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1 Introduction
Denote by N the set of positive integers. Let x4 denote the characteristic function for a
given subset A C N. Weighted densities were studied in [1] and [2], where a generalization
of both asymptotic and logarithmic densities was provided.

We call a positive function f: N — R* an Erddés—Ulam function if it satisfies f(1) = 1,

S/ = o0, (1)
n=1

and

nli“;of *(n) =0, where f*(n) = S 2)

XS0

With respect to an Erd6s—Ulam function f (n) the weighted densities are defined as follows.
For A C N denote

Z]n:lf(]) - xa(j)

Fy(n) = )

» where S¢(n) = Zf(])

j=1
Clearly, 0 < F4(n) < 1. Now, we define the lower and upper f-densities of A by

d(A) =liminfF4(n) and dp(A) = limsup F (),

n—00

respectively. In the case when d,(A) = dr(A) we say that A possesses the f-density ds(A).
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The symbols G4(n), S,(n), o_ig(A), Eg(A), and d4(A) will have analogous meanings, with
respect to Erdés—Ulam function g(n).

Note that the asymptotic density corresponds to f(n) = 1, while the logarithmic density
corresponds to f(n) = % Also, note that for every weighted density dr and every set A C N
we have the complementary property

dr(A)=1-d,(N\ A). 3)

The weighted density d’ is called stronger than the weighted density d (d is weaker than
d') if, for any set A C N,

d'(A) <d(A) <d(A) <d'(A).

Two weighted densities are called comparable if one of them is stronger than the other
(see [3]). It is known that the logarithmic density is weaker than the asymptotic one. More
generally, all of the n®-densities, where « > —1, are comparable, namely if -1 < & < 8 then
n®-density is weaker than nf-density.

We say that the weighted density d extends the weighted density d’ if every set A C N
that possesses density d’, also possesses density d and d(A) = d'(A). Clearly, if 4’ is stronger
than d, then d extends d'. If one weighted density extends the other one and vice-versa,
then the two densities are said to be equivalent.

The weighted densities d and d' are strongly equivalent if for every set A C N there holds
d(A) = d'(A). Of course, then d(A) = d'(A).

Kuipers and Niederreiter [4] observed that all the n*-densities with « > —1 are equiva-
lent to each other. The main tool to compare weighted densities (e.g., see [3, 5-8]) is the
classical result of Rajagopal (cf. [9], Theorem 3) which, in terms of weighted densities,

states the following.

Theorem 1 Let f,g: N — (0,00) be Erdds—Ulam functions. If function % is decreasing
then dg is stronger than dy.
The following sufficient condition is found in Hardy [10] (see also [4]).

Fm)Sgl
Syl

Theorem 2 Iffunction QE—Z; is increasing and function ; is bounded then the f-density

extends the g-density.

A survey on weighted densities and their connection with the first digit problem is given
in [11]. It is proved that if f(n) ~ g(n) as n — o0, then the corresponding f-density and
g-density are strongly equivalent.

Consider the following sequence of functions

So(n) =1,

Ji(n) =i (n) ~ fork>1,

]_[1]:01 IV

where In” # = 7 and InV*Y % = InIn" 72. Then, from [12] it follows that for every k > 1,
function f; is an Erdés—Ulam function and the corresponding f.1-density strictly extends



Bukor et al. Journal of Inequalities and Applications (2022) 2022:146 Page 3 of 20

the fi-density. As a consequence of a more general theorem in [12], we have the fact that
for arbitrary real numbers

there exists an A C N such that
diA)=a)  diA)=ar, ...,  dy(A)=p,  dy(A)=fo

2 New results

In this paper we study the relations between the weighted densities defined by Erdés—
Ulam functions f(n) and g(n). We show that the relation between f-density and g-density
mainly depends on the asymptotic behavior of the function

fln) f(n)
i) 5 XLSO
gi(n) & T _ew -

500 Te0)

We prove the following results, depending on the asymptotic behavior of the function
[F(n)
gx(n)*

. If [
g*En

o If {;(n) — p > 1, then the f-density is stronger than the g-density and for every A C N

we give the best possible bounds for L_Zf(A) and Ef(A) in terms of 6_lg(A), Eg(A).
o If {; iEZ; — oo and moreover f(n) and g(n) are monotone then for arbitrary real
numbers 0 <o < 8 <y <8 <1 there exists an A C N such that

— 1, then the dy-density and d,-density are strongly equivalent.

dA)=0, dA)=p dA)=y, dl)=5.

