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Abstract
In this work, our main focus is to establish asymptotic expansions for the triple
gamma function in terms of the triple Bernoulli polynomials. As application, an
asymptotic expansion for hyperfactorial function is also obtained. Furthermore, using
these asymptotic expansions, Padé approximants related to the triple gamma
function are derived as a consequence. The results obtained are new, and their
importance is demonstrated by deducing several interesting remarks and corollaries.
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1 Introduction
E.W. Barnes introduced the multiple gamma function �n and expressed it in terms of the
multiple Hurwitz zeta-functions [1–4]. After this invention, several researchers and math-
ematicians have studied this function. �n was studied by G.H. Hardy [11, 12] in view of the
theory of elliptic functions. �n can be used to compute summation of series and infinite
products. It is also applied in the theory of elliptic functions and theta functions [1–4].
Moreover, multiple gamma functions are also useful to study the determinant of Lapla-
cians on the n-dimensional unit sphere Sn [7]. Also, �n appears in functional equations for
the Selberg zeta functions [18] associated with higher rank symmetric spaces, so obtaining
their asymptotic expansion is of interest. It can be observed from the literature that the �n

plays a vital role in analytic number theory, approximation theory, mathematical physics,
and several branches of science and engineering [7]. �n satisfies the following recurrence
relations [17]:

�n+1(z + 1) =
�n+1(z)
�n(z)

, �1(z) = �(z), �n(1) = 1, n ∈N, (1.1)

where �(z) is Euler’s gamma function. The reciprocal of �2(z) is the well-known Barnes
G-function and is denoted by G(z). For further information on �n, we refer to [1–4, 8, 9,
15–17] and the references therein.
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One of the most recent research interests in the theory of multiple gamma functions is
to find their asymptotic expansions. In [6], asymptotic expansions for G(z) are obtained by
C.-P. Chen. Recently, Z. Xu and W. Wang [20] generalized the result. In [10], C. Ferreira
and J.L. López derived an asymptotic expansion of G(z). Recently, X. Li and C.-P. Chen
[13] established Padé approximant involving asymptotics for the gamma function.

The above results motivate us to find asymptotic expansion for the triple gamma func-
tion �3. In this work, we derive the asymptotic expansion for �3. Moreover, Padé approx-
imants related to these asymptotic expansions are also obtained. It can be noted that �3

has the Weierstrass canonical product [7] form:

�3(z + 1) = exp
[
Dz3 + Ez2 + Fz

]

·
∞∏

k=1

((
1 +

z
k

)– k(k+1)
2

exp

[
k + 1

2
z –

1
4

(
1 +

1
k

)
z2 +

1
6k

(
1 +

1
k

)
z3

])
, (1.2)

where

D = –
1
6

(
γ +

π2

6
+

3
2

)
, E =

1
4

(
γ + log(2π ) +

1
2

)
, and

F =
3
8

–
log(2π )

4
– log A.

Here A denotes the Glaisher–Kinkelin constant and is defined as [7]

log A =
1

12
– ζ ′(–1)

with ζ being the Riemann zeta function. �3 can also be expressed in terms of triple
Bernoulli polynomials [15] as follows:

log�3(z) =
B3,3(z)

6
log z –

11
36

B3,0z3 –
3
4

B3,1z2 –
1
2

B3,2z

+
n∑

k=1

(–1)k–1B3,k+3

k(k + 1)(k + 2)(k + 3)zk + R3,n(z), (1.3)

where B3,k(x) are triple Bernoulli polynomials defined as

t3ext

(et – 1)3 =
∞∑

k=0

B3,k(x)
tk

k!
, |t| < 2π ,

and B3,k = B3,k(0) are triple Bernoulli numbers [14] with R3,n(z), which is the remainder
of order n and has the following integral representation:

R3,n(z) =
∫ ∞

0

e–zt

t4

(
t3

(1 – e–t)3 –
n∑

k=0

(–1)k

k!
B3,ktk

)

dt for �z > 0 and n ≥ 3.

