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Abstract
This paper first introduces a new iterative method for weak and strong convergence
theorem to demonstrate the estimation potential for a fixed point of the cutter and
the finite general split feasibility problem. Consequently, the set of fixed points of a
quasi-nonexpansive mapping and the finite general split feasibility problem, the
constrained minimization problem, and the general constrained minimization
problems are proved using our main results. Finally, we give two numerical examples
to advocate our main results.
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1 Introduction
Throughout this article, let H , H1, and H2 be real Hilbert spaces with inner product 〈·, ·〉,
and norm ‖ ·‖. For each i = 1, 2, . . . , N , for all N ∈ N, let C, Ci be a nonempty closed convex
subset of H1 and Q, Qi be a nonempty closed convex subset of H2, and let �,� : H1 → H2

be bounded linear operators.

Definition 1 Let T : C → C be a mapping. Then
(i) The fixed point problem for the mapping T is to find x ∈ C such that

x = Tx.

We denote the fixed point set of a mapping T by F(T).
(ii) A mapping T is called nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, for all x, y ∈ C.

The split feasibility problem (SFP), is to find a point x ∈ C and �(x) ∈ Q. In 1994, the
split feasibility problem was first introduced by Censor and Elfving [1]. The SFP can be
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applied and developed in various fields, such as radiation therapy treatment planning,
sensor networks, resolution enhancement, etc. Many mathematicians have modified SFP;
see previous works [2–5].

In 2016, Latif et al. [6] introduced the Generalized multiple-set split feasibility problem
(GMSSFP), which is to find a point

x∗ ∈
p⋂

i=1

Ci and Akx∗ ∈
r⋂

i=1

Qi, k = 1, 2, . . ., m, (1)

where Ak : H1 → H2, (k = 1, 2, . . . , m) are family of bounded linear operators, {Ci}p
i=1 and

{Qi}r
i=1 are family of nonempty closed convex subsets in H1 and H2, respectively. The set

of the problem (1) is denoted by � = {x ∈ ⋂p
i=1 Ci|Akx ∈ ⋂r

i=1 Qi, k = 1, 2, . . . , m}.
Applying the viscosity approximation method for solving the GMSSFP, Latif et al. [6]

proved the best following result;

Theorem 1 Let H and K be real Hilbert spaces, Ak : H → K , k = 1, 2 be two bounded linear
operator, and let {Ci}r

i=1 be a family of nonempty closed convex subsets in H and {Qi}r
i=1 be

a family of nonempty closed convex subsets in K . Assume that GMSSFP has a nonempty
solution set �. Suppose h is a contraction of H into itself with constant b ∈ (0, 1) and B is a
strongly positive bounded linear self-adjoint operator on H with coefficient γ̄ and 0 < γ < γ̄

b .
Let {xn} be a sequence generated by x0 ∈ H and by

⎧
⎪⎪⎨

⎪⎪⎩

yn = αnxn +
∑r

i=1 βn,iPCi (I – λn,iA∗
1(I – PQi )A1)xn

+
∑r

i=1 γn,iPCi (I – λn,iA∗
2(I – PQi )A2)xn,

xn+1 = θnγ h(xn) + (I – θnB)yn, ∀n ≥ 0,

where αn +
∑r

i=1 βn,i +
∑r

i=1 γn,i = 1 and the sequences {αn}, {βn,i}, {γn,i}, {θn} and {λn,i} satisfy
the following conditions:

(i) lim infn αnβn,i > 0 and lim infn αnγn,i > 0, for each 1 ≤ i ≤ r,
(ii) limn→∞ θn = 0 and

∑∞
n=0 θn = ∞,

(iii) for each 1 ≤ i ≤ r, 0 < λn,i < min{ 2
‖A1‖2 , 2

‖A2‖2 } and

0 < lim inf
n→∞ λn,i ≤ lim sup

n→∞
λn,i < min

{
2

‖A1‖2 ,
2

‖A2‖2

}
.

Then, the sequences {xn} converges strongly to x∗ ∈ � which solves the variational
inequality;

〈
(B – γ h)x∗, x – x∗〉 ≥ 0, ∀x ∈ �.

The general split feasibility problem introduced by Kangtunyakarn [5], which is to find
a point

x∗ ∈ C and �
(
x∗),�

(
x∗) ∈ Q, (2)

where �,� : H1 → H2 are bounded linear operators. The set of the problem (2) is de-
noted by 
 = {x ∈ C : �(x),�(x) ∈ Q}. Moreover, if we put � ≡ � , then the problem (2)
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is reduced to the SFP. Furthermore, under some control conditions, Kangtunyakarn [5]
proved a strong convergence theorem for finding an element of the set of solutions to the
variational inequality problem and the general split feasibility problem as follows:

Theorem 2 Let A, B : H1 → H2 be bounded linear operators with A∗, B∗ that are adjoints
of A and B, respectively, and L = max{LA, LB}, where LA and LB are spectral radius of A∗A
and B∗B, and let D : C → H1 be d-inverse strongly monotone. Assume that 
∩VI(C, D) �= ∅.
Let the sequence {xn} generated by x1 ∈ C and

xn+1 = αnf (xn) + βnPC(I – λD)xn + γnPC

(
I – a

(
A∗(I – PQ)A

2
+

B∗(I – PQ)B
2

))
xn,

for all n ∈ N, where {αn}, {βn}, {γn} ⊆ (0, 1) with αn + βn + γn = 1 and f : C → C is α-
contractive mapping with α ∈ (0, 1). Suppose the following conditions hold:

(i) limn→∞ αn = 0,
∑∞

n=1 αn = ∞,
(ii) c ≤ βn, γn ≤ d for some real number c, d with c, d > 0,

(iii) λ ∈ (0, 2d), a ∈ (0, 2
L ),

(iv)
∑∞

n=1 |αn – αn–1|,∑∞
n=1 |βn – βn–1| < ∞.

Then the sequence {xn} converges strongly to x0 = P
∩VI(C,D)f (x0).

