri. (29)

Note that by (8) in this case

dg(Bi) = si and dg(Ci) = ri. (30)

As the limits (29) and (30) exist, for every ε > 0 there are numbers N6(i, ε), such that

si – ε < FBi (n) < si + ε,

ri – ε < FCi (n) < ri + ε,

si – ε < GBi (n) < si + ε,

ri – ε < GCi (n) < ri + ε

for every n > N6(i, ε).
As f is an Erdős–Ulam function, from limit (2) we obtain that for every ε > 0 there is a

number N7(ε) such that for every k ≥ N7(ε) we have f ∗(k) < ε.
Let (εi) be a decreasing sequence tending to 0 with

εi < min

{
βi – α

2
,
δ – γi

2

}
. (31)

We will define inductively the sequence (nl) and the set A ⊂N by

A =
∞⋃

i=0

(((n4i, n4i+1] ∩ Bi) ∪ ((n4i+1, n4i+2] ∩ ∅)

∪ ((n4i+2, n4i+3] ∩ Ci) ∪ (
(n4i+3, n4i+4] ∩N)

)
.

(We take a sufficiently large section of Bi on interval (n4i, n4i+1] such that FA(n4i+1) and
GA(n4i+1) are close to si. The interval (n4i+1, n4i+2] is as short as possible such that at
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its end, fA(n4i+2) is close to α. It is followed by a sufficiently long section of Ci on in-
terval (n4i+2, n4i+3] such that FA(n4i+3) and GA(n4i+3) are close to ri. Finally, the interval
(n4i+3, n4i+4] is as short as possible such that at its end, FA(n4i+4) is close to δ.)

For n ∈N we denote Dn = A ∩ [1, n].
Suppose that we have already fixed the numbers n0 = 0, n1, . . . , n4i. We give the construc-

tion of the next four terms of the sequence (nl):
• n4i+1: Although we do not know the set A yet, the set Dn4i is well defined and already

known. From (29) we obtain

lim
u→∞ FDn4i ∪((n4i ,u]∩Bi)(u) = lim

u→∞ FBi (u) = si (32)

and similarly from (30) we obtain

lim
u→∞ GDn4i ∪((n4i ,u]∩Bi)(u) = lim

u→∞ GBi (u) = si. (33)

Take n4i+1 to be the smallest integer satisfying

n4i+1 ≥ max
{

n4i + 1, N1(εi), N6(i, εi), N7(εi)
}

, (34)

si – εi < FDn4i ∪((n4i ,n4i+1]∩Bi)(n4i+1) < si + εi, (35)

si – εi < GDn4i ∪((n4i ,n4i+1]∩Bi)(n4i+1) < si + εi, (36)

where N1(ε) is given by Lemma 3. Such a number n4i+1 exists by (32) and (33).
• n4i+2: Although we do not know the set A yet, the set Dn4i+1 is well defined and already

known. Obviously,

lim
u→∞ FDn4i+1 ∪((n4i+1,u]∩∅)(u) = 0. (37)

Take n4i+2 to be the smallest integer satisfying

n4i+2 > n4i+1,

FDn4i+1 ∪((n4i+1,n4i+2]∩∅)(n4i+2) < α + εi.

Such a number n4i+2 exists by (27), (31), (35), and (37).
Since n4i+2 > N7(εi) then by Lemma 1

α < FDn4i+1 ∪((n4i+1,n4i+2]∩∅)(n4i+2) < α + εi. (38)