3 Properties of Erd6s-Ulam functions
In this section we present several general properties of Erdds—Ulam functions that we will
use later in the proofs.

From (2) it follows that each Erdés—Ulam function f satisfies

S¢(n)

m:l—f*(n+l)—>1 as n — 00. (4)

Similarly, we obtain

f(n+1) fn+1) fn+1)
= ~ = 1 0. 5
Sy(n) Sp(n+1)(1 - sﬁfﬁfﬂ Sp(n+1) flns D)= ©)
Using the backward difference operator
(Vo) (n) = o(n) - p(n - 1),
together with (2) and (5) we obtain
= Sf(l’l) = ﬂ ~ f*
vlnSf(n)—lnm—1H(1+Sf(n_l)> f (}’1). (6)
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Lemma 1 Let f be an Erdds—Ulam function and A C N. Then, for every n>1
|Fa(n) = Fa(n = 1)| <f*(n).
Proof This inequality immediately follows from the following identity

>/ Dxak) + /) x A(n) 3SR xa k)
S Sk +f () i1 (&)

F)(a(n) i1 f k) = S5y £ () xa(K))
SrfR) S f (k)

=f*(n)(xa(n) — Fa(n - 1))

Fo(n) —Fa(n-1) =

and from the fact that | x4 (n) = Fa(n —1)| < 1. a

f*(n)
g*(n)
In [13] it was proved that for Erd6s—Ulam functions f(n), g(n) satisfying

4 The case

—>p>1

. fr(n)
Jgig%m

=p>1 (7)

the f-density is stronger than the g-density. Inequalities between upper and lower
weighted densities of the type #” (p > —1) were proved in [5]. For example, let A C N
be such that

di(A) =B <y =di(A).
Then, for p > 1 for the lower #”~!-density of the set A we have

‘BP

ypl——P1

(4) = B.

The purpose of this section is to generalize this type of result. Note, in the case f (1) = n?71,

g(n) =1, p > 1 there holds £ *( ) — p.
The following lemmas will be used in the proof of Theorem 3.

Lemma 2 Assume that f and g are Erdés—Ulam functions satisfying (7). Then, for every
set A C N we have the following inequalities.

d;(A) < d,(A) < dy(A) < df(A). 8)
Proof See Theorem 3.2 of [13]. O

Lemma 3 Assume that f and g are Erdds—Ulam functions satisfying (7). Then, for arbi-
trary € € (0,p) there is Ny () such that for every m > n > Ni(¢) we have

(Sg(M))’” Sy(m )< (Sg(m)>"+£
Sg(n) Sim) “\Sem) )
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Proof Let ¢ € (0,p). Then, from (6) and (7) it follows that

VlnSf(l/l)
im ———— =
n—00 VI S,(n)

and hence there is Nj (¢) such that for every k > N (¢)

VlnSf(k)
7V1n5g(k) ep-¢ep+e).

Then, for every m > n > Ni(¢)

Sy(m)
STy nSm) ~nSpm) Y7, VInSp(k) clp—s.p+5)
In fgi((j)) InS,(m) —InSy(n) Y7L, VInS,(k) ’

by the mediant inequality. The result follows by exponentiation of this equation. O

Lemma 4 Assume that f and g are Erdés—Ulam functions satisfying (7). Let A C N be a
set such that dg(A) =B>0and gg(A) =y >0. Let ¢ > 0 be given by

l+e+&’<p.

)

Denote
t, = (1 +¢&)2PyP 1+,

Then, there is Ny such that for every n > N, we have
Ga(n)P*® < t.Fa(n). (10)
Proof Let € > 0 satisfying (9) be given. Then, there is N3 such that for every n > Nj
Ga(n) <y +¢).

