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Abstract
This paper studies the general decay synchronization (GDS) of a class of
nonautonomous bidirectional associative memory recurrent neural networks
(BAMRNNs) with mixed time delays. By employing the Lyapunov method and useful
inequality techniques, some sufficient conditions on the general decay
synchronization for BAMRNNs are derived. In addition, an example with numerical
simulations is presented to illustrate the obtained theoretical results.
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1 Introduction
It is well known that the bidirectional associative memory (BAM) neural networks were
first proposed in 1987 by Kosko [1], which extend the unidirectional autoassociation of
Hopfield [2]. At present, the bidirectional associative memory (BAM) neural-network
models have been accepted by many scientists and have been widely used in signal pro-
cessing, automatic control engineering, associative memory, parallel computing, combi-
natorial optimization, pattern recognition, and so on [3–16].

It is worth noting that synchronization is a typical dynamical property of neural net-
works and presents major concerns when we investigate the dynamical behaviors of
chaotic neural networks. Recently, the research on the synchronization of neural networks
(NNs) model has attracted a lot of attention [8–27] as there are many benefits of having
synchronization in some engineering applications such as language emergence and de-
velopment, harmonic oscillation generation, secure communication, and information sci-
ence. Moreover, synchronization, as a typical collective behavior, has been observed in
biological systems such as synchronous fireflies, flocking of birds, and swarming of fish.
Therefore, it is important to investigate the synchronization behaviors of the bidirectional
associative memory neural-network (BAMNNs) systems.

Moreover, recently in [18, 19], a new concept of synchronization, namely general decay
synchronization (GDS), was introduced for a class of chaotic NNs. Up to now, there have
been many studies related to the study of GDS problems for various kinds of neural net-
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works with time delays and the references cited therein [18–27]. For example, the study
of general decay synchronization for time-varying delayed and mixed time delayed recur-
rent neural networks [18–21], time-varying delayed and mixed time delayed BAM neu-
ral networks [22, 23], delayed memristor-based Cohen–Grossberg neural networks [24],
time-varying delayed fuzzy cellular neural networks [25], discrete time delayed competi-
tive neural networks [26], and time-varying delayed complex multilink dynamic networks
[27], are considered.

On the other hand, everything in the real world often changes with time. However,
the intrinsic parameters of autonomous NNs [3–27] will not change with time, thus, we
have some limitations in mathematical modeling of neural-network systems. Therefore,
a nonautonomous scenario is necessary for NNs models, making it worthy to study the
NNs models in a nonautonomous environment. Moreover, hitherto, most of the published
works are devoted to the autonomous NNs [1–27], and there are few papers considered
nonautonomous NNs [28, 29]. For example, in [28, 29], the authors considered the fol-
lowing nonautonomous cellular neural networks (CNNs) with time-variable delays and
infinite delays

żi(t) = – ai(t)zi(t) +
n∑

j=1

bij(t)lj
(
zj
(
t – γij(t)

))

+
n∑

j=1

cij(t)
∫ ∞

0
�ij(s)hj

(
zj(t – s)

)
ds + ϒi(t), (1)

where i, j = 1, 2, . . . , n, t ∈ R, n corresponds to the number of units in a neural network, zi(t)
denotes the state vector of the ith unit at the time t, ai(t) > 0 denotes the rate with which
the ith unit will reset its potential to the resting state in isolation when disconnected from
the network and external inputs at the time t, bij(t) and cij(t) represent the connection
weights at the time t,γij(t) ≥ 0 denotes the transmission delay of the ith unit along the
axon of the jth unit at the time t, ϒi(t) denotes the external bias on the ith unit at the
time t, lj and hj are activation functions of signal transmission, and �ij(u) corresponds to
the transmission-delay kernel. The authors obtained some sufficient conditions on the ex-
ponential convergence for system (1) by using the differential inequality strategies. To the
best of our knowledge, no study has been conducted to date for general decay synchroniza-
tion on the nonautonomous BAM recurrent neural networks with distributed time delays
and continuous time delays. Therefore, in light of the above analysis and as an extension
of previously known works [3–29], this paper will address the following nonautonomous
BAM recurrent neural networks with delays

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = –ci(t)xi(t) +
∑n

j=1 rji(t)fj(yj(t)) +
∑n

j=1 aji(t)fj(yj(t – τij(t)))

+
∑n

j=1 bji(t)
∫ 0

–θij
Kij(s)gj(yj(t + s)) ds + Ii(t),

ẏj(t) = –dj(t)yj(t) +
∑m

i=1 oij(t)hi(xi(t)) +
∑m

i=1 pij(t)hi(xi(t – σij(t)))