Inspired and motivated by Kangtunyakarn [5], we proposed problems more general than
(2), i.e. find a point

x∗ ∈
N⋂

i=1

Ci and �
(
x∗),�

(
x∗) ∈

N⋂

i=1

Qi, (3)

where �,� : H1 → H2 are bounded linear operators. The set of solution of (3) is denoted
by ξ = {x ∈ ⋂N

i=1 Ci : �(x),�(x) ∈ ⋂N
i=1 Qi}. If we choose N = 1 in (3), then (3) is reduced to

the general split feasibility problem. Obviously, problem (3) is more general than the prob-
lem (2) and the SFP, which can apply across many disciplines in mathematics and sciences,
such as economics, finance, network analysis transportation, elasticity, and optimization.
In the following sections, we construct a new process using techniques of solving the cut-
ter and SFP to find solutions to problems (3). Moreover, if we put � ≡ � in (3), then we
have

x∗ ∈
N⋂

i=1

Ci and �
(
x∗) ∈

N⋂

i=1

Qi. (4)

If we put p = r and k = 1 in (1), then problem (1) is reduced to the problem (4). It can
be seen that both problems (1) and (3) can be reduced to problem (4). However, we have
provided an example of the difference between problems (1) and (3) in Remark 1.

Example 1 Let R be the set of real numbers and �, � be mappings from R to R defined
by �(x) = x

2 and �(x) = x
3 , respectively. For each i = 1, 2, . . . , N , let Ci = [i, 100i] and Qi =

[ i
3 , 50i]. We choose N = 10. Then, we have 10 ∈ ξ .

Remark 1 Let Ci and Qi define as the same in Example 1. Let k = 1, 2, A1(x) = x
2 and A2(x) =

x
3 . If we choose p = 10 and r = 20 in (1), we have 10 ∈ ⋂10

i=1 Ci but A1(10), A2(10) /∈ ⋂20
i=1 Qi.

This remark shows an example where problem (1) fails while problem (3) is applicable.
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Given x, y ∈ H , let

H(x, y) :=
{

z ∈ H : 〈z – y, x – y〉 ≤ 0
}

,

be the half-space generated by (x, y). The boundary ∂H(x, y) of H(x, y) is

∂H(x, y) =
{

z ∈ H : 〈z – y, x – y〉 = 0
}

.

It is clear that ∂H(x, y) is a closed and convex subset of H .
A mapping T : H → H is called a cutter if

〈z – Tx, x – Tx〉 ≤ 0,

for all x ∈ H and z ∈ F(T). The cutter is fundamental to applied mathematics and op-
timization theory. For instance, the resolvent of a maximal monotone operator and the
subgradient projectors is the cutter. Besides, the metric projection is the cutter with an es-
sential tool for solving the variational inequality problem (VIP), the system of variational
inequality problem, the subgradient extragradient method, etc.

Remark 2 Recently, Cegielski and Censor [7] proposed a new name “cutter” expresses the
fact that for any x /∈ F(T), the hyperplane H(x – Tx, 〈Tx, x – Tx〉) cuts the space into two
half-spaces, one of which contains the point x while the other one contains the subset
F(T).

Over the past decade, many researchers introduced the new problem and iteration de-
veloped and modified the cutter; see more detail [8, 9].

The following Remark 3 includes important properties related to the cutter.

Remark 3
(i) If T is firmly nonexpansive, then T is a cutter.

(ii) T is a cutter if and only if 2T – I is quasi-nonexpansive (i.e. a mapping G : H → H is
called to be quasi nonexpansive if F(G) is nonempty and ‖Gx – y‖ ≤ ‖x – y‖, for all
x ∈ H and y ∈ F(G)). This property is important for proving Theorem 5 in the
Application.

In 2013, Qiao-Li and Songnian [8] introduced a projection regularized Kranoselski-
Mann iteration for a cutter T : H → H as follows:

⎧
⎨

⎩
xn+1 = (1 – βn)PH(xn ,Txn)∩H(vn ,Tvn)vn + βnTvn,

vn = (1 – αn)xn,
(5)

where {αn}, {βn} ⊂ [0, 1] and the sequence generated by (5) converges strongly to the least
norm element of F(T).

By concept Kangtunyakarn [5] and Qiao-Li and Songnian [8], we introduce the new
iterative method for proving weak and strong convergence theorem of {xn} generated by
the following algorithm:
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Algorithm 1.1 Given x1 ∈ H1 and let the sequence {xn} be define by

xn+1 = ηnxn + αnPH(xn ,Txn)xn + βnTxn

+ γn

N∑

i=1

aiPCi

(
I – a

(
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

))
xn,

where �,� : H1 → H2 are bounded linear operators with �∗, �∗ that are adjoints of �

and � , respectively, L = max {L�, L�} where L�, L� are spectral radius of �∗� and �∗� ,
a ∈ (0, 2

L ), T : H1 → H1 is a cutter with I – T is demiclosed at 0, and the sequences {ηn},
{αn}, {βn}, {γn} are in (0, 1) with ηn + αn + βn + γn = 1.

Our paper is organized as follows. In Sect. 2, we first recall some basic definitions, and
we give the lemma, which is crucial for proving our main results. In Sect. 3, we prove weak
and strong convergence theorem for finding a common element of the set of fixed points
of the cutter and the finite general split feasibility problem. In Sect. 4, we apply our main
theorem to prove a weak and strong convergence theorem for finding solutions to the
constrained minimization problem and the general constrained minimization problem.
Moreover, we prove weak and strong convergence theorem for finding a common element
of the set of fixed points of a quasi-nonexpansive mapping and the set of the finite general
split feasibility problem. The last section gives two numerical examples to support our
main result.

2 Preliminaries
This section provides a lemma that will be used for our main result in the next section.

We write xk ⇀ x to indicate that the sequence {xk}∞k=0 converges weakly to x and xk → x
to indicate that the sequence {xk}∞k=0 converges strongly to x. For each point x ∈ H , there
exists a unique nearest point in C, denoted by PC(x). That is,

∥∥x – PC(x)
∥∥ ≤ ‖x – y‖, ∀y ∈ C.

The mapping PC : H → C is called the metric projection of H onto C. It is well known that
PC is a firmly nonexpansive mapping of H onto C. From Remark 3, it obvious that PC is a
cutter. Moreover, if C is a hyperplane, then

‖x – y‖2 ≥ ∥∥x – PC(x)
∥∥2 +

∥∥y – PC(x)
∥∥2, ∀x ∈ H , y ∈ C.

The following lemma is also well-known. It is important for solving VIP.

Lemma 1 ([10]) If A is a mapping of C into H and λ > 0, then F(PC(I – λA)) = VI(C, A).