(11)
From (2), (7), and the fact that

Sp(n) _f*(n+ 1) . 1-g*(n+1)
- gn+1) 1-f*(n+1)
Sg(”)

we obtain that there in Ny > N3 such that for every n > N, we have

1 1
S+ D) > ( —ez)g(n * ). (12)
Sy(n) Sg(n)
From liminf,_, o G4(n) = c_ig (A) > 0 and from (5) for function g we obtain that

gn+1) N
Ga(n)Sg(n)

Page 5 of 20
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and hence there is N5 > Ny such that for every n > N5

gln+1)

W <(1+8)1m -1. (13)

Now, Lemma 2 implies that

0< Eg(A) =limsup G4 (n) < limsup F4(n) = Ef(A)

n—00 n—00

and hence there are infinitely many integers »n; > N5 such that
Ga(m) < (1 + )*Fa(ny).
For such numbers we have

Gl = Galm 1 Galme) < (y(1 + &))" (L+ )2 Fal)
A (S G TN

<yP V(1 + )P Fa(my) = t.Fa(ny),

i.e., (10) holds for every .
Take ko such that n, > max{Ns, Ni(e)} where N;(¢) is given by Lemma 3, and denote
N, = ny,. We will finish the proof by proving that (10) holds for every #n > N.
Hence, we assume that (10) holds for some # > N, and we prove that it holds for n + 1.
From the second inequality in Lemma 3 we obtain

Se(n) \P*  Sp(n)
(Sg(” + 1)) < Sp(n+1) (14)

Now, consider two cases.
1. First assume that 7 + 1 ¢ A. Then,

Ga(n)Sg(n) and Ey(n+1)= Fa(n)S¢(n)

Galn+ )=~ D TSN

Using this and (14) multiplied by (10) we obtain

= tEFA(n + 1))

Ga(n+1)P* = (M)IM <t Fa(m)S¢(m)

Se(n+1) ¢ Sp(n+1)

i.e., (10) holds for # + 1.
2. Now, assume that #n + 1 € A. Then,

F
Ean+1)=2

S e[ S0 (1 f(n+1)> 5)

Si+1)  Sn+1) TS

and similarly

e [ Sem) N\ gln+ 1)\
GA(W + 1)}7 = (W) (GA(I’I) + p ) . (16)

Page 6 of 20



Bukor et al. Journal of Inequalities and Applications (2022) 2022:146

Consider the function
h(x)=1+1+e&)(p+e)x—(1+x)*.
We have 4(0) = 0 and #'(x) > 0 for x € (0, (1 + S)ﬁ —1). Hence,
hx)>0 for xe(0,(1+e)7t 1),

From (13) we obtain that

g(n+1) g(VI+1) pte ) g(n+1)
1+(1+8)<”+8)W‘(“W) -h(m)“"

hence

gn+1) gm+1) \7*
1+(1+e)p+e) GaS,07) > (1 + GA(V!)Sg(")) .

Inequality (9) is equivalent with
(1 +8)(p—82) >p+e.
From (11) we have
te=1+e)2yP s (14 8)2((1 + 8))/)1771” > (1+¢6)2Ga(myP e,

Now from (10), (12), (18), (19), and (17) multiplied by G4 (n)?** we obtain

teFa(n) + tgf(s,;(:z)l) S Gan)y™ + tg%
i
>Gu(n)* +(1+e)(p- SZ)GA(V[)p_lJFS%
>Ga(n)fP + (1+e)(p+ g)GA(n)p—lJrsM
Sy(n)
g(n+ 1) pte
> (GA(n) + o) ) )

Finally, from (15), from (14) multiplied by (20), and from (16) we obtain

t.Fan+1)= Sy () (tEFA(n) + t€M>

Sp(n+1) S¢(n)
Se(n) \F** gln+ 1)\
’ (Sg<n+ 5) (G 507 )

=Gu(n+ 1)P*,

i.e., (10) holds for n + 1.

(17)

(18)

(19)

(20)

Page 7 of 20
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In what follows, we are looking for bounds for df(A), gf(A), knowing the values dg(A)
and Eg (A) and under the restriction (7).