The following relation [14] between triple Bernoulli polynomials and Bernoulli polyno-
mials will be helpful for computing triple Bernoulli polynomials to prove the main results:

B3,k(x) =
k(k – 1)(k – 2)

2

(
(x – 1)(x – 2)

Bk–2(x)
k – 2

– (2x – 3)
Bk–1(x)
k – 1

+
Bk(x)

k

)
, (1.4)



Das and Swaminathan Journal of Inequalities and Applications        (2022) 2022:147 Page 3 of 12

where Bk(x) are Bernoulli polynomials defined as

tetx

et – 1
=

∞∑

k=0

Bk(x)
tk

k!
, |t| < 2π ,

and Bk = Bk(0) are known as Bernoulli numbers.
It can be noted that putting x = 0 in (1.4), we get the following recurrence relation, which

will be useful to compute triple Bernoulli numbers:

B3,k =
k(k – 1)(k – 2)

2

(
2Bk–2

k – 2
+

3Bk–1

k – 1
+

Bk

k

)
for k ≥ 3. (1.5)

The rest of the paper is organized as follows. In Sect. 2, two different classes of asymp-
totic expansions of triple gamma functions with the formulas for determining the coeffi-
cients of each class are found. An asymptotic expansion for hyperfactorial function is also
obtained as a particular case. Moreover, Padé approximants related to these asymptotic
expansions are obtained in Sect. 3.

2 Asymptotic expansions for the triple gamma function
Let

g(z) =
exp( 11

36 B3,0z3 + 3
4 B3,1z2 + 1

2 B3,2z)�3(z)

z
1
6 B3,3(z)

. (2.1)

Then, using the expansion for �3 given in (1.3), we obtain

g(z) ∼ exp

( ∞∑

k=1

(–1)k–1B3,k+3

k(k + 1)(k + 2)(k + 3)zk

)

(2.2)

for z → ∞ and �z > 0. It follows from (1.5) [14, p. 187] that for k ≥ 1,

B3,2k+1 =
3(2k + 1)(2k – 1)

2
B2k ,

B3,2k+2 = k(2k + 1)(2k + 2)
(

B2k

k
+

B2k+2

2(k + 1)

)
.

Using the above expressions together with (1.5) in (2.2) gives

g(z) ∼ exp

(
19

240z
+

1
160z2 –

2
945z3 –

1
672z4 +

19
50,400z5 · · ·

)
(2.3)

for z → ∞ and �z > 0.
Using the expansion ez =

∑∞
k=0

zk

k! in the exponential part of (2.3) containing Bernoulli
numbers, a simple computation yields the following:

g(z) ∼
(

1 +
19

240z
+

1081
115,200z2 –

893,507
580,608,000z3 –

900,113,513
557,383,680,000z4

+
161,466,866,293

668,860,416,000,000z5 + · · ·
)

. (2.4)
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Theorem 2.1 Let p ≥ 0 be any integer and q 	= 0 be any real number. Then g(z) defined in
(2.1) has the following asymptotic expansion:

g(z) ∼
(

1 +
∞∑

i=1

ai

zi

)zp/q

(2.5)

for z → ∞ and �z > 0, where the coefficients ai = ai(p, q) (i ∈ N) are given by

ai =
∑

(1+p)k1+(2+p)k2+···+(i+p)ki=i

qk1+k2+···+ki

k1!k2! · · ·ki!

·
(

B3,4

1 · 2 · 3 · 4

)k1( –B3,5

2 · 3 · 4 · 5

)k2

· · ·
(

(–1)i–1B3,3+i

i(i + 1)(i + 2)(i + 3)

)ki

, (2.6)

where the summation is considered over all ki, with kis as nonnegative integers satisfying
the following relation:

(1 + p)k1 + (2 + p)k2 + · · · + (i + p)ki = i.

Proof Our main objective is to determine ai (i ∈ N). For this we first express (2.5) as fol-
lows:

(
g(z)

)q/zp
= 1 +

n∑

i=1

ai

zi + O
(
z–n–1). (2.7)

Note that even in the absence of any information on convergence, (2.7) is still valid as we
are interested only in the asymptotic expansion. From (2.2), we have

g(z) = exp

( n∑

k=1

(–1)k–1B3,k+3

k(k + 1)(k + 2)(k + 3)zk + R(z)

)

,

where R(z) = O(z–n–1), which implies

(
g(z)

)q/zp

= eqR(z)/zp
exp

( n∑

k=1

(–1)k–1qB3,k+3

k(k + 1)(k + 2)(k + 3)zk+p

)

= eqR(z)/zp
n∏

k=1

(
1 +

(
(–1)k–1qB3,k+3

k(k + 1)(k + 2)(k + 3)zk+p

)

+
1
2!

(
(–1)k–1qB3,k+3

k(k + 1)(k + 2)(k + 3)zk+p

)2

+ · · ·
)

= eqR(z)/zp
∞∑

k1=0

∞∑

k2=0

· · ·
∞∑

kn=0

1
k1!k2! · · ·kn!