Lemma 2 (See [11]) Let A, B : C → H be α and β-inverse strongly monotone mappings,
respectively, with α,β > 0 and VI(C, A) ∩ VI(C, B) �= ∅. Then

VI
(
C, aA + (1 – a)B

)
= VI(C, A) ∩ VI(C, B), ∀a ∈ (0, 1).

Furthermore, if 0 < γ < min{2α, 2β}, we have I – γ (aA + (1 – a)B) is a nonexpansive map-
ping.
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Lemma 3 (See [12]) Let D be a closed convex subset of a strictly convex Banach space E.
Let {Tn : n ∈N} be a sequence of nonexpansive mappings on D. Suppose that

⋂∞
n=1 F(Tn) is

nonempty. Let {λn} be a sequence of positive numbers with
∑∞

n=1 λn = 1. Then a mapping S
on D defined by

S(x) =
∞∑

n=1

λnTnx,

for x ∈ D is well defined, nonexpansive, and F(S) =
⋂∞

n=1 F(Tn) hold.

Lemma 4 (See [13]) Let {σn} and {γn} be nonnegative sequences satisfying
∑∞

n=1 σn < ∞
and γn+1 ≤ γn + σn, for all n = 1, 2, . . . . Then {γn} is a convergent sequence.

Lemma 5 (Demiclosedness principle) Let T : C → C be a nonexpansive mapping with
F(T) �= ∅. If {xn} is a sequence in C that converges weakly to x and if {(I – T)xn} converges
strongly to y, then (I – T)x = y. In particular, if y = 0, then x ∈ F(T).

Lemma 6 (See [14]) Let the sequence {xk}∞k=0 ⊂ H be Fejér-monotone with respect to C, i.e.,
for every u ∈ C,

‖xk+1 – u‖ ≤ ‖xk – u‖, ∀k ≥ 0.

Then {PC(xk)}∞k=0 converges strongly to some z ∈ C.

The following lemmas are crucial for proving our main theorem.

Lemma 7 For each i = 1, 2, . . . , N , for all N ∈ N, let Ci, Qi be a nonempty closed convex
subset of H1 and H2, respectively, and let �,� : H1 → H2 be bounded linear operators with
�∗, �∗ that are adjoints of � and � , respectively, with ξ �= ∅. Assume that L� and L� are
spectral radius of �∗� and �∗� with L = max{L�, L�}, and

∑N
i=1 ai = 1. Then

ξ =
N⋂

i=1


i = F

(
P⋂N

i=1 Ci

(
I –

N∑

i=1

ai

(
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

)))
.

Proof Firstly, show that ξ ⊆ ⋂N
i=1 
i.

Let x∗ ∈ ξ , we have x∗ ∈ ⋂N
i=1 Ci and �(x∗),�(x∗) ∈ ⋂N

i=1 Qi, it follows that

x∗ ∈ Ci, for all i = 1, 2, . . . , N , (6)

and

�
(
x∗),�

(
x∗) ∈ Qi, for all i = 1, 2, . . . , N . (7)

From (6) and (7), we have

x∗ ∈ 
i, for all i = 1, 2, . . . , N .

Hence, x∗ ∈ ⋂N
i=1 
i.
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Secondly, show that
⋂N

i=1 
i ⊆ ξ .
Let x∗ ∈ ⋂N

i=1 
i, then x∗ ∈ 
i, for all i = 1, 2, . . . , N , we have

x∗ ∈ Ci and �
(
x∗),�

(
x∗) ∈ Qi, for all i = 1, 2, . . . , N ,

then x∗ ∈ ⋂N
i=1 Ci and �(x∗),�(x∗) ∈ ⋂N

i=1 Qi.
Hence, x∗ ∈ ξ .
Thirdly, show that ξ ⊆ F(P⋂N

i=1 Ci
(I –

∑N
i=1 ai(

�∗(I–PQi )�
2 + �∗(I–PQi )�

2 ))).

Let x∗ ∈ ξ , we have x∗ ∈ ⋂N
i=1 Ci and �(x∗),�(x∗) ∈ ⋂N

i=1 Qi.
It implies that

(I – PQi )�
(
x∗) = 0 = (I – PQi )�

(
x∗), for all i = 1, 2, . . . , N .

Then

(I – PQi )�(x∗)
2

=
(I – PQi )�(x∗)

2
= 0, for all i = 1, 2, . . . , N .

It follows that

x∗ = P⋂N
i=1 Ci

(
I –

N∑

i=1

ai

(
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

))
x∗.

Hence, x∗ ∈ F(P⋂N
i=1 Ci

(I –
∑N

i=1 ai(
�∗(I–PQi )�

2 + �∗(I–PQi )�
2 ))).

Finally, show that F(P⋂N
i=1 Ci

(I –
∑N

i=1 ai(
�∗(I–PQi )�

2 + �∗(I–PQi )�
2 ))) ⊆ ξ .

Let x∗ = P⋂N
i=1 Ci

(I –
∑N

i=1 ai(
�∗(I–PQi )�

2 + �∗(I–PQi )�
2 ))x∗, where

∑N
i=1 ai = 1 and let w ∈ ξ ,

we have w ∈ ⋂N
i=1 Ci and �(w),�(w) ∈ ⋂N

i=1 Qi.
Then, we have

∥∥x∗ – w
∥∥2

=

∥∥∥∥∥P⋂N
i=1 Ci

(
I –

N∑

i=1

ai

(
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

))
x∗ – w

∥∥∥∥∥

2

≤
∥∥∥∥∥

(
I –

N∑

i=1

ai

(
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

))
x∗ – w

∥∥∥∥∥

2

=
∥∥x∗ – w

∥∥2 – 2

〈
x∗ – w,

N∑

i=1

ai

(
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

)
x∗

〉

+

∥∥∥∥∥

N∑

i=1

ai

(
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

)
x∗

∥∥∥∥∥

2

≤ ∥∥x∗ – w
∥∥2 –

N∑

i=1

ai
〈
x∗ – w,

(
�∗(I – PQi )� + �∗(I – PQi )�

)
x∗〉

+
N∑

i=1

ai

∥∥∥∥

(
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

)
x∗

∥∥∥∥
2
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≤ ∥∥x∗ – w
∥∥2

–
N∑

i=1

ai
(〈
�

(
x∗) – �(w), (I – PQi )�

(
x∗)〉 +

〈
�

(
x∗) – �(w), (I – PQi )�

(
x∗)〉)