Theorem 3 Assume that f and g are Erddés—Ulam functions satisfying (7) and let A C N.
Then,
1) in the case Eg(A) > 0 we have

d,(A 4,47 21
>
RS s (21)
2) in the case dg(A) < 1 we have
dr(A) <1- (1~ dp(A))F (22)

(- d Ay

Proof First, we prove part 1. If 6_lg(A) =0 then (21) is satisfied as the right-hand side of (21)
is zero.
Hence, assume d,(A) > 0. Then, for every ¢ >0 with 1 + ¢ + &2 < p, Lemma 4 implies

G4 (m)P*e

&

d (A)p+e 1 d (A) pre
- g = = )
T (L+e)wdy (A1 (1+6)% (ag(A)) %)

6_lf(A) = liminf F4(n) > liminf
n— 00

n—00

From this we obtain

| L (AN d Ay
G =R e (%) L=

Part 2 follows from part 1 applied to the set N \ A, using the complementary property
(3). O

Theorem 3 has the following immediate consequence.

Corollary 1 Assume that f and g are Erdds—Ulam functions satisfying (7). Then, the den-

sities dy and dg are equivalent.
Proof This follows from inequalities (8), (21), and (22). O

Corollary 2 Assume that f and g are Erdds—Ulam functions satisfying (7) and let A C N.
Then, we have

1. dy(A) =0 if and only if d,(A) =0,

2. df(A) =1 if and only if d,(A) = 1.

Proof This follows from inequalities (8), (21), and (22). O

Next, we show that the bounds (21) and (22) are essentially the best possible.

Page 8 of 20
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Theorem 4 Assume that f and g are Erdds—Ulam functions satisfying (7). Let numbers
o, B, y, 8 be given so that

0<a<p=<y=<dé=l (23)
with
B?
= ify >0, (24)
and with
aQ-yy
I—SZW lfﬁ<1. (25)

Then, there exists a set A C N such that
dA)=a, dW=p A=y, dA) =5

In the case y =0, inequalities (23) imply that we have a = 0 instead of (24). Similarly, in
the case 8 = 1, inequalities (23) imply that we have § = 1 instead of (25).

Lemma 5 Let f be an Erdés—Ulam function and L < M be positive integers. Assume that
T,U C Nsatisfy xr(n) = xu(n) foreverynwith L < n < M. Then, foreverynwithL <n <M
we have

Fr(n) = min{Fy(n), Fy(n) + Fr(L) — Fy(L)},

Fr(n) < max{Fy(n), Fy(n) + Fr(L) - Fy(L)}.
Proof See Lemma 3 in [12]. O

Lemma 6 Let f be an Erdés—Ulam function. Then, for every o € [0,1] thereisa set T C N
such that dy(T) = a.

Proof This immediately follows from Proposition 1 of [14]. O

Proof of Theorem 4 1In the case that 8 = y we have from (23), (24), and (25) that @ = 8 =
y = 6. By Lemma 6 there exists a set A C N such that dy(A) = . For such a set by Lemma 2
we have d4(A) = o and we are done.

Hence, in the rest of the proof assume that 8 < y.

To generate the set A, we construct two sequences of sets with different weighted den-
sities, and then we interleave them. First, take sequences of real numbers g;, y; for i > 0,
such that

B<Bi<yi<y
such that

lim ﬂ[=/3, lim Yi=V.
i—00 i—00
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Put

LTI 1- p/ 0 ps oy,
s = o 70, and ;= 1-0 4 (26)

Bi ifa=0 ¥ if§ =1.

According to (24)

a<pi<s; and B<lims; <y (27)
11— 00
and from (25)
r;<yi<é and B<limr <y. (28)
11— 00

Again, by Lemma 6 there exist sets B; and C; of positive integers such that

dr(B;)=s; and df(C)=r. (29)
Note that by (8) in this case

dg(B) =s; and d (C)=r;. (30)
As the limits (29) and (30) exist, for every ¢ > 0 there are numbers N;(i, ¢), such that

si—e<Fp(n)<s;+e¢,
ri—e<Fc(n)<ri+e,
si—e<Gp(n)<s;+¢,
ri—e<Gg(m)<ri+e
for every n > Ng(i, €).
As f is an Erdés—Ulam function, from limit (2) we obtain that for every & > 0 there is a

number N5(e) such that for every k > N(¢) we have f*(k) < €.