+
∑m

i=1 qij(t)
∫ 0

–γij
Hij(s)li(xi(t + s)) ds + Jj(t),

(2)

where i ∈ I � {1, 2, . . . , m} and j ∈ J � {1, 2, . . . , n}; m ≥ 2 and n ≥ 2 correspond to the
number of neurons in the neural fields XU and YU , respectively; xi(t) and yj(t) denote the
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state variable of the ith neurons from the neural fields XU and jth neurons from the neural
fields YU , respectively; ci(t) > 0, dj(t) > 0 are the passive decay rates to the state of ith, jth
neurons at the time t; rji(t), aji(t), bji(t) and oij(t), pij(t), qij(t) represent the connection
strengths and the time delay connection strengths at the time t, respectively; fj(·), gj(·),
hi(·), and li(·) are the neuron feedback functions; τij(t), θij, γij, and σij(t) denote the time
delay along the axon of the jth neuron from the ith neuron and satisfy 0 ≤ τij(t) ≤ τij,
0 ≤ σij(t) ≤ σij, θij > 0, γij > 0; Ii(t), and Jj(t) correspond to the external bias on the ith
neurons from the neural fields XU and the jth neurons from the neural fields YU at the
time t, respectively. Kij(s), Hij(s) correspond to the transmission delay kernels and satisfy∫ 0

–θij
Kij(s) ds = 1,

∫ 0
–γij

Hij(s) ds = 1.
The main purpose of this paper is by constructing suitable Lyapunov–Krasovskii func-

tionals and applying the method given in [18, 19] to establish some new sufficient condi-
tions on the general decay synchronization for system (2).

2 Preliminaries
In this paper, the initial conditions for system (2) are given by

xi(θ ) = ϕx
i (θ ), θ ∈ [–τ , 0],

yj(θ ) = ϕ
y
j (θ ), θ ∈ [–σ , 0],

where τ = maxi,j{τij, θij}, σ = maxi,j{σij,γij}, ϕx = (ϕx
1(θ ),ϕx

2(θ ), . . . ,ϕx
m(θ )) ∈ C([–τ , 0], Rm),

ϕy = (ϕy
1(θ ),ϕy

2(θ ), . . . ,ϕy
n(θ )) ∈ C([–σ , 0], Rn), which denotes the Banach space of all con-

tinuous functions mapping (–∞, 0] into Rn with norm defined by

∥∥ϕx∥∥ =
m∑

i=1

sup
s∈[–τ ,0]

∣∣ϕx
i (s)

∣∣ and
∥∥ϕy∥∥ =

n∑

j=1

sup
s∈[–σ ,0]

∣∣ϕy
j (s)

∣∣.

In the paper, we consider system (2) as the drive system, the response system is given as
follows

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u̇i(t) = –ci(t)ui(t) +
∑n

j=1 rji(t)fj(vj(t)) +
∑n

j=1 aji(t)fj(vj(t – τij(t)))

+
∑n

j=1 bji(t)
∫ 0

–θij
Kij(s)gj(vj(t + s)) ds + Ii(t) + pi(t),

v̇j(t) = –dj(t)vj(t) +
∑m

i=1 oij(t)hi(ui(t)) +
∑m

i=1 pij(t)hi(ui(t – σij(t)))

+
∑m

i=1 qij(t)
∫ 0

–γij
Hij(s)li(ui(t + s)) ds + Jj(t) + qj(t),

(3)

where pi(t), qj(t) are the controllers to be designed. Let ei(t) = ui(t) – xi(t) and zj(t) = vj(t) –
yj(t), then the corresponding error system between drive system (2) and response system
(3) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ėi(t) = –ci(t)ei(t) +
∑n

j=1 rji(t)f̃j(zj(t)) +
∑n

j=1 aji(t)f̃j(zj(t – τij(t)))

+
∑n

j=1 bji(t)
∫ 0

–θij
Kij(s)g̃j(zj(t + s)) ds + pi(t),

żj(t) = –dj(t)zj(t) +
∑m

i=1 oij(t)h̃i(ei(t)) +
∑m

i=1 pij(t)h̃i(ei(t – σij(t)))

+
∑m

i=1 qij(t)
∫ 0

–γij
Hij(s)l̃i(ei(t + s)) ds + qj(t),

(4)
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where f̃j(zj(t)) = fj(vj(t)) – fj(yj(t)), f̃j(zj(t – τij(t))) = fj(vj(t – τij(t))) – fj(yj(t – τij(t))), g̃j(zj(t +
s)) = gj(vj(t + s)) – gj(yi(t + s)), and h̃i(ei(t)) = hi(ui(t)) – hi(xi(t)), h̃i(ei(t – σij(t))) = hi(ui(t –
σij(t))) – hi(xi(t – σij(t))), l̃i(ei(t + s)) = li(ui(t + s)) – li(xi(t + s)).

Throughout this paper, we assume that the following assumptions are satisfied:
H1: Neuron feedback functions fj(u), gj(u), hi(u), and li(u) are continuous and there exist

nonnegative constants Mf
j > 0, Mg

j > 0, Mh
i > 0, Ml

i > 0, and Lf
j > 0, Lg

j > 0, Lh
i > 0, Ll

i > 0,
such that for any v1, v2 ∈ R

∣∣fj(v1) – fj(v2)
∣∣ ≤ Lf

j |v1 – v2| + Mf
j ,

∣∣gj(v1) – gj(v2)
∣∣ ≤ Lg

j |v1 – v2| + Mg
j , ∀ v1, v2 ∈ R,

∣∣hi(v1) – hi(v2)
∣∣ ≤ Lh

i |v1 – v2| + Mh
i ,

∣∣li(v1) – li(v2)
∣∣ ≤ Ll

i|v1 – v2| + Ml
i , ∀ v1, v2 ∈ R.