+
∑N

i=1 ai

2
(∥∥�∗(I – PQi )�

(
x∗)∥∥2 +

∥∥�∗(I – PQi )�
(
x∗)∥∥2)

=
∥∥x∗ – w

∥∥2

–
N∑

i=1

ai
(〈
�

(
x∗) – PQi�

(
x∗), (I – PQi )�

(
x∗)〉 +

〈
PQi�

(
x∗) – �(w), (I – PQi )�

(
x∗)〉

+
〈
�

(
x∗) – PQi�

(
x∗), (I – PQi )�

(
x∗)〉 +

〈
PQi�

(
x∗) – �(w), (I – PQi )�

(
x∗)〉)

+
∑N

i=1 ai

2
(∥∥�∗(I – PQi )�

(
x∗)∥∥2 +

∥∥�∗(I – PQi )�
(
x∗)∥∥2)

≤ ∥∥x∗ – w
∥∥2 –

N∑

i=1

ai
(∥∥(I – PQi )�

(
x∗)∥∥2 +

∥∥(I – PQi )�
(
x∗)∥∥2)

+
L

∑N
i=1 ai

2
(∥∥(I – PQi )�

(
x∗)∥∥2 +

∥∥(I – PQi )�
(
x∗)∥∥2)

=
∥∥x∗ – w

∥∥2 –
(

1 –
L
2

) N∑

i=1

ai
(∥∥(I – PQi )�

(
x∗)∥∥2 +

∥∥(I – PQi )�
(
x∗)∥∥2).

It implies that �(x∗) = PQi�(x∗) and �(x∗) = PQi�(x∗) ∈ ⋂N
i=1 Qi.

It follows that

x∗ = P⋂N
i=1 Ci

(
I –

N∑

i=1

ai

(
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

))
x∗ = P⋂N

i=1 Ci
x∗ ∈

N⋂

i=1

Ci.

Hence, x∗ ∈ ξ . �

3 Main results
In this section, we prove weak and strong convergence theorem for finding a common el-
ement of the set of fixed points of the cutter and the finite general split feasibility problem.

Theorem 3 For every i = 1, 2, . . . , N , let Ci, Qi, �, � , �∗, and �∗ define as the same in
Lemma 7. Let T : H1 → H1 be a cutter with ϕ = F(T) ∩ ξ �= ∅ and I – T is demiclosed at 0.
For given x1 ∈ H1 and let the sequence {xn} be generated by

xn+1 = ηnxn + αnPH(xn ,Txn)xn + βnTxn

+ γn

N∑

i=1

aiPCi

(
I – a

(
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

))
xn, (8)

for all n, N ∈N, where {ηn}, {αn}, {βn}, {γn} ⊆ (0, 1) with ηn +αn +βn +γn = 1, a ∈ (0, 2
L ), and

parameters L, L�, L� define as the same in Lemma 7. Suppose that the following conditions
hold:

(i) c ≤ ηn,αn,βn, γn ≤ d for some real number c, d with c, d > 0,
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(ii)
∑N

i=1 ai = 1, where ai > 0 for all N ∈N.
Then, the sequence {xn} converges weakly to z∗ ∈ ϕ and furthermore,

z∗ = lim
n→∞ Pϕ(xn).

Proof Putting ∇gi = �∗(I–PQi )�
2 + �∗(I–PQi )�

2 , for all i = 1, 2, . . . , N . First, we show that ∇gi

are 1
L -inverse strongly monotone.

Let x, y ∈ Ci. Since ∇gi = �∗(I–PQi )�
2 + �∗(I–PQi )�

2 , for all i = 1, 2, . . . , N , we have

∥∥∇gi(x) – ∇gi(y)
∥∥2

=
∥∥∥∥
�∗(I – PQi )�(x)

2
+

�∗(I – PQi )�(x)
2

–
�∗(I – PQi )�(y)

2
–

�∗(I – PQi )�(y)
2

∥∥∥∥
2

≤ 1
2
∥∥�∗(I – PQi )�(x) – �∗(I – PQi )�(y)

∥∥2

+
1
2
∥∥�∗(I – PQi )�(x) – �∗(I – PQi )�(y)

∥∥2

≤ L
2
∥∥(I – PQi )�(x) – (I – PQi )�(y)

∥∥2 +
L
2
∥∥(I – PQi )�(x) – (I – PQi )�(y)

∥∥2. (9)

For each i = 1, 2, . . . , N . From property of PQi , we have

∥∥(I – PQi )�(x) – (I – PQi )�(y)
∥∥2

=
〈
(I – PQi )�(x) – (I – PQi )�(y),�(x) – �(y) –

(
PQi�(x) – PQi�(y)

)〉

=
〈
�∗(I – PQi )�(x) – �∗(I – PQi )�(y), x – y

〉

–
〈
(I – PQi )�(x), PQi�(x) – PQi�(y)

〉
+

〈
(I – PQi )�(y), PQi�(x) – PQi�(y)

〉

≤ 〈
�∗(I – PQi )�(x) – �∗(I – PQi )�(y), x – y

〉
. (10)

Using the same method as (10), we have

∥∥(I – PQi )�(x) – (I – PQi )�(y)
∥∥2 ≤ 〈

�∗(I – PQi )�(x) – �∗(I – PQi )�(y), x – y
〉
. (11)

Substituting (10) and (11) into (9), we have

∥∥∇gi(x) – ∇gi(y)
∥∥2

≤ L
2
∥∥(I – PQi )�(x) – (I – PQi )�(y)

∥∥2 +
L
2
∥∥(I – PQi )�(x) – (I – PQi )�(y)

∥∥2

≤ L
2
〈
�∗(I – PQi )�(x) – �∗(I – PQi )�(y), x – y

〉

+
L
2
〈
�∗(I – PQi )�(x) – �∗(I – PQi )�(y), x – y

〉

= L
〈
�∗(I – PQi )�(x)

2
+

�∗(I – PQi )�(x)
2

–
(

�∗(I – PQi )�(y)
2

+
�∗(I – PQi )�(y)

2

)
, x – y

〉
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= L
〈∇gi(x) – ∇gi(y), x – y

〉
.

So, we have ∇gi is 1
L -inverse strongly monotone.