Let (g;) be a decreasing sequence tending to 0 with

Bi—a 5—%‘}. 31)

&; <min ,
2 2

We will define inductively the sequence (1;) and the set A C N by

A= U(((”l4i;l’l4i+1] N B;) U ((Mais1, Mai2] N D)
i~0

U ((Mais2, Maix3] N C;) U (4143, Maisa] NN)).

(We take a sufficiently large section of B; on interval (n4;, 14i41] such that F4(n4,1) and

G4 (n4s41) are close to s;. The interval (1441, H4:42] is as short as possible such that at
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its end, f4(n4;42) is close to «. It is followed by a sufficiently long section of C; on in-
terval (7442, 14443] such that F4(n4;,3) and Ga(naiv3) are close to r;. Finally, the interval
(M443, M4i+4] is as short as possible such that at its end, F4(n4;,4) is close to §.)

For n € N we denote D, = A N [1,#].

Suppose that we have already fixed the numbers ny = 0,11, .. ., ng;. We give the construc-
tion of the next four terms of the sequence (1;):

+ naii1: Although we do not know the set A yet, the set D,,,, is well defined and already

known. From (29) we obtain

lim FDnMU((}'lz;i,u]ﬂB,')(u) = ull)m FBi (u) =S (32)

Uu—>00 oo

and similarly from (30) we obtain

lim GDnMU((Mz‘:u]ﬂBi)(u) = lim GBZ.(M) =S;. (33)
U—00 U— 00

Take n4;41 to be the smallest integer satisfying

naip1 > max{ng; + 1,Ni(e:), No(i, £:), N7 (¢:) }, (34)
8i = € < Fp,, U((nggmazs110B) (Mair1) < Si + &5, (35)
8i = €i < GDy, U((nagmaia 1By (Mair1) < Si + €iy (36)

where N (¢) is given by Lemma 3. Such a number n4;,1 exists by (32) and (33).

« Mgyp: Although we do not know the set A yet, the set D,,,. , is well defined and already

N4i+1

known. Obviously,

lim Fp,, . U((ng;,1,00) (@) = 0. (37)

Uu—>00

Take n4442 to be the smallest integer satisfying

N4jr2 > N4jt1,
FDyy Unais1maisa) ) (Mais2) <ot + €.

Such a number ny4;,9 exists by (27), (31), (35), and (37).
Since #4442 > N7(¢;) then by Lemma 1

o <Fp,,. U(ngis1nassaln0) (Mais2) <+ €. (38)

« naiv3: Although we do not know the set A yet, the set D is well defined and already

N4i+2

known. From (29) we obtain

lim FDn4i+2 U((rl4l‘+2,u]ﬂc,‘)(u) = ull)nolo FCL‘(M) =T (39)

U—>00

and similarly from (30) we obtain

lim GDn4i+2 U((n4l‘+2,u]ﬂc,‘)(u) = Mlingo GCL‘ (M) =T (40)

U—>00
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Take n4;,3 to be the smallest integer satisfying

Maivs > max{ngia + 1, Ne(i + 1,6,1)}, (41)
ri—¢& < FDVI4Z.+2U((n4i+2,}’l4i+3]f‘lci)(n4i+3) <rité&;, (42)
ri—¢&; < GDn4i+2U((n4,~+2,n4,~+3]ﬁci)(”14i+3) <r+ég. (43)

Such a number ny4;,3 exists by (39) and (40).

« ngy4: Although we do not know the set A yet, the set D is well defined and already

N4i+3

known. Obviously,

lim Fp,, . . U((ngs,50m) (@) = 1. (44)

Uu—>00

Take n4;,4 to be the smallest integer satisfying

Nyjrg > N4iy3,

FDyyi 3 Ui 3maia o) (Maina) > 8 — €.

