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1 Introduction
Let 0 < T < ∞ and � ⊂ RN (N ≥ 2) be a bounded simple domain with appropriately
smooth boundary ∂�. In this article, we consider the following quasilinear degenerate
parabolic inequalities:

⎧
⎪⎪⎨

⎪⎪⎩

min{Lu, u(x, 0) – u0} = 0, (x, t) ∈ QT ,

u(x, t) = 0, (x, t) ∈ �T ,

u(x, 0) = u0, x ∈ �,

(1.1)

with

Lu = ut – udiv
(
a(u)|∇u|p(x,t)–2∇u

)
– γ |∇u|p(x,t) – f (x, t), (1.2)

where QT = � × (0, T], a(u) = uσ + d0, and �T is the lateral boundary of cylinder QT .
In applications, Problem (1.1) arises in the model of American option pricing in the

Black–Scholes models. We refer to [1–4] for the financial background of parabolic in-
equalities. Among them, the most interesting research topic is to construct different types
of variational parabolic inequalities and analyze the existence and uniqueness for their so-
lutions (see, for example, [3–10] and the references therein). In 2014, the authors in [5]
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discussed the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut – Lu – F(u, x, t) ≥ 0 in QT ,

u(x, t) ≥ u0(x) in �,

(ut – Lu – F(u, x, t)) · (u(x, t) – u0(x)) = 0 in QT ,

u(x, 0) = u0(x) in �,

u(x, t) = 0 on �T ,

with second-order elliptic operator

Lu = –udiv
(
a(u)|∇u|p(x,t)–2∇u

)
– γ |∇u|p(x,t) – f (x, t).

They proved the existence and uniqueness of a solution to this problem with some restric-
tions on u0, F , and L. Later, the authors in [6, 7] extended the relative conclusions with the
assumption that a(u) is a constant, and p(x) = 2. The authors discussed the existence and
numerical algorithm of the solution.

To the best of our knowledge, the existence and uniqueness of this problem with the
assumption that p(x, t) are variables have been less studied. We cannot easily apply the
method in [6, 7] to the case that p(x, t) and a(u) are not constants.

The aim of this paper is to study the existence and uniqueness of solutions for a degen-
erate parabolic variational inequality problem. Throughout the paper, we assume that the
exponent p(x, t) is continuous in QT with a logarithmic module of a country:

1 < p– < p(x, t) < p+ < ∞, (1.3)

where p– = inf(x,t)∈QT p(x, t) and p+ = sup(x,t)∈QT p(x, t).
The outline of this paper is as follows: In Sect. 2, we introduce the function spaces of

Orlicz–Sobolev type, give the definition of the weak solution to the problem, and state
our main theorems. In Sect. 3, we give some estimates of the penalty problem (approxi-
mating problem). Section 4 proves the existence and uniqueness of the solution obtained
in Sect. 2.

2 The main results of weak solutions
In this section, we recall some useful definitions and known results, which can be found
in [11–14]. Set

Lp(x,t)(QT ) =
{

u(x, t)|u is measurable in QT , Ap(·)(u) =
∫ ∫

QT

|u|p(x,t) dx dt
}

,

‖u‖p(·) = inf
{
λ > 0, Ap(·)(u/λ) ≤ 1

}
,

Vt(�) =
{

u|u ∈ L2(�) ∩ W 1,1
0 , |∇u| ∈ Lp(x,t)(�)

}
,

‖u‖Vt (�) = ‖u‖2,� + ‖∇u‖p(·,t),�,

W (QT ) =
{

u : [0, T] → Vt(�)|u ∈ L2(QT ) ∩ W 1,1
0 ,

|∇u| ∈ Lp(x,t)(QT ), u = 0 on �T
}

,
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‖u‖Wt (QT ) = ‖u‖2,QT + ‖∇u‖p(·,t),QT

and denote by W ′(QT ) the dual of W (QT ) with respect to the inner product in L2(QT ).
In the spirit of [3] and [4], we introduce the following maximal monotone graph

G(x) =

⎧
⎨

⎩

0, x > 0,

θ , x = 0,
(2.1)

where θ ∈ [0, M) and M depends only on |u0|∞.
The purpose of the paper is to obtain the existence and uniqueness of weak solutions of

(1.1). Let B = W (QT ) ∩ L∞(0, T ; L∞(�)), and the weak solution is defined as:

Definition 2.1 A pair is called a weak solution of problem (1.1), if (a) u(x, t) ≥ u0(x), (b)
u(x, 0) = u0(x), (c) ξ ∈ G(u – u0), (d) for every test function φ ∈ Z ≡ {η(z) : η ∈ W (QT ) ∩
L∞(0, T ; L2(�)),ηt ∈ W (QT )} and every t1, t2 ∈ [0, T] the following identity holds:

∫ t2

t1

∫

�

u · φt – a(u)|∇u|p(x,t)–2∇u∇φ –
(
a(u) – γ

)|∇u|p(x,t)φ dx dt

+
∫ t2

t1

∫

�

f (x, t)φ + ξφ dx dt =
∫

�

uφ dx
∫ t2

t1

.
(2.2)

Our main results are the following two theorems.