For each i = 1, 2, . . . , N . From the definition of ∇gi, we have

∥∥PCi (I – a∇gi)x – PCi (I – a∇gi)y
∥∥2

≤ ∥∥x – y – a
(∇gi(x) – ∇gi(y)

)∥∥2

= ‖x – y‖2 – 2a
〈
x – y,∇gi(x) – ∇gi(y)

〉
+ a2∥∥∇gi(x) – ∇gi(y)

∥∥2

≤ ‖x – y‖2 –
2a
L

∥∥∇gi(x) – ∇gi(y)
∥∥2 + a2∥∥∇gi(x) – ∇gi(y)

∥∥2

= ‖x – y‖2 – a
(

2
L

– a
)∥∥∇gi(x) – ∇gi(y)

∥∥2

≤ ‖x – y‖2, (12)

for all x, y ∈ Ci.
Let z ∈ F(T) ∩ ξ .
Step 1. We show that {xn} is bounded.
From (8), (12), and Lemma 3, we have

‖xn+1 – z‖

=

∥∥∥∥∥ηnxn + αnPH(xn ,Txn)xn + βnTxn + γn

N∑

i=1

aiPCi (I – a∇gi)xn – z

∥∥∥∥∥

≤ ηn‖xn – z‖ + αn‖PH(xn ,Txn)xn – z‖ + βn‖Txn – z‖

+ γn

∥∥∥∥∥

N∑

i=1

aiPCi (I – a∇gi)xn – z

∥∥∥∥∥

≤ ηn‖xn – z‖ + αn‖xn – z‖ + βn‖xn – z‖ + γn

∥∥∥∥∥

N∑

i=1

aiPCi (I – a∇gi)xn – z

∥∥∥∥∥

= (ηn + αn + βn)‖xn – z‖ + γn

∥∥∥∥∥

N∑

i=1

aiPCi (I – a∇gi)xn –
N∑

i=1

aiPCi (I – a∇gi)z

∥∥∥∥∥

= (ηn + αn + βn)‖xn – z‖ + γn

N∑

i=1

ai
∥∥PCi (I – a∇gi)xn – PCi (I – a∇gi)z

∥∥

≤ (ηn + αn + βn)‖xn – z‖ + γn‖xn – z‖
= ‖xn – z‖, (13)

then {xn} is Fejér monotone with respect to ϕ, for all z ∈ ϕ.
Applying Lemma 4, we have that limn→∞ ‖xn – z‖ exists. In particular, this implies that

{xn} is bounded.
Step 2. We show that limn→∞ ‖Txn – xn‖ = 0 and limn→∞ ‖xn –

∑N
i=1 aiPCi (I – a∇gi)xn‖ =

0.
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From (8) and (12), we have

‖xn+1 – z‖2

=

∥∥∥∥∥ηnxn + αnPH(xn ,Txn)xn + βnTxn + γn

N∑

i=1

aiPCi (I – a∇gi)xn – z

∥∥∥∥∥

2

=

∥∥∥∥∥ηn(xn – z) + αn(PH(xn ,Txn)xn – z) + βn(Txn – z)

+ γn

( N∑

i=1

aiPCi (I – a∇gi)xn – z

)∥∥∥∥∥

2

≤ ‖xn – z‖2 – ηnβn‖xn – Txn‖2 – ηnγn

∥∥∥∥∥xn –
N∑

i=1

aiPCi (I – a∇gi)xn

∥∥∥∥∥

2

,

which yields that

ηnβn‖xn – Txn‖2 + ηnγn

∥∥∥∥∥xn –
N∑

i=1

aiPCi (I – a∇gi)xn

∥∥∥∥∥

2

≤ ‖xn – z‖2 – ‖xn+1 – z‖2. (14)

From (14) and limn→∞(‖xn – z‖2 – ‖xn+1 – z‖2) = 0, then

lim
n→∞‖xn – Txn‖ = lim

n→∞

∥∥∥∥∥xn –
N∑

i=1

aiPCi (I – a∇gi)xn

∥∥∥∥∥ = 0. (15)

Step 3. We show that the sequences {xn} converge weakly to z∗ ∈ ϕ.
Since {xn} is bounded by Step 1, there exists a subsequence {xnk } of {xn} that converges

weakly to some element of z̄.
By Lemma 5 and (15), we obtain

z̄ = Tz̄,

then

z̄ ∈ F(T). (16)

Assume that z̄ /∈ ξ .
By Lemma 7 and Lemma 3, we also have z̄ �= ∑N

i=1 aiPCi (I – a∇gi)z̄.
From (12), (15), and Opial’s property, we have

lim inf
k→∞

‖xnk – z̄‖ < lim inf
k→∞

∥∥∥∥∥xnk –
N∑

i=1

aiPCi (I – a∇gi)z̄

∥∥∥∥∥

≤ lim inf
k→∞

(∥∥∥∥∥xnk –
N∑

i=1

aiPCi (I – a∇gi)xnk

∥∥∥∥∥

+

∥∥∥∥∥

N∑

i=1

aiPCi (I – a∇gi)xnk –
N∑

i=1

aiPCi (I – a∇gi)z̄

∥∥∥∥∥

)
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≤ lim inf
k→∞

‖xnk – z̄‖.

This is a contradiction, then we have

z̄ ∈ ξ . (17)

From (16) and (17), thus

z̄ ∈ ϕ.

Next, we will show that the entire sequence {xn} weakly converges to z̄.
Since {xn} is bounded by Step 1, there exists a subsequence {xnj} of {xn} that converges

weakly to some element of z̄′. Assume that xnj ⇀ z̄′ as j → ∞, with z̄′ �= z̄ and z̄′ ∈ ϕ.
By the Opial condition, we have

lim
n→∞‖xn – z̄‖ = lim inf

k→∞
‖xnk – z̄‖

< lim inf
k→∞

∥∥xnk – z̄′∥∥

= lim
n→∞

∥∥xn – z̄′∥∥

< lim inf
j→∞ ‖xnj – z̄‖

= lim
n→∞‖xn – z̄‖,

and this is a contradiction, thus z̄′ = z̄. This implies that the sequence {xn}∞n=0 converges
weakly to the same point z̄ ∈ ϕ.