Such a number 74,7 exists by (28), (31), (42), and (44).
Since #4442 > N7(¢;) then by Lemma 1

8- & < FDn4l.+3U((n4i+3,n4i+4]ﬂN) (n4i+4) < 8. (45)

Now, we know the set A completely and we can rewrite conditions (35), (36), (38), (42),
(43), and (45) equivalently in a simpler way as

S;— & < Fa(Mais1) < S; + €55 (46)
si—&i < Ga(naiz1) <si + &, (47)
o <Fa(nao) <a +&, (48)
ri— & < Fa(nais3) <ri+ &, (49)
ri—&i < Ga(Mair3) <1i + &, (50)
8 —&; < Fp(naiq) < 6. (51)
We will show that
llilglo Ga(naiv2) = B, (52)
ll_lglo Ga(Maiva) = y. (53)

In proving (52), we will consider two cases.
o If @ >0, then by Lemma 3 and (34)

Ga(14i41)Sg(Mai1)

1
S(nai1)\ i
Ga(ngi2) = S, (tarea) &>
g \FH4i+

G i+
< Galota 1)<Sf(”l4i+2)

Page 12 of 20
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Fy(n4i41)Sf (n4is1) )lﬁgl
Sf(n4i.2)

I
(Fa(Maie1)) P

1
Fy(n4i12) ) préi
Fy(n4441) )

= G4 (M4i01)

= GA(Vl4i+1)<

By (46), (47), and (48)

(si + &) 1
Ga(Mai2) < ——— (o + &) 7", (54)

(si —e)P¥ei
Similarly, we can show that

(si— &) L
Ga(ny2) > ——— P, (55)

(si + &) 7

According to (26)

Si+ & . |
(lil)l(a+8,-)1’*5i=‘hms. ar

si — &) P*Fi
. i I\ 71 .
=lim|{— af =1lim ;=8
i—00 o i—00

lim

i—o0 (

and

& 1
(si 5;)1 aFi = .

(5 + €77

lim

i—00

Then, (54) and (55) imply (52).
o If @ =0, then also 8 = 0 by Corollary 2. Obviously,

0 < Ga(M4is2) < Ga(Maie1) < Si + 8 = B + &;.
Since lim;_, o, B; = B = 0 then,

lim G4(n4i02) =0 = B.

1—> 00

Similarly in proving (53), we will consider two cases.
« If§ <1, then by Lemma 3 and (41)

G4 (14i43)Sg(M4is3) + Sg(Maira) — Sg(Mair3)
S¢(Maiva)
Sg(M4i43)
Sg(”4i+4)
B
Sp(n4i43) ) P
Sf(n4i+4)

Ga(Majsa) =

=1 - (1 - Ga(na3))

<1-(1- GA(”41+3))(
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_,__(1-Galmia) ((1 - FA(mg))sf(nM))ﬁ
(1- FA(”41‘+3));’%E" Sp(naiva)

_F i+ p%si
1= (1= Gat) (et

By (49), (50), and (51)

1-ri—¢ _1
Ga(ngiea) <1 - ﬁ(l - 8§)FFi, (56)
(1 —r;+&;)P=
Similarly, we can show that
1-ri+e¢; 1
Ga(ngiea) > 1 - —(1 -6 +¢)P. (57)

(I —ri—g)Pei
According to (26)
1-ri—¢; 1
lim (1 - rilll(l -5+ 8i)P8i>
e (1—7','+<9i)p*_£i

p1 1
=1-1lim(1-r) 7 (1-6)»

1—> 00

1 p-1
1—y)P\P 1\ 7 1 )
:1—,lim<(( ) )p) (1—5);?1““%’:)/
=00 1-6 i—00

and

1-ri+¢g
lim 1 - -

11— 00

1
—(1-8+¢&)re =y.
(L—r;—e))r*i

Then, (56) and (57) imply (53).
+ If§ =1, then also y = 1 by Corollary 2. Obviously,

1> Gu(n4ira) > Ga(nginz) >ri—8i = yi — &
Since lim;_, , y; = ¥ = 1 then,

lim Gu(n4i04) = 1.