Theorem 2.1 Let us satisfy conditions (1.3). If the following conditions hold:
(H1) max{1, 2N

N+1 } < p– < N , 2 ≤ σ < 2p+

p+–1 , 0 < γ < d0, and
(H2) u0(x) ≥ 0, f ≥ 0,‖u0‖∞,� +

∫ T
0 ‖f (x, t)‖∞,� dt + |�| · T = K(T) < ∞,

then Problem (1.1) has at least one weak solution in the sense of Definition 2.1.

Theorem 2.2 Suppose that the conditions in Theorem 2.1 are fulfilled and p+ ≥ 2. Then,
Problem (1.1) admits a unique solution in the sense of Definition 2.1.

3 Penalty problems
In this section, we consider a family of auxiliary parabolic problems

⎧
⎪⎪⎨

⎪⎪⎩

Lεuε + β(uε – u0) = 0, (x, t) ∈ QT ,

uε(x, t) = ε, (x, t) ∈ �T ,

uε(x, 0) = u0 + ε, x ∈ �,

(3.1)

with

Lεuε = uε t – uε · div
(
a(uε)|∇uε|p(x)–2∇uε

)
– γ |∇uε|p(x,t) – f (x, t), (3.2)

βε(·) is the penalty function satisfying

ε ∈ (0, 1), βε(·) ∈ C2(R), βε(x) ≤ 0, βε(0) = –1,

β ′
ε(0) ≥ 0, β ′′

ε(0) ≥ 0, lim
x→0+

β(x) =

⎧
⎨

⎩

0, x > –0,

–1, x = 0.

(3.3)
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With a similar method as in [8], we may prove that the regularized problem has a unique
weak solution

uε(x, t) ∈ W (QT ) ∩ L2(QT ), ∂tuε(x, t) ∈ W ′(QT ),

satisfying the following integral identities

∫ t2

t1

∫

�

uε · φt – a(uε)uε|∇uε|p(x,t)–2∇uε∇φ –
(
a(uε) – γ

)|∇uε|p(x,t)φ dx dt

=
∫ t2

t1

∫

�

(
βε(uε – u0) – f (x, t)

)
φ dx dt +

∫

�

uεφ dx
∫ t2

t1

(3.4)

and

∫ t2

t1

∫

�

uε t · φ + a(uε)uε|∇uε|p(x,t)–2∇uε∇φ +
(
a(uε) – γ

)|∇uε|p(x,t)φ dx dt

=
∫ t2

t1

∫

�

(
f (x, t) – βε(uε – u0)

)
φ dx dt.

(3.5)

We start with two preliminary results that will be used several times below.

Lemma 3.1 Let M(s) = |s|p(x,t)–2s, then ∀ξ ,η ∈ RN

(
M(ξ ) – M(η)

) · (ξ – η)

≥
⎧
⎨

⎩

2–p(x,t)|ξ – η|p(x,t), 2 ≤ p(x, t) < ∞,

(p(x, t) – 1)|ξ – η|2(|ξ |p(x,t) + |η|p(x,t))
p(x,t)–2

p(x,t) , 1 ≤ p(x, t) < 2.

Proof The proof can be found in [15]. �

Lemma 3.2 (Comparison principle) Assume 2 < σ < 2p+

p+–1 , p+ ≥ 2, u and v are in W (QT ) ∩
L∞(0, T ; L∞(�)). If Lεu ≥ Lεv in QT and u(x, t) ≤ v(x, t) on ∂QT , then u(x, t) ≤ v(x, t) in QT .