• n4i+3: Although we do not know the set A yet, the set Dn4i+2 is well defined and already
known. From (29) we obtain

lim
u→∞ FDn4i+2 ∪((n4i+2,u]∩Ci)(u) = lim

u→∞ FCi (u) = ri (39)

and similarly from (30) we obtain

lim
u→∞ GDn4i+2 ∪((n4i+2,u]∩Ci)(u) = lim

u→∞ GCi (u) = ri. (40)
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Take n4i+3 to be the smallest integer satisfying

n4i+3 ≥ max
{

n4i+2 + 1, N6(i + 1, εi+1)
}

, (41)

ri – εi < FDn4i+2 ∪((n4i+2,n4i+3]∩Ci)(n4i+3) < ri + εi, (42)

ri – εi < GDn4i+2 ∪((n4i+2,n4i+3]∩Ci)(n4i+3) < ri + εi. (43)

Such a number n4i+3 exists by (39) and (40).
• n4i+4: Although we do not know the set A yet, the set Dn4i+3 is well defined and already

known. Obviously,

lim
u→∞ FDn4i+3 ∪((n4i+3,u]∩N)(u) = 1. (44)

Take n4i+4 to be the smallest integer satisfying

n4i+4 > n4i+3,

FDn4i+3 ∪((n4i+3,n4i+4]∩N)(n4i+4) > δ – εi.

Such a number n4i+2 exists by (28), (31), (42), and (44).
Since n4i+2 > N7(εi) then by Lemma 1

δ – εi < FDn4i+3 ∪((n4i+3,n4i+4]∩N)(n4i+4) < δ. (45)

Now, we know the set A completely and we can rewrite conditions (35), (36), (38), (42),
(43), and (45) equivalently in a simpler way as

si – εi < FA(n4i+1) < si + εi, (46)

si – εi < GA(n4i+1) < si + εi, (47)

α < FA(n4i+2) < α + εi, (48)

ri – εi < FA(n4i+3) < ri + εi, (49)

ri – εi < GA(n4i+3) < ri + εi, (50)

δ – εi < FA(n4i+4) < δ. (51)

We will show that

lim
i→∞ GA(n4i+2) = β , (52)

lim
i→∞ GA(n4i+4) = γ . (53)

In proving (52), we will consider two cases.
• If α > 0, then by Lemma 3 and (34)

GA(n4i+2) =
GA(n4i+1)Sg(n4i+1)

Sg(n4i+2)
< GA(n4i+1)

(
Sf (n4i+1)
Sf (n4i+2)

) 1
p+εi
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= GA(n4i+1)
( FA(n4i+1)Sf (n4i+1)

Sf (n4i+2) )
1

p+εi

(FA(n4i+1))
1

p+εi

= GA(n4i+1)
(

FA(n4i+2)
FA(n4i+1)

) 1
p+εi

.

By (46), (47), and (48)

GA(n4i+2) <
(si + εi)

(si – εi)
1

p+εi

(α + εi)
1

p+εi . (54)

Similarly, we can show that

GA(n4i+2) >
(si – εi)

(si + εi)
1

p–εi

α
1

p–εi . (55)

According to (26)

lim
i→∞

(si + εi)

(si – εi)
1

p+εi

(α + εi)
1

p+εi = lim
i→∞ s

p–1
p

i α
1
p

= lim
i→∞

((
β

p
i

α

) 1
p–1

) p–1
p

α
1
p = lim

i→∞βi = β

and

lim
i→∞

(si – εi)

(si + εi)
1

p–εi

α
1

p–εi = β .

Then, (54) and (55) imply (52).
• If α = 0, then also β = 0 by Corollary 2. Obviously,

0 < GA(n4i+2) < GA(n4i+1) < si + εi = βi + εi.

Since limi→∞ βi = β = 0 then,

lim
i→∞ GA(n4i+2) = 0 = β .

Similarly in proving (53), we will consider two cases.
• If δ < 1, then by Lemma 3 and (41)

GA(n4i+4) =
GA(n4i+3)Sg(n4i+3) + Sg(n4i+4) – Sg(n4i+3)

Sg(n4i+4)

= 1 –
(
1 – GA(n4i+3)

)Sg(n4i+3)
Sg(n4i+4)

< 1 –
(
1 – GA(n4i+3)

)(Sf (n4i+3)
Sf (n4i+4)

) 1
p–εi
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= 1 –
(1 – GA(n4i+3))

(1 – FA(n4i+3))
1

p–εi

(
(1 – FA(n4i+3))Sf (n4i+3)

Sf (n4i+4)

) 1
p–εi

= 1 –
(
1 – GA(n4i+3)

)(1 – FA(n4i+4)
1 – FA(n4i+3)

) 1
p–εi

.