(
qB3,4

1 · 2 · 3 · 4

)k1( –qB3,5

2 · 3 · 4 · 5

)k2

· · ·
(

(–1)n–1qB3,n+3

n(n + 1)(n + 2)(n + 3)

)kn

· 1
z(1+p)k1+(2+p)k2+···+(n+p)kn

. (2.8)
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Comparing the powers of z in (2.7) and (2.8), we obtain

ai =
∑

(1+p)k1+(2+p)k2+···+(i+p)ki=i

qk1+k2+···+ki

k1!k2! · · ·ki!

·
(

B3,4

1 · 2 · 3 · 4

)k1( –B3,5

2 · 3 · 4 · 5

)k2

· · ·
(

(–1)i–1B3,3+i

i(i + 1)(i + 2)(i + 3)

)ki

,

which completes the proof. �

Remark 2.1 p = 0 and q = 1 in (2.5) yield (2.4). Setting p = 0, q = 2 and p = 1, q = 1 in (2.5),
respectively, we have the following two asymptotic expansions:

�3(z) ∼ z
B3,3(z)

6 e– 11
36 B3,0z3– 3

4 B3,1z2– 1
2 B3,2z

(
1 +

19
120z

+
721

28,800z2 –
115,547

72,576,000z3

–
117,935,033

34,836,480,000z4 +
3,885,027,493

20,901,888,000,000z5 + · · ·
) 1

2
(2.9)

and

�3(z) ∼ z
B3,3(z)

6 e– 11
36 B3,0z3– 3

4 B3,1z2– 1
2 B3,2z

(
1 +

19
240z2 +

1
160z3

+
2461

2,419,200z4 –
89

89,600z5 + · · ·
)z

. (2.10)

Remark 2.2 Let H(n) be the hyperfactorial function defined as H(n) := 11 · 22 · 33 · · ·nn.

Then, using the relations �3(n) = G(n – 1)�3(n – 1) and G(n + 1) = (n!)n

H(n) , we have

�3(n) = G(3) · G(4) · · ·G(n – 1) =
∏n–2

k=1(k!)k
∏n–2

k=1 H(k)

=
∏n

k=1(k!)k

((n – 1)!)n–1(n!)nHn–2
, where

n∏

k=1

H(k) = Hn.

With the help of Remark 2.1, the following asymptotic expansions can be obtained:

(1!)1(2!)2 · · · (n!)n ∼ (n!)n((n – 1)!
)n–1Hn–2n

B3,3(n)
6 e– 11

36 B3,0n3– 3
4 B3,1n2– 1

2 B3,2n

×
(

1 +
19

240n
+

1081
115,200n2 –

893,507
580,608,000n3 –

900,113,513
557,383,680,000n4

+
161,466,866,293

668,860,416,000,000n5 + · · ·
)

(2.11)

and

(1!)1(2!)2 · · · (n!)n ∼ (n!)n((n – 1)!
)n–1Hn–2n

B3,3(n)
6 e– 11

36 B3,0n3– 3
4 B3,1n2– 1

2 B3,2n

×
(

1 +
19

240n2 +
1

160n3 +
2461

2,419,200n4 –
89

89,600n5 + · · ·
)n

. (2.12)
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Theorem 2.2 Let p ≥ 0 be any integer and q 	= 0 be any real number. Then g(z) defined in
(2.1) satisfies the following asymptotic expansion:

g(z) ∼
(

1 + ln

(

1 +
∞∑

i=1

bi

zi

))zp/q

(2.13)

for z → ∞ and �z > 0, where the coefficients bi = bi(p, q) (i ∈N) are given by

bi =
∑

k1+2k2+···+iki=i

1
k1!k2! · · ·ki!

ak1
1 ak2

2 · · ·aki
i ,

ai (i ∈N) are determined in (2.6).

Proof To prove this theorem, we will follow similar techniques as Theorem 2.1. To do so,
first we express (2.13) as follows:

exp
((

g(z)
)q/zp

– 1
)

= 1 +
n∑

i=1

bi

zi + O
(
z–n–1). (2.14)

Note that, similar to (2.7), the discussion of asymptotic expansion does not require any
information on the convergence of the series in (2.14). Writing (2.5) as

(
g(z)

)q/zp
– 1 = R(z) = O

(
z–m–1),

we have

exp
((

g(z)
)q/zp

– 1
)

= eR(z) exp

( n∑

k=1

ak

zk

)

= eR(z)
n∏

k=1

(
1 +

(
ak

zk

)
+

1
2!