Proof We argue by contradiction. Suppose u(x, t) and v(x, t) satisfy Lεu ≥ Lεv in QT and
there is a δ > 0 such that for 0 < τ ≤ T , w = u – v on the set

�δ = � ∩ {
x : w(x, t) > δ

}

and μ(�δ) > 0. Let

Fε(ξ ) =

⎧
⎨

⎩

1
α–1ε1–α – 1

α–1ξ 1–α if ξ > ε,

0 if ξ ≤ ε,
(3.6)
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where δ > 2ε > 0 and α = σ
2 . Let a test function ξ = Fε(w) ∈ Z in (3.4),

0 ≥
∫ ∫

QT

wtFε(w) + a(v)v
(∣
∣∇u|p(x,t)–2∇u–

∣
∣∇v|p(x,t)–2∇v

)∇Fε(w) dx dt

+
∫ ∫

QT

[
a(u)u – a(v)v

]|∇u|p(x,t)–2∇u∇Fε(w) dx dt

+
∫ ∫

QT

[
a(u) – γ

]∣
∣∇u|p(x,t) –

[
a(v) – γ

]∣
∣∇v|p(x,t)

= J1 + J2 + J3 + J4,

(3.7)

where QT ,ε = {(x, t) ∈ QT |w > ε},

J1 =
∫ ∫

QT

wtFε(w) dx dt,

J2 =
∫ ∫

QT

a(v)v
(∣
∣∇u|p(x,t)–2∇u–

∣
∣∇v|p(x,t)–2∇v

)∇w dx dt,

J3 =
∫ ∫

QT

[
a(u)u – a(v)v

]|∇u|p(x,t)–2∇u∇Fε(w) dx dt,

J4 =
∫ ∫

QT

[
a(u) – γ

]∣
∣∇u|p(x,t) –

[
a(v) – γ

]∣
∣∇v|p(x,t) dx dt.

Now, let t0 = inf{t ∈ (0, τ ] : w > ε}, then we estimate J1 as follows

J1 =
∫ ∫

QT

wtFε(w) dx dt =
∫

�

(∫ t0

0
wtFε(w) dt +

∫ t0

0
wtFε(w) dt

)

dx

≥
∫

�

∫ w

ε

Fε(s) ds dx ≥
∫

�δ

∫ w

ε

Fε(s) ds dx.
(3.8)

Let us first consider the case p– ≥ 2. By virtue of the first inequality of Lemma 3.1, we
obtain

J2 =
∫ ∫

QT

a(v)v
(|∇u|p(x,t)–2∇u – |∇v|p(x,t)–2∇v

)∇w dx dt

≥
∫ ∫

QT

a(v)v · w–α2–p(x,t)|∇w|p(x,t) dx dt

= 2–p+
∫ ∫

QT

a(v)v · w–α|∇w|p(x,t) dx dt > 0.

(3.9)

Noting that p(x,t)
p(x,t)–1 ≥ p+

p+–1 ≥ σ 2 = α > 1 and applying Young’s inequality, we may estimate
the integrand of J3 in the following way

∣
∣
[
a(u)u – a(v)v

]
w–α|∇w|p(x,t)–2∇u∇w

∣
∣

=
∣
∣
∣
∣

[

(δ + 1)w
∫ 1

0

(
θu + (1 – θ )v

)σ dθ + d0(u – v)
]

w–α|∇u|p(x,t)–2∇u∇w
∣
∣
∣
∣

≤ C
wα

[
a(v)v

C
|∇w|p(x,t) + C1

(
δ, d0, K , p±)|w|p′(x,t)|∇u|p(x,t)

] (3.10)
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≤ a(v)v
2p+–1wα

|∇w|p(x,t) + C1
(
δ, d0, K , p±)|u|p′(x,t).

Substituting (3.10) into J3 and combining it with J2, we obtain

J3 ≤ 1
2

J2 + C
∫ ∫

QT

|∇u|p(x,t)–2 dx dt. (3.11)

Recall that 0 < γ ≤ d0, u ∈ W (QT ) ∩ L∞(0, T ; L∞(�)). Then, we have

J4 ≤
∫ ∫

QT

uσ |∇u|p(x,t) dx dt ≤ C
∫ ∫

QT

|∇u|p(x,t) dx dt, (3.12)

where C is a positive constant. Thus, we insert the above estimates (3.8), (3.9), (3.11), and
(3.12) into (3.7) and dropping the nonnegative terms, we arrive at

(δ – 2ε)
(
1 – 21–α

)
ε1–αμ(�) < C. (3.13)

Secondly, we consider the case 1 < p– ≤ p(x, t) < 2, p+ ≥ 2. According to the second in-
equality of Lemma 3.1, it is easily seen that the following inequalities hold