By (49), (50), and (51)

GA(n4i+4) < 1 –
1 – ri – εi

(1 – ri + εi)
1

p–εi

(1 – δ)
1

p–εi . (56)

Similarly, we can show that

GA(n4i+4) > 1 –
1 – ri + εi

(1 – ri – εi)
1

p+εi

(1 – δ + εi)
1

p+εi . (57)

According to (26)

lim
i→∞

(
1 –

1 – ri – εi

(1 – ri + εi)
1

p–εi

(1 – δ + εi)
1

p–εi

)

= 1 – lim
i→∞(1 – ri)

p–1
p (1 – δ)

1
p

= 1 – lim
i→∞

((
(1 – γi)p

1 – δ

) 1
p–1

) p–1
p

(1 – δ)
1
p = lim

i→∞γi = γ

and

lim
i→∞ 1 –

1 – ri + εi

(1 – ri – εi)
1

p+εi

(1 – δ + εi)
1

p+εi = γ .

Then, (56) and (57) imply (53).
• If δ = 1, then also γ = 1 by Corollary 2. Obviously,

1 > GA(n4i+4) > GA(n4i+3) > ri – εi = γi – εi.

Since limi→∞ γi = γ = 1 then,

lim
i→∞ GA(n4i+4) = 1.

Hence, we can proceed to calculate the lower and upper weighted densities of A. On
intervals [n4i+1, n4i+2] and [n4i+3, n4i+4] the functions FA(n) and GA(n) are monotone. For
u ∈ (n4i+2, n4i+3], condition (34) and Lemma 5 with T = A and U = Ci imply that

GA(u) ≥ min
{

GCi (u), GCi (u) + GA(n4i+2) – GCi (n4i+2)
}

≥ min
{

ri – εi, GA(n4i+2) – 2εi
}

,

hence, by (48) we have

lim inf
u→∞

u∈⋃∞
i=0(n4i+2,n4i+3]

GA(u) ≥ lim inf
i→∞ min{ri,β} = β .
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Similarly,

GA(u) ≤ max
{

GCi (u), GCi (u) + GA(n4i+2) – GCi (n4i+2)
}

≤ max
{

ri + εi, GA(n4i+2) + 2εi
}

,

and

lim sup
u→∞

u∈⋃∞
i=0(n4i+2,n4i+3]

GA(u) ≤ lim sup
i→∞

max{ri,β} ≤ γ .

In the same way we can prove that

β ≤ lim inf
u→∞

u∈⋃∞
i=0(n4i ,n4i+1]

GA(u) ≤ lim sup
u→∞

u∈⋃∞
i=0(n4i ,n4i+1]

GA(u) ≤ γ ,

α ≤ lim inf
u→∞

u∈⋃∞
i=0(n4i+2,n4i+3]

FA(u) ≤ lim sup
u→∞

u∈⋃∞
i=0(n4i+2,n4i+3]

FA(u) ≤ δ,

α ≤ lim inf
u→∞

u∈⋃∞
i=0(n4i ,n4i+1]

FA(u) ≤ lim sup
u→∞

u∈⋃∞
i=0(n4i ,n4i+1]

FA(u) ≤ δ.

As a consequence, to calculate the densities it is sufficient to consider the functions FA(n)
and GA(n) only in numbers n4i+2 and n4i+4. By (48), (51), (52), and (53)

lim
i→∞ FA(n4i+2) = α, lim

i→∞ FA(n4i+4) = δ,

lim
i→∞ GA(n4i+2) = β , lim

i→∞ GA(n4i+4) = γ .