(
ak

zk

)2

+ · · ·
)

= eR(z)
∞∑

k1=0

∞∑

k2=0

· · ·
∞∑

kn=0

1
k1!k2! · · ·kn!

ak1
1 ak2

2 · · ·akn
n

1
zk1+2k2+···+nkn

. (2.15)

Equating the coefficients of powers of z in (2.14) and (2.15), we have

bi =
∑

k1+2k2+···+iki=i

1
k1!k2! · · ·ki!

ak1
1 ak2

2 · · ·aki
i ,

where ai (i ∈N) are determined in (2.6), which completes the proof. �

Remark 2.3 Putting p = 0, q = 1; p = 0, q = 2; and p = 1, q = 1 respectively in (2.13), the
following asymptotic expansions can be obtained:

�3(z) ∼ z
B3,3(z)

6 e– 11
36 B3,0z3– 3

4 B3,1z2– 1
2 B3,2z

×
(

1 + ln

(
1 +

19
240z

+
721

57,600z2 –
16,567

23,224,320z3 –
245,178,299

185,794,560,000z4
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+
5,299,227,679

55,738,368,000,000z5 + · · ·
))

, (2.16)

�3(z) ∼ z
B3,3(z)

6 e– 11
36 B3,0z3– 3

4 B3,1z2– 1
2 B3,2z

×
(

1 + ln

(
1 +

19
240z2 +

1
160z3 –

15,281,579
11,612,160,000z4

+
1,613,002,879

1,741,824,000,000z5 + · · ·
))1/2

, (2.17)

and

�3(z) ∼ z
B3,3(z)

6 e– 11
36 B3,0z3– 3

4 B3,1z2– 1
2 B3,2z

×
(

1 + ln

(
1 +

19
240z2 +

1
160z3 +

5021
1,209,600z4 –

67
134,400z5 + · · ·

))z

. (2.18)

3 Padé approximants related to the triple gamma function
Let h(t) =

∑∞
k=0 cktk be a formal power series and hn(t) =

∑n
k=0 cktk be its nth partial sum

(gn is identically zero for n < 0). Then the Padé approximation [19] of order (m, n) of the
function g is defined as the rational function

[m/n]h(t) :=
∑m

k=0 aktk

1 +
∑n

k=1 bktk , (3.1)

where m ≥ 0 and n ≥ 1 are two given integers, and the coefficients ak and bk are given by
[13]

a0 = c0,

a1 = c0b1 + c1,

a2 = c0b2 + c1b1 + c2,

...

am = c0bm + · · · + cm–1b1 + cm,

0 = cm+1 + cmb1 + · · · + cm–n+1bn,

...

0 = cm+n + cm+n–1b1 + · · · + cmbn,

(3.2)

with the following property:

[m/n]h(t) – h(t) = O
(
tm+n+1). (3.3)
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Clearly, the first m + n + 1 coefficients of the series expansion of [m/n]g are identical to
those of g . Further, we have

[m/n]h(t) =

∣∣∣
∣∣
∣∣
∣∣
∣

tnhm–n(t) tn–1hm–n+1(t) · · · hm(t)
cm–n+1 cm–n+2 · · · cm+1

...
...

. . .
...

cm cm+1 · · · cm+n

∣∣∣
∣∣
∣∣
∣∣
∣

∣∣
∣∣
∣∣
∣∣∣
∣

tn tn–1 · · · 1
cm–n+1 cm–n+2 · · · cm+1

...
...

. . .
...

cm cm+1 · · · cm+n

∣∣
∣∣
∣∣
∣∣∣
∣

. (3.4)

Padé approximants related to the gamma function are discussed in [13]. In this section,
we are interested in finding the Padé approximants for the function g(x), which is defined
in (2.1).

From (2.4) and (2.1), it can be noted that, as x → ∞,

g(x) ∼
∞∑

k=0

ck

xk

= 1 +
19

240x
+

1081
115,200x2 –

893,507
580,608,000x3 –

900,113,513
557,383,680,000x4 + · · · , (3.5)

where the coefficients ck satisfy (2.6) for p = 0 and q = 1.
Now we will proceed for the Padé approximation of g(x). Let us consider

[1/1]g(x) =
∑1

k=0
ak
xk

1 +
∑1

k=1
bk
xk

.