H2: Time-varying delays τij(t), σij(t) are differentiable, and there exist real numbers 0 ≤
μ

f
ij, μh

ij < 1 such that

0 ≤ τ̇ij(t) ≤ μ
f
ij, 0 ≤ σ̇ij(t) ≤ μ

g
ij.

Now, we will give the definitions of a ψ-type function and GDS.

Definition 1 ([18, 19]) A function ψ : R+ → [1, +∞) is said to be a ψ-type function if it
satisfies the following conditions:

1) ψ(t) is differentiable and nondecreasing t ∈ R+;
2) ψ(0) = 1 and ψ(+∞) = +∞;
3) ψ̃(t) = ψ̇(t)/ψ(t) is nondecreasing for t ∈ R+ and ψ∗ = supt≥0 ψ̃(t) < +∞, where ψ̇(t)

is the time derivative of ψ(t);
4) For any t, s ≥ 0, ψ(t + s) ≤ ψ(t)ψ(s).
It is easy to check that functions ψ(t) = eαt , ψ(t) = (1 + t)α and ψ(t) = 1 + α log(1 + t) for

any α > 0 satisfy the above four conditions, and thus can be seen as ψ-type functions.

Definition 2 ([18, 19]) The drive–response systems (2) and (3) are said to be general decay
synchronized if there exist a constant ε > 0 and a ψ-type function ψ such that

lim
t→+∞ sup

log(‖e(t)‖ + ‖z(t)‖)
logψ(t)

≤ –ε,

where e(t) = (e1(t), e2(t), . . . , em(t))T , z(t) = (z1(t), z2(t), . . . , zn(t))T , then ε > 0 can be seen as
the convergence rate as the synchronization error approaches zero.

H3: For functions ψ(t), ψ̃(t) given in Definition 1, there exist a function �(t) ∈ C(R, R+)
and a constant δ > 0 such that for any t ≥ 0

ψ̃(t) ≤ 1, sup
t∈[0,+∞)

∫ t

0
ψδ(s)�(s) ds < +∞.

For a continuous function f (t) defined on R, we define f L = inft∈R{f (t)} and f M =
supt∈R{f (t)}.

Now, we present a useful lemma.
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Lemma 1 ([23]) Under assumption H3, assume that the synchronization errors e(t) and
z(t) between the drive–response systems (2) and (3) satisfied the differential equations ė(t) =
F(t, e(t), z(t)) and ż(t) = G(t, e(t), z(t)), respectively, where the functions F(t, e(t), z(t)) and
G(t, e(t), z(t)) are locally bounded. If there exist a Lyapunov functional V (t, e(t), z(t)) : R+ ×
Rm × Rn → R+, and positive constants λ1, λ2 such that for any (t, e(t), z(t)) ∈ R+ × Rm × Rn,

λ1
(∥∥e(t)

∥∥2 +
∥∥z(t)

∥∥2) ≤ V
(
t, e(t), z(t)

)
,

dV (t, e(t), z(t))
dt

|(3) ≤ –δV
(
t, e(t), z(t)

)
+ λ2�(t),

where ε and �(t) are defined in H3. Then, the drive–response systems (2) and (3) will realize
GDS in the sense of Definition 2, and the convergence rate of GDS is δ.

3 Main results
In this section, we will obtain some sufficient conditions to insure the GDS of systems (2)
and (3). First, under assumption H3 we design the controllers pi(t) and qj(t) of response
system (3) as follows

pi(t) = –α
p
i (t) sign

(
ei(t)

)
–

ηi(t)‖e(t)‖ei(t)
ei(t) + �1(t)

, i ∈ I ,

qj(t) = –α
q
j (t) sign

(
zj(t)

)
–

βj(t)‖z(t)‖zj(t)
zj(t) + �2(t)

, j ∈ J ,
(5)

where ηi(t), αp
i (t) for i ∈ I and βj(t), αq

j (t) for j ∈ J are positive control gains satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cL
i + ηL

i –
∑n

j=1(
Ah

ji
1–μ

g
ji

+ Al
ji) –

∑n
j=1 Cf

ij =: Ef
i > 0,

α
pL
i –

∑n
j=1 |aji|Mf

j –
∑n

j=1 |bM
ji |Mg

j > 0,

dL
j + βL

j –
∑m

i=1(
Af

ji

1–μ
f
ji

+ Ag
ji) –

∑m
i=1 Ch

ij =: Eh
j > 0,

α
qL
j –

∑m
i=1 |pM

ij |Mg
i –

∑m
i=1 |qM

ij |Ml
i > 0,

(6)

where Ar
ij = |rM

ji |Lf
j , Af

ij = |aM
ji |Lf

j , Ag
ij = |bM

ji |Lg
j , Ao

ij = |oM
ij |Lh

i , Ah
ij = |pM

ij |Lh
i , Al

ij = |qM
ij |Ll

i, Cf
ij =

Bf
ijθij, Ch

ij = Bh
ijσij.

Then, from nonlinear feedback controller (7), we have the following theorem.

Theorem 1 Suppose H1–H3 hold and the control gains ηi(t), αp
i (t) and βj(t), α

q
j (t) satisfy

the inequality (7), then the response network (3) can be general decay synchronized with
the drive network (2) under the nonlinear controller (5).