This concludes the proof. �

5 The case f∗(n)
g∗(n) → 1

Theorem 5 Assume that f and g are Erdős–Ulam functions satisfying

lim
n→∞

f ∗(n)
g∗(n)

= 1. (58)

Then, the densities df and dg are strongly equivalent.

Proof We have to prove that for every set A ⊂ N we have df (A) = dg(A). For a contradic-
tion, suppose without loss of generality that there is some set A ⊂ N such that df (A) = α

and dg(A) = β for some 0 ≤ α < β ≤ 1.
Take p > 1 such that βp > α. Such a p exists because of continuity. Construct a function

h : N →R
+ by

h(1) = 1,

h(n) = Sg(n)p – Sg(n – 1)p for n ≥ 2.
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It follows that Sh(n) = Sg(n)p, hence,

lim
n→∞ Sh(n) = lim

n→∞ Sg(n)p = ∞

and limit (2) for function g implies that

lim
n→∞ h∗(n) = lim

n→∞
Sg(n)p – Sg(n – 1)p

Sg(n)p = lim
n→∞

(
1 –

(
1 – g∗(n)

)p) = 0.

Thus, h is an Erdős–Ulam function. Using l’Hospital’s rule we obtain

lim
n→∞

h∗(n)
g∗(n)

= lim
n→∞

1 – (1 – g∗(n))p

g∗(n)
= p. (59)

Theorem 3 implies that the corresponding weighted density dh satisfies

dh(A) ≥ dg(A)p

dg(A)p–1
≥ dg(A)p = βp > α. (60)

On the other hand, from (58) and (59) we obtain

lim
n→∞

h∗(n)
f ∗(n)

= p

and Lemma 2 with (60) imply that

dh(A) ≤ df (A) = α,

a contradiction. �

6 The case f∗(n)
g∗(n) → ∞

Let us consider the following example from [12]. Let f (n) = 2 + (–1)n and g(n) = 1
n , n =

1, 2, . . . . Then, f ∗(n)
g∗(n) → ∞ as n → ∞, but df (2N) = 3

4 and dg(2N) = 1
2 . Consequently, df and

dg are not comparable densities.
In what follows we shall consider Erdős–Ulam functions that are monotone. We call

an Erdős–Ulam function f regular if the corresponding weighted density fulfils the con-
dition that for arbitrary positive integers a, b we have df (aN + b) = 1

a (f -density of the
terms of arbitrary infinite arithmetical progression with the same difference are equal).
It is not difficult to show that a monotone Erdős–Ulam function is regular (see, e.g., [5],
Example 2.1).

The independence (within admissible bounds) of the asymptotic and logarithmic den-
sities was proved in [15] and [16], by showing that for any given real numbers 0 ≤ α ≤ β ≤
γ ≤ δ ≤ 1 there exists a set A ⊂ N such that

d1(A) = α, d 1
n

(A) = β , d 1
n

(A) = γ , d1(A) = δ.

We generalize this result.
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Theorem 6 Let monotone Erdős–Ulam functions f and g satisfy the condition f ∗(n)
g∗(n) → ∞

as n → ∞. Then, for any given real numbers

0 ≤ α ≤ β ≤ γ ≤ δ ≤ 1

there exists a set A ⊂ N such that

df (A) = α, dg(A) = β , dg(A) = γ , df (A) = δ.

Proof By Theorem 1 from [17] it is sufficient to consider only the “worst” case, i.e., it is
sufficient to show the existence of an A ⊂N, for that

df (A) = 0, df (A) = 1, dg(A) = 0.