Finally, if we take

un = Pϕxn,

then by (13) and Lemma 6, we see that {Pϕxn}∞n=0 converges strongly to some z∗ ∈ ϕ.
Since Pϕ is a cutter and the convergences of {xn} and {un}, we have

〈
z̄ – z∗, z∗ – z̄

〉 ≥ 0,

and hence z∗ = z̄, this completes the proof. �

Corollary 1 For every i = 1, 2, . . . , N , let Ci, Qi, �, �∗, and T define as the same in The-
orem 3. Assume that ϕ = F(T) ∩ 
� �= ∅, where 
� = {x ∈ ⋂N

i=1 Ci|�(x) ∈ ⋂N
i=1 Qi,∀i =

1, 2, . . . , N}. For given x1 ∈ H1 and let the sequence {xn} be generated by

xn+1 = ηnxn + αnPH(xn ,Txn)xn + βnTxn + γn

N∑

i=1

aiPCi

(
I – a

(
�∗(I – PQi )�

))
xn, (18)

for all n, N ∈N, where {ηn}, {αn}, {βn}, {γn} ⊆ (0, 1) with ηn +αn +βn +γn = 1, a ∈ (0, 2
L ), and

L is spectral radius of �∗�. Suppose that the following conditions hold:
(i) c ≤ ηn,αn,βn, γn ≤ d for some real number c, d with c, d > 0,

(ii)
∑N

i=1 ai = 1, where ai > 0 for all N ∈N.
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Then, the sequence {xn} converges weakly to z∗ ∈ ϕ and furthermore,

z∗ = lim
n→∞ Pϕ(xn).

Proof Putting � ≡ � , in Theorem 3, we obtain the desired conclusion. �

The following corollary is a modification in terms of the iterative process of Theorem 1.

Corollary 2 For every i = 1, 2, . . . , N , let Ci, Qi, �, � , �∗, �∗, T , all parameters, and the
conditions (i) and (ii) define as the same in Theorem 3. Assume that ϕ = F(T) ∩ ξ �= ∅, and
I – T is demiclosed at 0. For given x1 ∈ H1 and let the sequence {xn} be generated by

xn+1 = ηnxn + αnPH(xn ,Txn)xn + βnTxn + γn

( N∑

i=1

aitPCi

(
I – a

(
�∗(I – PQi )�

))

+
N∑

i=1

ai(1 – t)PCi

(
I – a

(
�∗(I – PQi )�

))
)

xn,

for all n, N ∈ N. where {ηn}, {αn}, {βn}, {γn} ⊆ (0, 1) with ηn + αn + βn + γn = 1, t ∈ (0, 1),
a ∈ (0, 2

L ), and parameters L, L�, L� define as the same in Lemma 7. Suppose the following
conditions hold:

(i) c ≤ ηn,αn,βn, γn ≤ d for some real number c, d with c, d > 0,
(ii)

∑N
i=1 ai = 1, where ai > 0 for all N ∈N.

Then, the sequence {xn} converges weakly to z∗ ∈ ϕ and furthermore,

z∗ = lim
n→∞ Pϕ(xn).

Proof For each i = 1, 2, . . . , N . From Lemma 2, then we get

ξ ≡ F
(

PCi

(
I – a

(
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

)))

= VI
(

Ci,
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

)

= VI
(
Ci,�∗(I – PQi )�

) ∩ VI
(
Ci,�∗(I – PQi )�

)

= F
(
PCi

(
I – λi

(
�∗(I – PQi )�

))) ∩ F
(
PCi

(
I – λi

(
�∗(I – PQi )�

)))
,

for all N ∈ N and λi > 0. Applying the above and Theorem 3, we obtain the desired con-
clusion. �

4 Application
4.1 The general constrained minimization problem
Let � : H1 → H2 be bounded linear operator, and let g : H1 →R be a continuous differen-
tiable function. The minimization problem:

min
x∈C

g(x) :=
1
2
∥∥(I – PQ)�(x)

∥∥2,

is to find a point x∗ ∈ C such that g(x∗) ≤ g(x), for all x ∈ C.
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In 2019, Kangtunyakarn [5] introduced the general constrained minimization problem
as follows:

min
x∈C

g(x) :=
‖(I – PQ)�(x)‖2

4
+

‖(I – PQ)�(x)‖2

4
. (19)

The set of all solution of (19) is denoted by 
g = {x∗ ∈ C : g(x∗) ≤ g(x),∀x ∈ C}.
Lemma 8, Kangtunyakarn [5] shows the relationship between the general split feasibility

problem and the general constrained minimization problem.

Lemma 8 (See [5]) Let �, � , �∗ and �∗ define as the same in Lemma 7. Let g : H1 → R

be a continuous differentiable function defined by g(x) = ‖(I–PQ)�(x)‖2

4 + ‖(I–PQ)�(x)‖2

4 , for all
x ∈ H1. If 
 �= ∅, then 
 = 
g .

Remark 4 From Lemma 7 and Lemma 8, we have ξ =
⋂N

i=1 
gi .

Theorem 4 For each i = 1, 2, . . . , N , let Ci, Qi, �, � , �∗, and �∗ define as the same in
Lemma 7. Let the function gi : H1 → R be differentiable continuous function defined by
gi(x) = ‖(I–PQi )�(x)‖2

4 + ‖(I–PQi )�(x)‖2

4 , for all i = 1, 2, . . . , N . Let T : H1 → H1 be a cutter with
ϕ = F(T) ∩⋂N

i=1 
gi �= ∅ and I – T is demiclosed at 0. For given x1 ∈ H1 and let the sequence
{xn} be generated by

xn+1 = ηnxn + αnPH(xn ,Txn)xn + βnTxn + γn

N∑

i=1

aiPCi (I – a∇gi)xn, (20)

for all n, N ∈ N, where {ηn}, {αn}, {βn}, {γn} ⊆ (0, 1) with ηn + αn + βn + γn = 1, a ∈ (0, 2
L ),

and parameters L, L�, L� define as the same in Lemma 7. Suppose the following conditions
hold:

(i) c ≤ ηn,αn,βn, γn ≤ d for some real number c, d with c, d > 0,
(ii)

∑N
i=1 ai = 1, where ai > 0 for all N ∈N.

Then, the sequence {xn} converges weakly to z∗ ∈ ϕ and furthermore,

z∗ = lim
n→∞ Pϕ(xn).