Proof First, we construct the following Lyapunov–Krasovskii functionals:

V11(t) =
m∑

i=1

∣∣ei(t)
∣∣ +

m∑

i=1

n∑

j=1

Af
ij

∫ t

t–τij(t)

|zj(s)|
1 – μ

f
ij

ds

+
m∑

i=1

n∑

j=1

Ag
ij

∫ 0

–θij

Kij(s)
∫ t

t+s

∣∣zj(ς )
∣∣dς ds,
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V21(t) =
n∑

j=1

∣∣zj(t)
∣∣ +

n∑

j=1

m∑

i=1

Ah
ij

∫ t

t–σij(t)

|ei(s)|
1 – μ

g
ij

ds

+
n∑

j=1

m∑

i=1

Al
ij

∫ 0

–γij

Hij(s)
∫ t

t+s

∣∣ei(ς )
∣∣dς ds.

Calculating the derivative of V11(t) + V21(t) along system (4), we obtain

V̇11(t) + V̇21(t) =
m∑

i=1

{
sign

(
ei(t)

)
[

–ci(t)ei(t) +
n∑

j=1

rji(t)f̃j
(
zj(t)

)

+
n∑

j=1

aji(t)f̃j
(
zj
(
t – τij(t)

))
+

n∑

j=1

bji(t)
∫ 0

–θij

Kij(s)g̃j
(
zj(t + s)

)
ds

– α
p
i (t) sign

(
ei(t)

)
–

ηi(t)‖e(t)‖ei(t)
ei(t) + �1(t)

]

+
n∑

j=1

Af
ij

(
1

1 – μ
f
ij

∣∣zj(t)
∣∣ –

(1 – τ̇ij(t))
1 – μ

f
ij

∣∣zj
(
t – τij(t)

)∣∣
)

+
n∑

j=1

Ag
ij

∫ 0

–θij

Kij(s)
(∣∣zj(t)

∣∣ –
∣∣zj(t + s)

∣∣)ds

}

+
n∑

j=1

{
sign

(
zj(t)

)
[

–dj(t)zj(t) +
m∑

i=1

oij(t)h̃i
(
ei(t)

)

+
m∑

i=1

pij(t)h̃i
(
ei

(
t – σij(t)

))
+

m∑

i=1

qij(t)
∫ 0

–γij

Hij(s)l̃i
(
ei(t + s)

)
ds

– α
q
j (t) sign

(
zj(t)

)
–

βj(t)‖z(t)‖zj(t)
zj(t) + �2(t)

]

+
m∑

i=1

Ah
ij

(
1

1 – μ
g
ij

∣∣ei(t)
∣∣ –

(1 – σ̇ij(t))
1 – μ

g
ij

∣∣ei
(
t – σij(t)

)∣∣
)

+
m∑

i=1

Al
ij

∫ 0

–γij

Hij(s)
(∣∣ei(t)

∣∣ –
∣∣ei(t + s)

∣∣)ds

}

≤
m∑

i=1

{
–cL

i
∣∣ei(t)

∣∣ +
n∑

j=1

∣∣rM
ji

∣∣∣∣f̃j
(
zj(t)

)∣∣ +
n∑

j=1

∣∣aM
ji

∣∣∣∣f̃j
(
zj
(
t – τij(t)

))∣∣

+
n∑

j=1

∣∣bM
ji

∣∣
∫ 0

–θij

Kij(s)g̃j
(
zj(t + s)

)
ds –

∣∣αpL
i

∣∣ –
ηL

i ‖e(t)‖|ei(t)|
|ei(t)| + �1(t)

+
n∑

j=1

( Af
ij

1 – μ
f
ij

+ Ag
ij

)∣∣zj(t)
∣∣ –

n∑

j=1

Af
ij
∣∣zj

(
t – τij(t)

)∣∣

–
n∑

j=1

Ag
ij

∫ 0

–θij

Kij(s)
∣∣zj(t + s)

∣∣ds

}
+

n∑

j=1

{ m∑

i=1

∣∣oM
ij

∣∣∣∣h̃i
(
ei(t)

)∣∣
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+
m∑

i=1

∣∣pM
ij

∣∣∣∣h̃i
(
ei

(
t – σij(t)

))∣∣ +
m∑

i=1

∣∣qM
ij

∣∣
∫ 0

–γij

Hij(s)
∣∣l̃i

(
ei(t + s)

)∣∣ds

– α
qL
j –

βL
j ‖z(t)‖|zj(t)|
|zj(t)| + �2(t)

+
m∑

i=1

( Ah
ij

1 – μ
g
ij

+ Al
ij

)∣∣ei(t)
∣∣ –

∣∣dL
j
∣∣∣∣zj(t)

∣∣

–
m∑

i=1

Ah
ij
∣∣ei

(
t – σij(t)

)∣∣ –
m∑

i=1

Al
ij

∫ 0

–γij

Hij(s)
∣∣ei(t + s)

∣∣ds

}
. (7)

Now, using H1, we have

m∑

i=1

n∑

j=1

∣∣rM
ji

∣∣∣∣f̃j
(
zj(t)

)∣∣ ≤
m∑

i=1

n∑

j=1

Ar
ij
∣∣zj(t)

∣∣ +
m∑

i=1

n∑

j=1

∣∣rM
ji

∣∣Mf
j , (8)

m∑

i=1

n∑

j=1

∣∣aM
ji

∣∣∣∣f̃j
(
zj
(
t – τij(t)