11— 00

Hence, we can proceed to calculate the lower and upper weighted densities of A. On
intervals [#4;,1, M4i42] and [#4i43, M4i44] the functions F4(n) and G4(n) are monotone. For
u € (Mair2, Mair3), condition (34) and Lemma 5 with 7 = A and U = C; imply that

Ga(u) = min{Gc, (u), Gc, (1) + Ga(nais2) — G, (Maiv2) |

> min{’”i — &1, Ga(Mais2) — 281'};

hence, by (48) we have

liminf  Ga(%) > liminfmin{r;, 8} = 8.
o> i—o00
uelUJiZo (mais2,m4is3)
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Similarly,

Ga(u) < max{Gc,(u), G, () + Ga(nair2) — Ge,(Mair2) }

< max{r; + &, Ga(nai2) + 26:},
and

lim sup G4(u) < limsupmax{r;, B} < y.
o i—00
uelJZ (nais2,mai43]

In the same way we can prove that

B < liminf Gu(u)< limsup Guu) <y,
U— 00 U—00

HGU,'O:O()(mLi»”ALHl] MGU?SO(”M'”‘IHI]
o< liminf Fi(u) < lim sup Fu(u) <,
=00 U— 00
uelUZy (naiv2m4i43] uelJo (nais2air3)

a< liminf F4(mu) < limsup Fa(u) <.
U— 00 U 00
uelJ7Zo (nainaie ] uel 5o (nainaie1]

Asa consequence, to calculate the densities it is sufficient to consider the functions F,(7)
and G4(n) only in numbers n4;,2 and n4;,4. By (48), (51), (52), and (53)

lim Fy(n442) = o, lim F4(n4414) =6,
1— 00 11— 00
']im Ga(ngin) = B, .lim Ga(Maisa) = V.
11— 00 11— 00
This concludes the proof. d
f*(n)
5 The case i 1

Theorem 5 Assume that f and g are Erdds—Ulam functions satisfying

tim 2 _

n—00 g*(y[) =L (58)

Then, the densities dy and d, are strongly equivalent.

Proof We have to prove that for every set A C N we have df(A) = c_lg(A). For a contradic-
tion, suppose without loss of generality that there is some set A C N such that d;(A) = «
and 6_lg(A) =B forsome0<a<pB<1.

Take p > 1 such that 87 > «. Such a p exists because of continuity. Construct a function
h: N— R* by

h1) =1,

h(n) = Sg(n)f —Sg(n—1) forn=>2.

Page 15 of 20



Bukor et al. Journal of Inequalities and Applications (2022) 2022:146 Page 16 of 20

It follows that Sy, (n) = S,(n)?, hence,
lim Sy(n) = lim Sg(n)? = oo
Hn—0Q Hn— 00

and limit (2) for function g implies that

tim () = tim Y STV (g =

n—00 n—00 Sg(n)P n—00

Thus, / is an Erdés—Ulam function. Using 'Hospital’s rule we obtain

B o 1-A-g M)

Mg T T g ) >
Theorem 3 implies that the corresponding weighted density d, satisfies

d,(A) = LAy =g (60)

dg(Ayp-1 ¢
On the other hand, from (58) and (59) we obtain
h*(n)

oo frm) ¥
and Lemma 2 with (60) imply that

d,(4) <d,(A) = a,
a contradiction. O

f*(n)
g*(n)
Let us consider the following example from [12]. Let f(n) = 2 + (-1)" and g(n) = %, n=

s

(
1,2,.... Then, {;*(:3 — 00 as n — 00, but dr(2N) = % and d,(2N) = % Consequently, df and

dg are not comparable densities.

6 The case

- 00

In what follows we shall consider Erd6s—Ulam functions that are monotone. We call
an Erd6s—Ulam function f regular if the corresponding weighted density fulfils the con-
dition that for arbitrary positive integers a, b we have df(aN + b) = % (f-density of the
terms of arbitrary infinite arithmetical progression with the same difference are equal).
It is not difficult to show that a monotone Erdés—Ulam function is regular (see, e.g., [5],
Example 2.1).