∣
∣
[
a(u)u – a(v)v

]
w–α|∇w|p(x,t)–2∇u∇w

∣
∣

=
∣
∣
∣
∣

[

(δ + 1)w
∫ 1

0

(
θu + (1 – θ )v

)σ dθ + d0(u – v)
]

|w|2–α|∇u|p(x,t)–2∇u∇w
∣
∣
∣
∣

≤ a(v)v(p–1 – 1)
2wα

(|∇u| + |∇v|)p(x,t)|∇w|2 + C1
(
δ, d0, K , p±)|w|2–α

(|∇u| + |∇v|)p(x,t)

≤ a(v)v(p–1 – 1)
2wα

(|∇u| + |∇v|)p(x,t)|∇w|2 + C1
(
δ, d0, K , p±)(|∇u| + |∇v|)p(x,t).

Substituting the above inequality into J3, we obtain

J3 ≤ 1
2

J2 + C
∫ ∫

QT

(|∇u| + |∇v|)p(x,t)–2 dx dt. (3.14)

Similar to the case p– ≥ 2, estimate (3.13) still holds using (3.14) instead of (3.11). Note that
limε→0(δ – 2ε)(1 – 21–α)ε1–αμ(�δ) = +∞, we obtain a contradiction. This means μ(�δ) = 0
and w ≤ 0 a.e. in Qτ . �

Lemma 3.3 Let uε be weak solutions of (3.1). Then,

u0ε ≤ uε ≤ |u0|∞ + ε, (3.15)

uε1 ≤ uε2 for ε1 ≤ ε2, (3.16)

where |u0|∞ = supx∈� |u0(x)|.

Proof First, we prove uε ≥ u0ε by contradiction. Assume uε ≤ u0ε in Q0
T , Q0

T ⊂ QT . Noting
uε ≥ u0ε on ∂QT , we may assume that uε = u0ε on ∂QT . With (3.1) and letting t = 0, it is
easy to see that

Lu0,ε = –βε(u0,ε – u0,ε) = 1, (3.17)
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Luε = –βε(uε – u0,ε) ≤ 1. (3.18)

From Lemma 3.2, we arrive at

uε(x, t) ≥ u0,ε(x) for any (x, t) ∈ QT . (3.19)

Therefore, we obtain a contradiction.
Secondly, we pay attention to uε(t, x) ≤ |u0|∞ + ε. Applying the definition of βε(·), we

have that

L
(|u0|∞ + ε

)
= 0, Luε = –βε(uε – u0,ε) ≥ 0. (3.20)

From (3.20), we obtain

uε(t, x) ≤ |u0|∞ + ε on ∂� × (0, T) (3.21)

and uε(t, x) ≤ |u0|∞ + ε in �. Thus, combining (3.20) and (3.21) and repeating Lemma 3.2,
we have

uε(t, x) ≤ |u0|∞ + ε in QT . (3.22)

Thirdly, we aim to prove (3.16). From (3.1),

Luε1 = βε1 (uε1 – u0,ε1 ), (3.23)

Luε2 = βε2 (uε2 – u0,ε2 ). (3.24)

It follows by ε1 ≤ ε2 and the definition of βε(·) that

Lu0,ε2 + βε1 (uε2 – u0,ε)

= βε2 (uε2 – u0,ε) – βε1 (uε1 – u0,ε)

= βε2 (uε2 – u0,ε) – βε1 (uε2 – u0,ε) ≥ 0.

(3.25)

Thus, combining the initial and boundary conditions in (3.1) can be proved by Lem-
ma 3.2. �

To prove this theorem, we need the following lemmas.

Lemma 3.4 The solution of problem (3.1) satisfies the estimate

‖uε‖∞,QT ≤ ‖u0‖∞,� +
∫ T

0

∥
∥f (x, t)

∥
∥∞,� dt + |�| · T = K(T) < ∞.

Proof Let us introduce the following function

uε,M =

⎧
⎪⎪⎨

⎪⎪⎩

M if uε > M,

uε if |uε| < M,

–M if uε < –M.

(3.26)
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The function u2k–1
ε,M , with k ∈ N , can be chosen as a test function in (3.4). Let t2 = t + h, t1 = t

in (3.4), with t, t + h ∈ (0, T). Then,

1
2k

∫ t+h

t

d
dt

(∫

�

u2k
ε,M dx

)

dt

+ (2k – 1)
∫ t+h

t

∫

�

aε,M(uε,M)u2(k–1)
ε,M |∇uε,M|p(x,t) dx dt

+
∫ t+h

t

∫

�

[
aε,M(uε,M) – γ

] · u2k–1
ε,M |∇uε,M|p(x,t) dx dt

=
∫ t+h

t

∫

�

(
f (x, t) – βε(uε – u0)

) · u2k–1
ε,M dx dt.