Proof We observe that ∇gi = ‖(I–PQi )�‖2

2 + ‖(I–PQi )�‖2

2 , where �∗ and �∗ are adjoint of �

and � , respectively, and ∇gi is a gradient of gi. From Remark 4.2 [5], we have
⋂N

i=1 
gi =
⋂N

i=1 VI(C,∇gi). By Theorem 3, Lemma 4, and Remark 4.2 [5], we can conclude Theo-
rem 4. �

Corollary 3 For each i = 1, 2, . . . , N , let Ci, Qi, �, and �∗ define as the same in Lemma 7.
Let the function gi : H1 → R be differentiable continuous function defined by gi(x) =
‖(I–PQi )�(x)‖2

2 , for all i = 1, 2, . . . , N . Let T : H1 → H1 is a cutter with ϕ = F(T) ∩⋂N
i=1 
gi �= ∅,

and I – T is demiclosed at 0. For given x1 ∈ H1 and let the sequence {xn} be generated by

xn+1 = ηnxn + αnPH(xn ,Txn)xn + βnTxn + γn

N∑

i=1

aiPCi (I – a∇gi)xn, (21)
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for all n, N ∈ N, where {ηn}, {αn}, {βn}, {γn} ⊆ (0, 1) with ηn + αn + βn + γn = 1, a ∈ (0, 2
L�

),
and L� is spectral radius of �∗�. Suppose the following conditions hold:

(i) c ≤ ηn,αn,βn, γn ≤ d for some real number c, d with c, d > 0,
(ii)

∑N
i=1 ai = 1, where ai > 0 for all N ∈N.

Then, the sequence {xn} converges weakly to z∗ ∈ ϕ and furthermore,

z∗ = lim
n→∞ Pϕ(xn).

Proof Putting � ≡ � , in Theorem 4, we obtain the desired conclusion. �

Theorem 5 For each i = 1, 2, . . . , N , let Ci, Qi, �, � , �∗, and �∗ define as the same in
Lemma 7. Let U : H1 → H1 be a quasi nonexpansive mapping with ϕ = F(U) ∩ ξ �= ∅, and
I – U is demiclosed at 0. For given x1 ∈ H1 and let the sequence {xn} be generated by

xn+1 = ηnxn + αnPH(xn , 1
2 (U+I)xn)xn + βn

(
1
2

(U + I)
)

xn

+ γn

N∑

i=1

aiPCi

(
I – a

(
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

))
xn, (22)

for all n, N ∈ N, where {ηn}, {αn}, {βn}, {γn} ⊆ (0, 1) with ηn + αn + βn + γn = 1, a ∈ (0, 2
L ),

and parameters L, L�, L� define as the same in Lemma 7. Suppose the following conditions
hold:

(i) c ≤ ηn,αn,βn, γn ≤ d for some real number c, d with c, d > 0,
(ii)

∑N
i=1 ai = 1, where ai > 0 for all N ∈N.

Then, the sequence {xn} converges weakly to z∗ ∈ ϕ and furthermore,

z∗ = lim
n→∞ Pϕ(xn).

Proof From Remark 3 (ii) and Theorem 3, we can conclude Theorem 5. �

4.2 The constrained minimization problem
Since the proximity operator is related to the minimization problem, that is F(Proxf ) =
arg min f , and proximal mapping of f is a special case of the cutter, with such a relationship,
we will prove Theorem 6, but let us first recall the definition and the critical lemma of the
proximity operator as follows:

Definition 2 Let f : H → (–∞, +∞) and let x ∈ H . Then Proxf x is the unique point in H
that satisfies

f (x) = min
y∈H

(
f (y) +

1
2
‖x – y‖2

)
= f (Proxf x) +

1
2
‖x – Proxf x‖2.

The operator Proxf : H → H is the proximity operator or proximal mapping of f .

Lemma 9 (See [15]) Let f : H → (–∞, +∞) be the set of proper lower semicontinuous con-
vex functions. Then, Proxf and I – Proxf are firmly nonexpansive.
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Lemma 10 (See [15]) Let f : H → (–∞, +∞) be the set of proper lower semicontinuous
convex functions. Then, F(Proxf ) = arg min f .

Using the relationship of proximal mapping and cutter, we prove weak and strong con-
vergence theorem for finding solutions to the proximal problem and common element of
the set of the finite general split feasibility problem.

Theorem 6 For each i = 1, 2, . . . , N , let Ci, Qi, �, � , �∗, and �∗ define as the same in
Lemma 7. Let f : H → (–∞, +∞) be the set of proper lower semicontinuous convex functions
and assume that Proxf : H → H is the proximal mapping of f with ϕ = arg min f ∩ ξ �= ∅,
and I – Proxf is demiclosed at 0. For given x1 ∈ H1 and let the sequence {xn} be generated
by

xn+1 = ηnxn + αnPH(xn ,Proxf (xn))xn + βnProxf (xn)

+ γn

N∑

i=1

aiPCi

(
I – a

(
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

))
xn, (23)

for all n, N ∈ N, where {ηn}, {αn}, {βn}, {γn} ⊆ (0, 1) with ηn + αn + βn + γn = 1, a ∈ (0, 2
L ),

and parameters L, L�, L� define as the same in Lemma 7. Suppose the following conditions
hold:

(i) c ≤ ηn,αn,βn, γn ≤ d for some real number c, d with c, d > 0,
(ii)

∑N
i=1 ai = 1, where ai > 0 for all N ∈N.

Then, the sequence {xn} converges weakly to z∗ ∈ ϕ and furthermore,

z∗ = lim
n→∞ Pϕ(xn).

Proof From Lemma 9, Lemma 10, and Remark 3, we can conclude Theorem 6. �

5 Numerical examples
In this section, we give the following examples to support our main theorem.

Example 2 Let R be the set of real numbers. Let H1 = H2 = R
+ ∪ {0} × R

+ ∪ {0}, and let
〈·, ·〉 : R+ ∪ {0} ×R

+ ∪ {0} → R be an inner product defined by 〈x, y〉 = x · y = x1y1 + x2y2,
where x = (x1, x2) ∈ R

+ ∪ {0} ×R
+ ∪ {0} and y = (y1, y2) ∈ R

+ ∪ {0} ×R
+ ∪ {0} and a usual

norm ‖ · ‖ : R+ ∪ {0} × R
+ ∪ {0} → R be defined by ‖x‖ =

√
x2

1 + x2
2 where x = (x1, x2) ∈

R
+ ∪ {0} ×R

+ ∪ {0}. For each i = 1, 2, . . . , N , let Ci = [–i – 1, i + 1] × [–i – 2, i + 2] and Qi =
[1 – i, i + 2]× [1 – i, i + 3]. Let the mapping �,� : R+ ∪{0}×R