))∣∣ ≤
m∑

i=1

n∑

j=1

Af
ij
∣∣zj

(
t – τij(t)

)∣∣ +
m∑

i=1

n∑

j=1

∣∣aM
ji

∣∣Mf
j , (9)

n∑

j=1

m∑

i=1

∣∣oM
ij

∣∣∣∣h̃i
(
ei(t)

)∣∣ ≤
n∑

j=1

m∑

i=1

Ao
ij
∣∣ei(t)

∣∣ +
n∑

j=1

m∑

i=1

∣∣oM
ij

∣∣Mh
i , (10)

n∑

j=1

m∑

i=1

∣∣pM
ij

∣∣∣∣h̃i
(
ei

(
t – σij(t)

))∣∣ ≤
n∑

j=1

m∑

i=1

Ah
ij
∣∣ei

(
t – σij(t)

)∣∣ +
n∑

j=1

m∑

i=1

∣∣pM
ij

∣∣Mh
i , (11)

m∑

i=1

n∑

j=1

∣∣bM
ji

∣∣
∫ 0

–θij

Kij(s)
∣∣̃gj

(
zj(t + s)

)∣∣ds ≤
m∑

i=1

n∑

j=1

Ag
ij

∫ 0

–θij

Kij(s)
∣∣zj(t + s)

∣∣ds

+
m∑

i=1

n∑

j=1

∣∣bM
ji

∣∣Mg
j , (12)

n∑

j=1

m∑

i=1

∣∣qM
ij

∣∣
∫ 0

–γij

Hij(s)
∣∣̃li

(
ei(t + s)

)∣∣ds ≤
n∑

j=1

m∑

i=1

Al
ij

∫ 0

–γij

Hij(s)
∣∣ei(t + s)

∣∣ds

+
n∑

j=1

m∑

i=1

∣∣qM
ij

∣∣Ml
i . (13)

Using H2 and from the above inequalities (7)–(13), we have

V̇11(t) + V̇21(t) ≤
m∑

i=1

{
–cL

i
∣∣ei(t)

∣∣ +
n∑

j=1

∣∣rM
ji

∣∣Mf
j +

n∑

j=1

∣∣aM
ji

∣∣Mf
j +

n∑

j=1

∣∣bM
ji

∣∣Mg
j – α

pL
i

–
ηL

i ‖e(t)‖|ei(t)|
|ei(t)| + �1(t)

+
n∑

j=1

( Af
ij

1 – μ
f
ij

+ Ar
ij + Ag

ij

)∣∣zj(t)
∣∣
}

+
n∑

j=1

{
–dL

j
∣∣zj(t)

∣∣ +
m∑

i=1

∣∣oM
ij

∣∣Mg
i +

m∑

i=1

∣∣pM
ij

∣∣Mg
i +

m∑

i=1

∣∣qM
ij

∣∣Ml
i

– α
qL
j –

βL
j ‖z(t)‖|zj(t)|
|zj(t)| + �2(t)

+
m∑

i=1

( Ah
ij

1 – μ
g
ij

+ Ao
ij + Al

ij

)∣∣ei(t)
∣∣
}

. (14)
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Next, we construct the following Lyapunov–Krasovskii functionals:

V12(t) =
m∑

i=1

n∑

j=1

Bf
ij

∫ 0

–τij

∫ t

t+s

∣∣ei(ε)
∣∣dε ds +

m∑

i=1

n∑

j=1

Bg
ij

∫ 0

–θij

Kij(s)
∫ 0

s

∫ t

t+ς

∣∣ei(ε)
∣∣dε dς ds,

V22(t) =
n∑

j=1

m∑

i=1

Bh
ij

∫ 0

–σij

∫ t

t+s

∣∣zj(ε)
∣∣dε ds +

n∑

j=1

m∑

i=1

Bl
ij

∫ 0

–γij

Hij(s)
∫ 0

s

∫ t

t+ς

∣∣zj(ε)
∣∣dε dς ds,

where Bf
ij > 0, Bg

ij > 0, Bh
ij > 0, Bl

ij > 0 are constants. Calculating the derivative of V12(t), we
obtain

V̇12(t) =
m∑

i=1

n∑

j=1

[
Bf

ij

(
τij

∣∣ei(t)
∣∣ –

∫ t

t–τij

∣∣ei(s)
∣∣ds

)

+ Bg
ij

∫ 0

–θij

Kij(s)
∫ 0

s

(∣∣ei(t)
∣∣ –

∣∣ei(t + ς )
∣∣)dς ds

]

≤
m∑

i=1

n∑

j=1

Cf
ij
∣∣ei(t)

∣∣ – D1, (15)

where

D1 =
m∑

i=1

n∑

j=1

[
Bf

ij

∫ t

t–τij

∣∣ei(s)
∣∣ds + Bg

ij

∫ 0

–θij

∫ t

t+s

∣∣ei(ω)
∣∣dω ds

]
.

Similarly, we have

V̇22(t) ≤
n∑

j=1

m∑

i=1

Ch
ij
∣∣zj(t)

∣∣ – D2, (16)

where

D2 =
n∑

j=1

m∑

i=1

[
Bh

ij

∫ t

t–σij

∣∣zj(s)
∣∣ds + Bl

ij

∫ 0

–γij

∫ t

t+s

∣∣zj(ω)
∣∣dω ds

]
.