(3.27)

Dividing the last equality by h, letting h → 0, and applying Lebesgue’s dominated conver-
gence theorem, we have that

1
2k

d
dt

∫

�

u2k
ε,M dx + (2k – 1)

∫

�

aε,M(uε,M)u2(k–1)
ε,M |∇uε,M|p(x,t) dx

+
∫

�

[
aε,M(uε,M) – γ

] · u2k–1
ε,M |∇uε,M|p(x,t) dx dt

+
∫

�

[
aε,M(uε,M) – γ

]
u2k

ε,M|∇uε,M|p(x,t) dx

=
∫

�

(
f (x, t) – βε(uε – u0)

) · u2k–1
ε,M dx.

(3.28)

By Holder’s inequality, we have
∣
∣
∣
∣

∫

�

(
f (x, t) – βε(uε – u0)

) · u2k–1
ε,M dx

∣
∣
∣
∣ ≤ ∥

∥uε,M
∥
∥2k–1

2k,� · ∥∥f (·, t) – βε(uε – u0)
∥
∥

2k,�. (3.29)

Using Minkowski’s inequality, we arrive at

∥
∥f (·, t) – βε(uε – u0)

∥
∥

2k,� ≤ ∥
∥f (·, t)

∥
∥

2k,� +
∥
∥βε(uε – u0)

∥
∥

2k,�.

From (3.15) and the definition of βε(·), we have that

∥
∥f (·, t) – βε(uε – u0)

∥
∥

2k,� ≤ ∥
∥f (·, t)

∥
∥

2k,� + |�|. (3.30)

Recall that 0 < γ < d0. Then, we use Lemma 3.1 to find
∫

�

[
aε,M(uε,M) – γ

] · u2k–1
ε,M |∇uε,M|p(x,t) dx dt ≥ 0. (3.31)

Substituting (3.29) and (3.30) into (3.28), we arrive at the inequality

∥
∥uε,M

∥
∥2k–1

2k,�
d
dt

∥
∥uε,M

∥
∥

2k,� + (2k – 1)
∫

�

aε,M(uε,M)u2(k–1)
ε,M |∇uε,M|p(x,t) dx

+
∫

�

[
aε,M(uε,M) – γ

] · u2k–1
ε,M |∇uε,M|p(x,t) dx

≤ ∥
∥uε,M

∥
∥2k–1

2k,� · ∥∥f (·, t)
∥
∥

2k,� +
∥
∥uε,M

∥
∥2k–1

2k,� · |�|.

(3.32)
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Integrating over (0, t) in (3.32) and dropping the nonnegative term (3.31), we arrive at

∥
∥uε,M

∥
∥

2k,� ≤ ∥
∥uε,M(·, 0)

∥
∥

2k,� +
∫ T

0

∥
∥f (·, t)

∥
∥

2k,� dt + |�| · T , ∀k ∈ N .

Then, as k → ∞, we have that

‖uε,M‖∞,� ≤ ∥
∥uε,M(·, 0)

∥
∥∞,� +

∫ T

0

∥
∥f (·, t)

∥
∥∞,� dt + |�| · T = K(T). (3.33)

If we choose M > K(T), then

uε,M(·, t) ≤ sup
∣
∣uε,M(·, t)

∣
∣ ≤ K(T) < M

and therefore uε,M(·, t) = uε(·, t). �

Lemma 3.5 The solution of problem (3.1) satisfies the estimates

∫ ∫

QT

a
(
uε

)∣
∣∇uε

∣
∣p(x,t) dx dt ≤ K(T)|�| 1

2 , (3.34)

d0

∫ ∫

QT

∣
∣∇uε

∣
∣p(x,t) dx dt ≤ K(T)|�| 1

2 , (3.35)

∫ ∫

QT

uσ
ε

∣
∣∇uε

∣
∣p(x,t) dx dt ≤ K(T)|�| 1

2 . (3.36)

Proof To prove Lemma 3.5, we proceed as in the proof of Lemma 3.4, and in (3.27) we
take k = 1. We then obtain

d
dt

(∥
∥uε(·, t)

∥
∥

2,�

)
+

∫

�

aε,M(uε)
∣
∣∇uε

∣
∣p(x,t) dx

+
∫

�

[
aε,M(uε,M) – γ

] · u2k–1
ε,M |∇uε,M|p(x,t) dx

≤ ∥
∥f – βε(uε – u0)

∥
∥

2,�.