+ ∪{0} →R
+ ∪{0}×R

+ ∪{0}
defined by

�(x) = (x1 + 2x2, 2x1 + x2),

and

�(x) = (x1 + x2, x1 + x2),
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for all x = (x1, x2) ∈ R
+ ∪ {0} × R

+ ∪ {0} and �∗,�∗ : R+ ∪ {0} × R
+ ∪ {0} → R

+ ∪ {0} ×
R

+ ∪ {0} defined by

�∗(z) = (z1 + 2z2, 2z1 + z2),

and

�∗(z) = (z1 + z2, z1 + z2),

for all z = (z1, z2) ∈R
+ ∪ {0} ×R

+ ∪ {0}. Let Tx = (|x1|, |x2|) where x = (x1, x2) ∈R
+ ∪ {0} ×

R
+ ∪ {0}. The sequence {xn} is generated by (8), where ηn = 2n+1

10n , αn = 5n–4
10n , βn = 1

10n and
γn = 3n+2

10n for all n ∈ N. Since L� = 9 and L� = 4, we have L = 9. So, we choose a = 1
5 . From

Theorem 3, we can conclude that the sequence {xn} converges to (0, 0). We can rewrite (8)
as follows:

xn+1 =
(

2n + 1
10n

)
(xn) +

(
5n – 4

10n

)
PH(xn ,Txn)xn +

(
1

10n

)
Txn

+
(

3n + 2
10n

) N∑

i=1

(
1
2i +

1
N2N

)
PCi

(
I –

1
5

(
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

))
xn,

for all n ≥ 1, where xn = (x1
n, x2

n), PCi (x1, x2) = (max{min{x1, i + 1}, –i – 1}, max{min{x2, i +
2}, –i – 2}) and PQi (x1, x2) = (max{min{x1, i + 2}, 1 – i}, max{min{x2, i + 3}, 1 – i}).

The Table 1 and Fig. 1 show the values of {xn} with x1 = (–100, –100) and n = N = 15.

Table 1 The values of {xn} with x1 = (–100, –100) and n = N = 15

n xn = (x1n , x
2
n)

1 (–100.0000, –100.0000)
2 (–20.0000, –20.0000)
3 (–3.6000, –3.4000)
...

...
7 (–0.0162, –0.0053)
...

...
13 (–0.0001, 0.0006)
14 (–0.0001, 0.0006)
15 (0.0000, 0.0006)

Figure 1 The convergence of {xn} with x1 = (–100, –100) and n = N = 15
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Example 3 Let R be the set of real numbers. Let H1 = H2 = R
2 and let 〈·, ·〉 : R2 →R be an

inner product defined by 〈x, y〉 = x ·y = x1y1 + x2y2 where x = (x1, x2) ∈R
2 and y = (y1, y2) ∈

R
2 and a usual norm ‖ · ‖ : R2 → R be defined by ‖x‖ =

√
x2

1 + x2
2 where x = (x1, x2) ∈ R

2.
For each i = 1, 2, let Ci = H(αi,β) = {r ∈ H1 : 〈(2i, 3i), r〉 = 0} where r = (r1, r2) ∈ R

2 and
Qi = H(ᾱi, β̄) = {r̄ ∈ H2 : 〈((–2)i, 2i), r̄〉 = 0} whereNr = (r̄1, r̄2) ∈ R

2. Let the mapping �,� :
R

2 →R
2 defined by

�(x) = (x1 + 2x2, 2x1 + x2),

and

�(x) = (x1 + x2, x1 + x2),

for all x = (x1, x2) ∈R
2 and �∗,�∗ : R2 →R

2 defined by

�∗(z) = (z1 + 2z2, 2z1 + z2),

and

�∗(z) = (z1 + z2, z1 + z2),

for all z = (z1, z2) ∈ R
2. Let Tx = (x1, x2) where x = (x1, x2) ∈ R

2. The sequence {xn} is gen-
erated by (8), where ηn = 1

3n , αn = 2n–1
6n , βn = 3n–2

6n and γn = n+1
6n . From the definition of �,

� , �∗, �∗ and T , we have F(T) ∩ ξ = (0, 0). From Theorem 3, we can conclude that the
sequence {xn} converges to (0, 0). We can rewrite (8) as follows:

xn+1 =
1

3n
(xn) +

(
2n – 1

6n

)
PH(xn ,Txn)xn +

(
3n – 2

6n

)
Txn

+
(

n + 1
6n

) N∑

i=1

(
1
2i +

1
N2N

)
PCi

(
I –

1
5

(
�∗(I – PQi )�

2
+

�∗(I – PQi )�
2

))
xn,

for all n ≥ 1, where xn = (x1
n, x2

n), PCi (x1, x2) = (x1, x2) – 〈(2i ,3i),(x1,x2)〉
‖(2i ,3i)‖2 · (2i, 3i) and PQi (x1, x2) =

(x1, x2) – 〈((–2)i ,3i),(x1,x2)〉
‖((–2)i ,2i)‖2 · ((–2)i, 2i).

The Table 2 and Fig. 2 show the values of {xn} with x1 = (–0.5, –0.5) and n = N = 50.

Table 2 The values of {xn} with x1 = (–0.5, –0.5) and n = N = 50

n xn = (x1n , x
2
n)

1 (–0.5000, –0.5000)
2 (–0.3333, –0.3333)
3 (–0.2570, –0.2454)
...

...
25 (0.0046, –0.0058)
...

...
48 (0.0018, –0.0011)
49 (0.0017, –0.0010)
50 (0.0016, –0.0010)
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Figure 2 The convergence of {xn} with x1 = (–0.5, –0.5) and n = N = 50

6 Conclusion
1. Theorem 3 guarantees the convergence of {xn} in Example 2 and Example 3.
2. The convergence of {xn} in Example 2 is faster than the convergence of {xn} in

Example 3.
3. Theorem 3 is an approximate solution to the fixed point problem of the cutter, which

the cutter can be applied to various theorems in optimization theory (see more detail
in [16, 17]) and can be reduced to firmly quasi-nonexpansive mapping.

4. Theorem 3 can be reduced to Corollary 2, which is a modification in terms of the
iterative process of Theorem 1.

5. Theorem 1 makes it difficult to give an example in a real problem, especially
condition (ii) in Theorem 1 must be calculated through the norm, which is quite
complex. While calculating the conditions of Theorem 3, it is easier to provide
examples that we give in Sect. 5.
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