Then, there exist positive scalars χ1 > 1 and χ2 > 1 such that

m∑

i=1

∣∣ei(t)
∣∣ ≤ V1(t) ≤ χ1

m∑

i=1

∣∣ei(t)
∣∣ +

χ1

E1
D1,

n∑

j=1

∣∣zj(t)
∣∣ ≤ V2(t) ≤ χ2

n∑

j=1

∣∣zj(t)
∣∣ +

χ2

E2
D2,

(17)

where V1(t) = V11(t) + V12(t), V2(t) = V21(t) + V22(t), E1 = mini∈I{Ef
i }, E2 = minj∈J {Eh

j }.
Finally, we construct the following Lyapunov–Krasovskii functional:

V (t) = V1(t) + V2(t).
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Calculating the derivative of V (t) and from (14)–(16), we obtain

V̇ (t) ≤
m∑

i=1

{
–

[
cL

i –
n∑

j=1

( Ah
ji

1 – μ
g
ji

+ Ao
ji + Al

ji

)
–

n∑

j=1

Cf
ij

]
∣∣ei(t)

∣∣ –

[
α

pL
i

–
n∑

j=1

|rji|Mf
j –

n∑

j=1

|aji|Mf
j –

n∑

j=1

∣∣bM
ji

∣∣Mg
j

]
–

ηL
i ‖e(t)‖|ei(t)|

‖e(t)‖ + �1(t)

}

– D1 +
n∑

j=1

{
–

[
dL

j –
m∑

i=1

( Af
ji

1 – μ
f
ji

+ Ar
ji + Ag

ji

)
–

m∑

i=1

Ch
ij

]
∣∣zj(t)

∣∣ –

[
α

qL
j

–
m∑

i=1

∣∣oM
ij

∣∣Mg
i –

m∑

i=1

∣∣pM
ij

∣∣Mg
i –

m∑

i=1

∣∣qM
ij

∣∣Ml
i

]
–

βL
j ‖z(t)‖|zj(t)|

‖zj(t)‖ + �2(t)

}
– D2

≤
m∑

i=1

{
–

[
cL

i + ηL
i –

n∑

j=1

( Ah
ji

1 – μ
g
ji

+ Ao
ji + Al

ji

)
–

n∑

j=1

Cf
ij

]
∣∣ei(t)

∣∣

–

[
α

pL
i –

n∑

j=1

|rji|Mf
j –

n∑

j=1

|aji|Mf
j –

n∑

j=1

∣∣bM
ji

∣∣Mg
j

]

+ ηi
∣∣ei(t)

∣∣ –
ηL

i ‖e(t)‖|ei(t)|
‖e(t)‖ + �1(t)

}
– D1 +

n∑

j=1

{
–

[
dL

j + βL
j

–
m∑

i=1

( Af
ji

1 – μ
f
ji

+ Ar
ji + Ag

ji

)
–

m∑

i=1

Ch
ij

]
∣∣zj(t)

∣∣ –

[
α

qL
j –

m∑

i=1

∣∣oM
ij

∣∣Mg
i

–
m∑

i=1

∣∣pM
ij

∣∣Mg
i –

m∑

i=1

∣∣qM
ij

∣∣Ml
i

]
+ βj

∣∣zj(t)
∣∣ –

βL
j ‖z(t)‖|zj(t)|

‖zj(t)‖ + �2(t)

}
– D2

≤ –
m∑

i=1

Ef
i
∣∣ei(t)

∣∣ –
n∑

j=1

Eh
i
∣∣zj(t)

∣∣ +
η‖e(t)‖�1(t)
‖e(t)‖ + �1(t)

+
β‖z(t)‖�2(t)
‖zj(t)‖ + �2(t)

– D1 – D2, (18)

where η = maxi∈I{ηL
i } > 0, β = maxj∈J {βL

j } > 0. By using the inequality 0 ≤ ab/(a + b) ≤ a
for any a > 0, b > 0, we have

V̇ (t) ≤ –
m∑

i=1

Ef
i
∣∣ei(t)

∣∣ –
n∑

j=1

Eh
i
∣∣zj(t)

∣∣ + η�1(t) + β�2(t) – D1 – D2. (19)

Now, taking a small enough δ such that δχ1 < E1 and δχ2 < E2, then from the inequalities
(17) and (19), we obtain

d
dt

V (t) + δV (t) ≤ –
m∑

i=1

Ef
i
∣∣ei(t)

∣∣ + η�1(t) – D1 + δ

(
χ1

m∑

i=1

∣∣ei(t)
∣∣ +

χ1

E1
D1

)

–
n∑

j=1

Eh
j
∣∣zj(t)

∣∣ + β�2(t) – D2 + δ

(
χ2

n∑

j=1

∣∣zj(t)
∣∣ +

χ2

E2
D2

)
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≤ (δχ1 – E1)
m∑

i=1

∣∣ei(t)
∣∣ +

(
δχ1

E1
– 1

)
D1 + η�1(t) – (δχ2 – E2)

n∑

j=1

∣∣zj(t)
∣∣

+
(

δχ2

E2
– 1

)
D2 + β�2(t)

≤ γ �(t),

where γ = max{η,β} and �(t) = �1(t) + �2(t). Thus, we have

V̇ (t) ≤ –δV (t) + γ �(t).