Therefore, integrating in time over (0, t), ∀t ∈ (0, T),

∥
∥uε(·, t)

∥
∥

2,� +
∫ t

0

∫

�

aε,M(uε)|∇uε|p(x,t) dx dt

+
∫

�

[
aε,M(uε,M) – γ

] · u2k–1
ε,M |∇uε,M|p(x,t) dx

≤
∫ T

0

∥
∥f – βε(uε – u0)

∥
∥

2,� dt

and since the first and third terms on the left-hand side are nonnegative and recalling the
L2-norm

∫ ∫

QT

a(uε)
∣
∣∇uε

∣
∣p(x,t) dx dt ≤ K(T)|�| 1

2 . (3.37)
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From this we obtain (3.34). Since a(uε) ≥ d0, aε,M(uε) ≥ uσ
ε , (3.35), and (3.35) are immedi-

ate consequences of (3.34). �

Lemma 3.6 The solution of problem (3.1) satisfies the estimate

∥
∥uεt

∥
∥

W ′(QT ) ≤ C
(
σ , p±, K(T), |�|).

Proof From identity (3.5), we obtain

∫ ∫

QT

uεtξ dx dt

= –
∫ ∫

QT

a(uε)|∇uε|p(x,t)–2∇uε∇ξ dx dt

–
∫ ∫

QT

[
a(uε) – γ

]|∇uε|p(x,t)ξ dx dt +
∫ ∫

QT

f · ξ dx dt

= –A1 – A1 + A1,

(3.38)

where

A1 =
∫ ∫

QT

a(uε)|∇uε|p(x,t)–2∇uε∇ξ dx dt,

A2 =
∫ ∫

QT

[
a(uε) – γ

]|∇uε|p(x,t)ξ dx dt, A3 =
∫ ∫

QT

f · ξ dx dt.

First, we pay attention to A1. Using Holder inequalities we obtain

|A1| ≤
∫ t

0

∫

�

a(uε)|∇uε|p(x,t)–1|∇ξ |dx dt

≤ 2
∥
∥a(uε)|∇uε|p(x,t)–1∥∥

p′(x,t)‖∇ξ‖p(x,t).

When
∫ t

0
∫

�
(a(uε)|∇uε|p(x,t)–1)

p(x,t)
p(x,t)–1 dx dt ≥ 1, we arrive at

|A1| ≤ 2
(∫ t

0

∫

�

(
a(uε)|∇uε|p(x,t)–1)

p(x,t)
p(x,t)–1 dx dt

) 1
p′+

· ‖∇ξ‖p(x,t). (3.39)

Moreover, when
∫ t

0
∫

�
(a(uε)|∇uε|p(x,t)–1)

p(x,t)
p(x,t)–1 dx dt < 1, we obtain

|A1| ≤ 2
(∫ t

0

∫

�

(
a(uε)|∇uε|p(x,t)–1)

p(x,t)
p(x,t)–1 dx dt

) 1
p′–

· ‖∇ξ‖p(x,t). (3.40)

Combining (3.39) and (3.40), and using Lemma 3.5, we arrive at

|A1| ≤
(
2
[(

K2(T) + 1
)σ /2 + d0

]) 1
p±–1 K2(T)|�| · ‖ξ‖W (QT ). (3.41)



Sun and Wu Journal of Inequalities and Applications        (2022) 2022:141 Page 11 of 15

Secondly, we calculate A2 and A3. Following a similar procedure as (3.41), we obtain

|A2| ≤ 2
[(

K2(T) + 1
)σ /2 + d0

] 1
p±–1 K2(T)|�| · ‖ξ‖W (QT )

+ 2γ
1

p±–1 K2(T)|�| · ‖ξ‖W (QT ),
(3.42)

|A3| ≤ 2|f |∞|T | · ‖ξ‖W (QT ). (3.43)

Substituting (3.41), (3.42), and (3.43) into (3.38), we conclude that

∫ ∫

QT

uεtξ dx dt ≤ 4
[(

K2(T) + 1
)σ /2 + d0

] 1
p±–1 K2(T)|�| · ‖ξ‖W (QT )

+ 2γ
1

p±–1 K2(T)|�| · +2|f |∞|T | · ‖ξ‖W (QT ).