The independence (within admissible bounds) of the asymptotic and logarithmic den-
sities was proved in [15] and [16], by showing that for any given real numbers 0 <o < 8 <
y < § <1 there exists a set A C N such that

dl(A):O‘r d%(A):ﬂ’ E (A):y’ EI(A):B'

1
n

We generalize this result.
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Theorem 6 Let monotone Erdds—Ulam functions f and g satisfy the condition é :EZ; — 00

as n — 0o. Then, for any given real numbers
O<sae<p=sy=d=1

there exists a set A C N such that
dA)=a, dA)=p,  dy(A)=y, df(A)=6.

Proof By Theorem 1 from [17] it is sufficient to consider only the “worst” case, i.e., it is

sufficient to show the existence of an A C N, for that
d;(A) =0, dr(A) =1, dg(A) =0.

Using (6), it can be showed by the Stolz—Cesaro theorem that under the assumption of the

theorem izz EZ; — 00 as n — 00. This is equivalent to
Sy(n) = Sg(n)‘“”), where ¥(n) —> 00 as n— o0. (61)

Let (¢;) be a decreasing sequence that tends to 0, where €; < 1. Now, we define inductively

the sequence

Ny <mp<ny<my<---

and the set A by

A= (I’ll‘, Wli] NN. (62)

&t

I
—_

Let n; = 0 and let 71, be some positive integer such that S,(;) > 1. Suppose that we have
already fixed the numbers #;_;, m;_1, where i > 2.

Choose a positive integer n; > m;_; such that (63)—(66) hold

Sf(mi—1)<82 Se(m;_1) 2
Sm) 7 Sglm) T

1—g < ")e - e, (64)

Further, for all k > n;

(63)

Y (k) = ¢ (ny), (65)
Sy (k)
m >1-— Ej. (66)

The existence of such a number #; follows from (1), (4), and (61).
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Now, let m; be the smallest positive integer with m; > n; and

2 Sf(nt)

-8 < <& (67)
Sp(m;)

&

The existence of such a number m1; follows from (1) and (66).
In the following, we prove that the set A we have created by (62) has the desired lower
and upper weighted densities. From (63) we directly obtain

dy(4) = d,(4) =0.
From (67) we obtain

1> d;(A) = limsup Lﬁéﬁ%w) > lim sup 24~ %) (m;)(; S)f )
i—>00 JAUL] i—o0 f Ui

> lim(1-¢;)=1.
11— 00

In order to prove Eg(A) = 0 we estimate the values G4 (m1;). From (65) we obtain v (m1;) >
¥ (n;) and with (61) and (67) this implies that

S ; ¥ (n;) ; ¥(n;) ;
g(n)) = S¢(n) =Sf(n)>ei—g.2.
S¢(m;) Sg(m)Vmd) — Se(m;)

1

From this, according to (64) we have

Sg(ni)

(VH' >1- &i. (68)

N

From (63) and (68) we obtain

Sq(mi_y) + Sg(m;) — Sg(n;)
Sg(mi)

Ga(m;) < <e?+1-(1-g)=¢*+¢;

which implies that

d,(A) = limsup G (m;) < lim sup(e} + &) =0
and this concludes the proof. 0
Remark 1 Let us define

k
Spmy=eV™, k=1,2,...

and by them the Erdés—Ulam functions f; (n). Putting gi(x) = +/Inx we obtain

G = ———
. kx(In x)l‘%
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and the Lagrange mean value theorem implies that

fk*(n) -1- M =1 — &gl _ 1 _ o8 Ekn)
S (n)
~ g (xn) ~ gi(n) = (69)

7(In n)l‘% ’

where &, € (n — 1, n). It follows from Rajagopal’s result that dj, is stronger than dj;, | for

any k. Since % — 00 as 1 — oo by Theorem 4 it follows that the weight density dj,
+1
is not equivalent to dp,, . Note that ds corresponds to the asymptotic density. For the

logarithmic density 41 we have

1\* 1
n ninn

and from (69) it follows that each of the densities dj, is stronger than the logarithmic

density. Hence, between the asymptotic density and the logarithmic one there are infinitely
many dy, (k=2,3,...) densities, each of them is stronger than the logarithmic density and
weaker than the asymptotic density.
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