Then, from Lemma 1, the drive–response systems (2) and (3) achieve GDS under the adap-
tive nonlinear controller (5). The convergence rate of e(t) and z(t) approaching zero is δ. �

Remark 1 In this paper, compared with previous studies, both distributed time delays and
continuous time delays with nonautonomous bidirectional associative memory recurrent
neural networks (BAMRNNs) are considered. As the coefficients of autonomous RNNs
models in [20, 21] will not change with time, there are some limitations in mathematical
modeling of neural-network systems. Hence, system (2) and the results obtained in this
study can be seen as the extensions and supplements of previously known studies [18–27].

If, in H1 we assume that the neuron feedback functions fj(u), gj(u), hi(u), li(u) are globally
Lipschitz, i.e., the constants Mf

j = Mg
j = 0, Mh

i = Ml
i = 0, then the H1 turns to:

H̄1: fj(u), gj(u), hi(u), li(u) are globally Lipschitz continuous, i.e., there exist constants
Lf

j > 0, Lg
j > 0, Lh

i > 0, Ll
i > 0, such that

∣∣fj(v1) – fj(v2)
∣∣ ≤ Lf

j |v1 – v2|,
∣∣gj(v1) – gj(v2)

∣∣ ≤ Lg
j |v1 – v2|,

∣∣hi(v1) – hi(v2)
∣∣ ≤ Lh

i |v1 – v2|,
∣∣li(v1) – li(v2)

∣∣ ≤ Ll
i|v1 – v2|.

In addition, the controller (6) and inequality (5) in system (2) becomes

pi(t) = –
ηi(t)‖e(t)‖ei(t)

ei(t) + �1(t)
, i ∈ I ,

qj(t) = –
βj(t)‖z(t)‖zj(t)

zj(t) + �2(t)
, j ∈ J ,

(20)

and
⎧
⎪⎪⎨

⎪⎪⎩

cL
i + ηL

i –
∑n

j=1(
Ah

ji
1–μ

g
ji

+ Ao
ji + Al

ji) –
∑n

j=1 Cf
ij =: Ef

i > 0,

dL
j + βL

j –
∑m

i=1(
Af

ji

1–μ
f
ji

+ Ar
ji + Ag

ji) –
∑m

i=1 Ch
ij =: Eh

j > 0.
(21)

Then, from Theorem 1, we have the following corollary.

Corollary 1 Suppose H̄1, H2, H3 hold and the control gains ηi, βj satisfy the inequality (21),
then the response network (2) can be general decay synchronized with the drive network (1)
under the nonlinear controller (20).
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4 Numerical simulations
In this section, one example is given to illustrate the effectiveness of our results obtained
in this paper.

Example 1 For n = 2, m = 2, consider the following two-dimensional BAMRNNs system
with mixed time delays

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = –ci(t)xi(t) +
∑2

j=1 rji(t)fj(yj(t)) +
∑2

j=1 aji(t)fj(yj(t – τij(t)))

+
∑2

j=1 bji(t)
∫ 0

–θij
Kij(s)gj(yj(t + s)) ds + Ii(t),

ẏj(t) = –dj(t)yj(t) +
∑2

i=1 oij(t)hi(xi(t)) +
∑2

i=1 pij(t)hi(xi(t – σij(t)))

+
∑2

i=1 qij(t)
∫ 0

–γij
Hij(s)li(xi(t + s)) ds + Jj(t).

(22)

The corresponding response system of system (22) is given as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u̇i(t) = –ci(t)ui(t) +
∑2

j=1 rji(t)fj(vj(t)) +
∑2

j=1 aji(t)fj(vj(t – τij(t)))

+
∑2

j=1 bji(t)
∫ 0

–θij
Kij(s)gj(vj(t + s)) ds + Ii(t) + pi(t),

v̇j(t) = –dj(t)vj(t) +
∑2

i=1 oij(t)hi(ui(t)) +
∑2

i=1 pij(t)hi(ui(t – σij(t)))

+
∑2

i=1 qij(t)
∫ 0

–γij
Hij(s)li(ui(t + s)) ds + Jj(t) + qj(t),

(23)

where f1(u) = f2(u) = 1.11 tanh(u), g1(u) = g2(u) = 1.12 tanh(u), h1(u) = h2(u) = 1.4 tanh(u),
g1(u) = g2(u) = 1.15 tanh(u), and the other parameters of systems (22) and (23) are cho-
sen such that c1 = 1.11 + 0.15| sin(t)|, c2 = 1.12 + 0.15| sin(t)|, d1 = 1.13 + 0.15| cos(t)|,
d2 = 1.14 + 0.15| cot(t)|, r11 = 1.75 + 0.15| sin(t)|, r12 = –2.45 + 0.15| sin(t)|, r21 = –0.11 +
0.2| sin(t)|, r22 = 3.1 + 0.2| sin(t)|, a11 = –1.55 + 0.15| sin(t)|, a12 = –0.17 + 0.15| sin(t)|, a21 =
–0.12 + 0.2| sin(t)|, a22 = –2.35 + 2| sin(t)|, b11 = 0.2 + 0.15| cot(t)|, b12 = –0.2 + 0.15| cot(t)|,
b21 = 0, b22 = 0.14 + 2| cot(t)|, o11 = 2 + 0.15| cot(t)|, o12 = –0.15 + 0.15| cot(t)|, o21 = –2.5 +
0.2| cot(t)|, o22 = 3.4 + 0.2| cot(t)|, p11 = –1.55 + 0.15| cot(t)|, p12 = –0.11 + 0.15| cot(t)|,
p21 = –0.15 + 0.2| cot(t)|, p22 = –2.4 + 0.2| cot(t)|, q11 = 0.2 + 0.14| cot(t)|, q12 = 0, q21 =
–0.18+0.2| cot(t)|, q22 = 0.15+0.2| cot(t)|, τij(t) = et/(2 + et), σij(t) = et/(3+et), θij = 2/(1+ i),
γij = 1/(2 + j), and Ii = 1+| sin(t)|