Then, we obtain Lemma 3.6. �

4 Proof of the main results
In this section, we are ready to prove Theorem 2.1 and Theorem 2.2. From (3.15),
Lemma 3.5, and Lemma 3.6, we see that uε is bounded and increasing in ε, which implies
the existence of a function u, such that, as ε → 0

uε → u a.e. in �T , (4.1)

∇uε → ∇u weakly in Lp(x,t)(QT ), (4.2)

∂

∂t
uε → ∂

∂t
u weakly in W ′(QT ), (4.3)

a(uε)|∇uε|p(x,t)–2Diuε → Ai(x, t) weakly in Lp′(x,t)(QT ), (4.4)

|∇uε|p(x,t)–2Diuε → Wi(x, t) weakly in Lp′(x,t)(QT ), (4.5)

for some functions u ∈ W (QT ), Ai(x, t) ∈ Lp′(x,t)(QT ), Wi(x, t) ∈ Lp′(x,t)(QT ).

Lemma 4.1 For almost all (x, t) ∈ QT ,

Ai(x, t) = a(u)Wi(x, t), i = 1, 2, . . . , N .

Proof In (4.4) and (4.5), letting ε → 0, we have that

∫ ∫

QT

a(uε)|∇uε|p(x,t)–2∇uε∇ξ dx dt =
∑

i

∫ ∫

QT

Ai(x, t) · Diξ dx dt, (4.6)

∫ ∫

QT

|∇uε|p(x,t)–2∇uε∇ξ dx dt =
∑

i

∫ ∫

QT

Wi(x, t) · Diξ dx dt. (4.7)

By Lebesgue’s dominated convergence theorem, we have

lim
ε→0

∫ ∫

QT

[
a
(
uε

)
– a(u)

]
Ai(x, t) · Diξ dx dt = 0. (4.8)
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Hence, we have

lim
ε→0

∫ ∫

QT

a
(
uε

)|∇uε|p(x,t)–2DiuεDiξ – a(u)Wi(x, t)Diξ dx dt

= lim
ε→0

∫ ∫

QT

[
a
(
uε

)
– a(u)

] · |∇uε|p(x,t)–2DiuεDiξ dx dt

+ lim
ε→0

∫ ∫

QT

a(u)
(|∇uε|p(x,t)–2Diuε – Wi(x, t)

)
Diξ dx dt = 0.

This completes the proof of Lemma 4.1. �

Lemma 4.2 For almost all (x, t) ∈ QT ,

Wi(x, t) = |∇u|p(x,t)–2Diu, i = 1, 2, . . . , N .

Proof In (3.5), choosing ξ = � · (uε – u) with � ∈ W (QT ), � ≥ 0, we have

∫ ∫

QT

∂tuε · (uε – u) · � + � · a
(
uε

)|∇uε|p(x,t)–2∇uε∇(uε – u) dx dt

+
∫ ∫

QT

(
uε – u

) · a
(
uε

)|∇uε|p(x,t)–2∇uε∇� – f (x, t)(uε – u) dx dt = 0.

It follows that

lim
ε→∞

∫ ∫

QT

� · a
(
uε

)|∇uε|p(x,t)–2∇uε∇(uε – u) dx dt = 0. (4.9)

On the other hand, from uε , u ∈ L∞(QT ), |∇u| ∈ Lp(x,t)(QT ), we obtain

lim
ε→∞

∫ ∫

QT

� · a(u)|∇u|p(x,t)–2∇u∇(uε – u) dx dt = 0, (4.10)

lim
ε→∞

∫ ∫

QT

� · [a
(
uε

)
– a(u)

]|∇u|p(x,t)–2∇u∇(uε – u) dx dt = 0. (4.11)

Note that

0 ≤ (|∇uε|p(x,t)–2∇uε – |∇u|p(x,t)–2∇u
) · (∇uε – ∇u)

≤ 1
d0

[
a
(
uε

)|∇uε|p(x,t)–2∇uε +
[
a
(
uε

)
– a(u)

] · |∇u|p(x,t)–2∇u
] · (∇uε – ∇u)

–
1
d0

a(u)|∇u|p(x,t)–2∇u · (∇uε – ∇u).

(4.12)

By (4.9)–(4.12), we obtain

lim
ε→∞

∫ ∫

QT

(|∇uε|p(x,t)–2∇uε – |∇u|p(x,t)–2∇u
) · (∇uε – ∇u) dx dt = 0. (4.13)

Then, the proof of Lemma 4.2 is complete. �
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Lemma 4.3 As ε → 0, we have

βε(uε – u0) → ξ ∈ G(u – u0). (4.14)

Proof Using (3.15) and the definition of βε , we have

βε(uε – u0) → ξ as ε → 0.