Using (6), it can be showed by the Stolz–Cesàro theorem that under the assumption of the
theorem ln Sf (n)

ln Sg (n) → ∞ as n → ∞. This is equivalent to

Sf (n) = Sg(n)ψ(n), where ψ(n) → ∞ as n → ∞. (61)

Let (εi) be a decreasing sequence that tends to 0, where ε1 < 1. Now, we define inductively
the sequence

n1 < m1 < n2 < m2 < · · ·

and the set A by

A =
∞⋃

i=1

(ni, mi] ∩N. (62)

Let n1 = 0 and let m1 be some positive integer such that Sg(m1) ≥ 1. Suppose that we have
already fixed the numbers ni–1, mi–1, where i ≥ 2.

Choose a positive integer ni > mi–1 such that (63)–(66) hold

Sf (mi–1)
Sf (ni)

< ε2
i ,

Sg(mi–1)
Sg(ni)

< ε2
i , (63)

1 – εi < ψ(ni)
√

εi – ε2
i . (64)

Further, for all k ≥ ni

ψ(k) ≥ ψ(ni), (65)

Sf (k)
Sf (k + 1)

> 1 – εi. (66)

The existence of such a number ni follows from (1), (4), and (61).
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Now, let mi be the smallest positive integer with mi > ni and

εi – ε2
i <

Sf (ni)
Sf (mi)

< εi. (67)

The existence of such a number mi follows from (1) and (66).
In the following, we prove that the set A we have created by (62) has the desired lower

and upper weighted densities. From (63) we directly obtain

df (A) = dg(A) = 0.

From (67) we obtain

1 ≥ df (A) ≥ lim sup
i→∞

∑mi
j=1 f (j)χA(j)
Sf (mi)

≥ lim sup
i→∞

Sf (mi) – Sf (ni)
Sf (ni)

≥ lim
i→∞(1 – εi) = 1.

In order to prove dg(A) = 0 we estimate the values GA(mi). From (65) we obtain ψ(mi) ≥
ψ(ni) and with (61) and (67) this implies that

(
Sg(ni)
Sg(mi)

)ψ(ni)

≥ Sg(ni)ψ(ni)

Sg(mi)ψ(mi)
=

Sf (ni)
Sf (mi)

> εi – ε2
i .

From this, according to (64) we have

Sg(ni)
Sg(mi)

> 1 – εi. (68)

From (63) and (68) we obtain

GA(mi) ≤ Sg(mi–1) + Sg(mi) – Sg(ni)
Sg(mi)

< ε2
i + 1 – (1 – εi) = ε2

i + εi,

which implies that

dg(A) = lim sup
i→∞

GA(mi) ≤ lim sup
i→∞

(
ε2

i + εi
)

= 0

and this concludes the proof. �

Remark 1 Let us define

Sfk (n) = e
k√ln n, k = 1, 2, . . .

and by them the Erdős–Ulam functions fk(n). Putting gk(x) = k√ln x we obtain

g ′
k(x) =

1

kx(ln x)1– 1
k
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and the Lagrange mean value theorem implies that

f ∗
k (n) = 1 –

Sfk (n – 1)
Sfk (n)

= 1 – egk (n–1)–gk (n) = 1 – e–g′
k (ξk,n)

∼ g ′
k(ξk,n) ∼ g ′

k(n) =
1

kn(ln n)1– 1
k

, (69)

where ξk,n ∈ (n – 1, n). It follows from Rajagopal’s result that dfk is stronger than dfk+1 for
any k. Since f ∗

k (n)
f ∗
k+1(n) → ∞ as n → ∞ by Theorem 4 it follows that the weight density dfk

is not equivalent to dfk+1 . Note that df1 corresponds to the asymptotic density. For the
logarithmic density d 1

n
we have

(
1
n

)∗
∼ 1

n ln n

and from (69) it follows that each of the densities dfk is stronger than the logarithmic
density. Hence, between the asymptotic density and the logarithmic one there are infinitely
many dfk (k = 2, 3, . . . ) densities, each of them is stronger than the logarithmic density and
weaker than the asymptotic density.
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