It follows that

c0 = 1, c1 =
19

240
, c2 =

1081
115,200

,

c3 = –
893,507

580,608,000
, c4 = –

900,113,513
557,383,680,000

.
(3.6)

From (3.2), we obtain

a0 = 1,

a1 = b1 +
19

240
,

0 =
19

240
b1 +

1081
115,200

,

which gives a0 = 1, a1 = – 359
9120 , and b1 = – 1081

9120 . Hence, we have

[1/1]g(x) =
1 – 359

9120x

1 – 1081
9120x

=
x – 359

9120

x – 1081
9120

, (3.7)
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and using (3.3), it follows that

g(x) =
x – 359

9120

x – 1081
9120

+ O
(

1
x3

)
.

Now we will derive a Padé approximant of order (2, 2). For this, let us consider

[2/2]g(x) =
∑2

k=0
ak
xk

1 +
∑2

k=1
bk
xk

.

Using (3.2), we obtain

a0 = 1

a1 = b1 +
19

240
,

a2 = b2 +
19

240
b1 +

1081
115,200

,

0 =
1081

115,200
b1 +

19
240

b2 –
893,507

580,608,000
,

0 =
893,507

580,608,000
b1 –

1081
115,200

b2 +
900,113,513

557,383,680,000
,

which implies that

a1 = –
12,947,658,827
28,076,662,560

, a2 =
14,176,622,313,529

283,012,758,604,800
,

b1 = –
15,170,394,613
28,076,662,560

, b2 =
23,626,895,894,809

283,012,758,604,800
,

and

[2/2]g(x) =
1 – 12,947,658,827

28,076,662,560x + 14,176,622,313,529
283,012,758,604,800x2

1 – 15,170,394,613
28,076,662,560x + 23,626,895,894,809

283,012,758,604,800x2

=
x2 – 12,947,658,827

28,076,662,560 x + 14,176,622,313,529
283,012,758,604,800

x2 – 15,170,394,613
28,076,662,560 x + 23,626,895,894,809

283,012,758,604,800
. (3.8)

Therefore, using (3.3), it follows that

g(x) =
x2 – 12,947,658,827

28,076,662,560 x + 14,176,622,313,529
283,012,758,604,800

x2 – 15,170,394,613
28,076,662,560 x + 23,626,895,894,809

283,012,758,604,800
+ O

(
1
x5

)
.

Using the Padé approximation method and expansion (3.5), the following theorem can be
derived.

Theorem 3.1 The Padé approximation of order (m, n) of the asymptotic formula of the
function g(x) (at the point x = ∞) is given by the rational function:

[m/n]g(x) =
1 +

∑m
k=1

ak
xk

1 +
∑n

k=1
bk
xk

= xn–m
(

xm + a1xm–1 + · · · + am

xn + b1xn–1 + · · · + bn

)
,
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where m ≥ 1 and n ≥ 1 are given integers and the coefficients ak and bk satisfy the conditions
(3.2) with a0 = c0 = 1 and ck satisfies (2.6) for p = 0 and q = 1, and the following relation
holds:

g(x) – [m/n]g(x) = O
(

1
xm+n+1

)
, x → ∞.

Further, we have (see [5])

[m/n]g(x) =

∣
∣∣
∣∣
∣∣
∣∣∣

xngm–n(x) xn–1gm–n+1(x) · · · gm(x)
cm–n+1 cm–n+2 · · · cm+1

...
...

. . .
...

cm cm+1 · · · cm+n

∣
∣∣
∣∣
∣∣
∣∣∣

∣∣
∣∣
∣∣∣
∣∣
∣

xn xn–1 · · · 1
cm–n+1 cm–n+2 · · · cm+1

...
...

. . .
...

cm cm+1 · · · cm+n

∣∣
∣∣
∣∣∣
∣∣
∣

, (3.9)

where gn(x) =
∑n

k=0
ck
xk is the nth partial sum of the asymptotic series (3.5).

Remark 3.1 Using (3.9), it is also possible to derive (3.7) and (3.8). Let us verify these
results.