Now, we prove ξ ∈ G(u – u0). According to the definition of G(·), we only need to prove
that if u(x0, t0) > u0(x0),

ξ (x0, t0) = 0.

In fact, if u(x0, t0) > u0(x0), there exist a constant λ > 0 and a δ-neighborhood Bδ(x0, t0)
such that if ε is small enough, we have

uε(x, t) ≥ u0(x) + λ, ∀(x, t) ∈ Bδ(x0, t0).

Thus, if ε is small enough, we have

0 ≥ βε(uε – u0) ≥ βε(λ) = 0, ∀(x, t) ∈ Bδ(x0, t0).

Furthermore, it follows by ε → 0 that

ξ (x, t) = 0, ∀(x, t) ∈ Bδ(x0, t0).

Hence, (4.13) holds, and the proof of Lemma 4.3 is complete. �

The proof of Theorem 2.1. Applying (3.15), (3.16), and Lemma 4.3, it is clear that

u(x, t) ≤ u0(x), in �T , u(x, 0) = u0(x), in �, ξ ∈ G(u – u0),

thus (a), (b), and (c) hold. The remaining arguments of the existence part are the same as
those of Theorem 2.1 in [8] by a standard limiting process. Thus, we omit the details. �

The proof of Theorem 2.2 We argue by contradiction. Suppose (u, ξ1) and (v, ξ2) are two
nonnegative weak solutions of problem (1.1). Define w = u – v,

F(w) =

⎧
⎨

⎩

– 1
α–1 w1–α if w > 0,

0 if w ≤ 0,
(4.15)
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and let ξ = Fε(w) ∈ Z be a test function in (3.4),

0 ≥
∫ ∫

QT

wtF(w) + a(v)v
(∣
∣∇u|p(x,t)–2∇u–

∣
∣∇v|p(x,t)–2∇v

)∇Fε(w) dx dt

+
∫ ∫

QT

[
a(u)u – a(v)v

]|∇u|p(x,t)–2∇u∇Fε(w) dx dt

+
∫ ∫

QT

[
a(u) – γ

](∣
∣∇u|p(x,t)–

∣
∣∇v|p(x,t))dx dt

+
∫ ∫

QT

[
a(u) – a(v)

]|∇u|p(x,t) dx dt –
∫ ∫

QT

(ξ1 – ξ2)F(w) dx dt.

(4.16)

Now, we prove
∫

�

(ξ1 – ξ2)F(w) dx dt ≤ 0. (4.17)

On the one hand, if u1(x, t) > u2(x, t), then using (3.16) yields

u1(x, t) > u0(x). (4.18)

From (2.1) and (4.18), it is easy to see that

ξ1 = 0 < ξ2. (4.19)

Combining (4.18) and (4.19) and the fact that α = 1
2σ > 1, (4.16) is obtained.

On the other hand, if u1(x, t) < u2(x, t), it is easy to see that F(w) = 0. Equation (4.16) still
holds.

Using (4.16) in (4.15) and dropping the nonnegative term, (4.15) becomes

0 ≥
∫ ∫

QT

wtF(w) + a(v)v
(∣
∣∇u|p(x,t)–2∇u–

∣
∣∇v|p(x,t)–2∇v

)∇Fε(w) dx dt

+
∫ ∫

QT

[
a(u)u – a(v)v

]|∇u|p(x,t)–2∇u∇Fε(w) dx dt

+
∫ ∫

QT

[
a(u) – γ

](∣
∣∇u|p(x,t)–

∣
∣∇v|p(x,t))dx dt

+
∫ ∫

QT

[
a(u) – a(v)

]|∇u|p(x,t) dx dt.

By the above inequality and combining the initial and boundary conditions in (1.1), the
uniqueness of the solution can be proved following the similar proof of (3.7)–(3.14). �

5 Conclusion
In this paper, an initial Dirichlet problem of degenerate parabolic variational inequalities
in the following form

⎧
⎪⎪⎨

⎪⎪⎩

min{Lu, u(x, 0) – u0} = 0, (x, t) ∈ QT ,

u(x, t) = 0, (x, t) ∈ �T ,

u(x, 0) = u0, x ∈ �,
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is studied. The existence and uniqueness of the solutions in the weak sense are proved by
the energy method and a limit process. The localization property of weak solutions is also
discussed.
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