10000 , Jj = 1+| cos(t)|
1000 for i, j = 1, 2.

The nonlinear feedback controllers pi(t), qj(t) are given as follows:

pi(t) = –α
p
i (t) sign

(
ei(t)

)
–

ηi(t)‖e(t)‖ei(t)
ei(t) + �1(t)

, i ∈ I ,

qj(t) = –α
q
j (t) sign

(
zj(t)

)
–

βj(t)‖z(t)‖zj(t)
zj(t) + �2(t)

, j ∈ J ,
(24)

where ei(t) = ui(t) – xi(t), zj(t) = vj(t) – yj(t) for i = 1, 2, j = 1, 2.
By choosing Lf

j >= Lg
j = Lh

i = Ll
i = 1(i, j = 1, 2), Mf

j = 0.01, Mg
j = 0.02, Mh

i = 0.024,
Ml

i = 0.03(i, j = 1, 2), and σij = τij = 1, we know that assumptions H1 and H2 are satis-
fied. Further, letting �1(t) = e–1.11t , �2(t) = e–1.12t , ψ(t) = e1.5t , and choosing α

p
1 (t) = α

p
2 (t) =

1.25 + 0.2| sin(t)|, α
q
1(t) = α

q
2(t) = 1.3 + 0.15| cot(t)|, η1(t) = 7.5 + 0.15| cot(t)|, η2(t) = 5.5 +

0.15| cot(t)|, β1(t) = 7 + 0.2| sin(t)|, β2(t) = 6 + 0.2| sin(t)|, then, the assumption H3 and
inequality (6) of Theorem 1 also hold. Therefore, from Theorem 1, the drive–response
systems (22) and (23) can achieve GDS under the controller (24). The time evolution
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Figure 1 The evaluation of synchronization error e1(t), e2(t) and z1(t), z2(t)

Figure 2 Synchronization curves of x1(t), u1(t), x2(t), u2(t) and y1(t), υ1(t), y2(t), υ2(t)

of synchronization errors and the synchronization curves with nonlinear feedback con-
troller (24) between drive–response systems (22) and (23) are shown in Figs. 1(a) and (b),
and Figs. 2(a)–(d), where the initial values of drive system (22) are chosen as x1(θ ) = 0.3,
x2(θ ) = 0.6, y2(θ ) = 4, and y2(θ ) = –4 and θ ∈ [0, 1]. Also, the initial values of response
system (23) are chosen as u1(θ ) = –0.9, u2(θ ) = 0.9, v2(θ ) = –0.7 and v2(θ ) = –0.8, and
θ ∈ [–1, 1].
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Remark 2 It is noteworthy that the convergence rate of the system is not easy to obtain in
many practical cases. For example, consider the following equation [20]

ż(t) = –
1
2

t3, t ≥ 0.

Although, we can find that the above equation is asymptotically stable, we are not in a po-
sition to estimate the convergent rate of the solution of it. However, the GDS can overcome
the above-mentioned problem. For example, in the above example, if we choose δ = 0.2,
then the convergence rate of synchronization between drive–response systems (22) and
(23) is 0.2.

5 Conclusion
In the present paper, we have studied a class of nonautonomous bidirectional associative
memory recurrent neural networks (BAMRNNs) with mixed time delays, and by using
the Lyapunov stability theory, employing useful inequality techniques, and applying the
method given in [18, 19], we obtained some new sufficient conditions on the general decay
synchronization of the drive–response systems (2) and (3). Finally, one example with nu-
merical simulations is provided to demonstrate the effectiveness and feasibility of the ob-
tained results. In comparison to previous studies, we extend the systems in [20, 21, 28, 29]
to the mixed time-delayed nonautonomous bidirectional associative memory recurrent
neural-network (BAMRNNs) system, and we also obtained some sufficient conditions on
the above-mentioned results for the considered system (2). Moreover, the GDS contains
logarithmic synchronization, exponential synchronization, polynomial synchronization,
and other synchronization as its special cases, and also the GDS of NNs have some ap-
plications, such as in image processing, combinatorial optimization, pattern recognition,
signal processing, associative memory, and other areas. Hence, system (2) and the results
of this paper are general, and they also complement and extend some previous results
[18–28].

Recently, the dynamic analysis and applications of fractional-order networks systems
with delays has been significantly developed [29–33]. Hence, we have interesting future
work such as the GDS on the fractional-order neural networks with delays.
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