[1/1]g(x) =

∣
∣∣
∣∣

1
x g0(x) g1(x)

c1 c2

∣
∣∣
∣∣

∣
∣∣∣
∣

1
x 1

c1 c2

∣
∣∣∣
∣

=

∣
∣∣
∣∣

1
x 1 + 19

240x
19

240
1081

115,200

∣
∣∣
∣∣

∣
∣∣∣
∣

1
x 1

19
240

1081
115,200

∣
∣∣∣
∣

=
x – 359

9120

x – 1081
9120

and

[2/2]g(x) =

∣
∣∣
∣∣
∣∣

1
x2 g0(x) 1

x g1(x) g2(x)
c1 c2 c3

c2 c3 c4

∣
∣∣
∣∣
∣∣

∣∣
∣∣
∣∣
∣

1
x2

1
x 1

c1 c2 c3

c2 c3 c4

∣∣
∣∣
∣∣
∣

=

∣∣
∣∣∣
∣∣

1
x2

1
x (1 + 19

240x ) 1 + 19
240x + 1081

115,200x2
19

240
1081

115,200 – 893,507
580,608,000

1081
115,200 – 893,507

580,608,000 – 900,113,513
557,383,680,000

∣∣
∣∣∣
∣∣

∣∣∣
∣∣
∣∣

1
x2

1
x 1

19
240

1081
115,200 – 893,507

580,608,000
1081

115,200 – 893,507
580,608,000 – 900,113,513

557,383,680,000

∣∣∣
∣∣
∣∣

=
x2 – 12,947,658,827

28,076,662,560 x + 14,176,622,313,529
283,012,758,604,800

x2 – 15,170,394,613
28,076,662,560 x + 23,626,895,894,809

283,012,758,604,800
.

Setting m = n = r in (3.3), the following result is immediate.

Corollary 3.1

g(x) =
xr + a1xr–1 + · · · + ar

xr + b1xr–1 + · · · + br
+ O

(
1

x2r+1

)
(3.10)
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for x → ∞ and r ≥ 1 is any given integer, the coefficients ai and bi (1 ≤ i ≤ r) satisfy (3.2)
with a0 = c0 = 1, and cr is given in (2.6) (for p = 0 and q = 1).

Remark 3.2 Setting r = 3 in (3.10), we obtain

g(x) =
x3 – a1x2 + a2x – a3

x3 – b1x2 + b2x – b3
+ O

(
1
x7

)
,

where

a1 =
564,264,707,394,045,441,291,137
777,288,995,553,534,212,638,560

,

a2 =
507,337,383,020,418,800,355,971,917
932,746,794,664,241,055,166,272,000

,

a3 =
524,560,286,160,441,450,378,984,935,759

18,804,175,380,431,099,672,152,043,520,000
,

b1 =
625,800,086,208,700,233,125,023
777,288,995,553,534,212,638,560

,

b2 =
50,730,526,659,081,610,299,631,847
84,795,163,151,294,641,378,752,000

,

b3 =
1,244,184,486,344,122,340,305,441,760,881

18,804,175,380,431,099,672,152,043,520,000
.

Remark 3.3 Setting r = 4 in (3.10), we obtain

g(x) =
x4 – a1x3 + a2x2 – a3x + a4

x4 – b1x3 + b2x2 – b3x + b4 + O
(

1
x9

)
,

where

a1 =
215,703,766,781,168,876,220,885,513,532,207,573,037,853,391
156,833,412,819,388,306,354,787,238,937,752,295,790,827,680

,

a2 =
439,021,821,607,824,678,358,124,666,374,361,977,917,184,670,503
276,026,806,562,123,419,184,425,540,530,444,040,591,856,716,800

,

a3 =
2,697,600,344,247,344,205,104,432,196,561,229,100,202,237,946,568,861
4,173,525,315,219,306,098,068,514,172,820,313,893,748,873,558,016,000

,

a4 =
940,070,303,236,823,651,814,961,986,110,532,058,170,155,544,925,558,921

20,032,921,513,052,669,270,728,868,029,537,506,689,994,593,078,476,800,000
,

b1 =
228,119,745,296,037,117,140,639,503,281,446,296,454,627,249
156,833,412,819,388,306,354,787,238,937,752,295,790,827,680

,

b2 =
468,216,358,741,523,424,525,741,582,917,397,922,238,128,383,943
276,026,806,562,123,419,184,425,540,530,444,040,591,856,716,800

,

b3 =
290,424,419,148,610,158,964,741,537,112,783,630,996,531,879,384,489
379,411,392,292,664,190,733,501,288,438,210,353,977,170,323,456,000

,

b4 =
1,822,684,110,010,671,047,977,349,196,992,991,024,335,965,841,858,437,321

20,032,921,513,052,669,270,728,868,029,537,506,689,994,593,078,476,800,000
.
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