
Sadri and Rahimlou Journal of Inequalities and Applications        (2022) 2022:127 
https://doi.org/10.1186/s13660-022-02862-5

R E S E A R C H Open Access

Equal-norm Parseval K -frames in Hilbert
spaces with a new inequality
Vahid Sadri1* and Gholamreza Rahimlou1

*Correspondence: vsadri@tvu.ac.ir
1Department of Mathematics,
Technical and Vocational University
(TVU), Tehran, Iran

Abstract
The focus of this paper is mainly on the frames of operators or K-frames on Hilbert
spaces in Parseval cases. Since equal-norm tight frames play an important role for
transmitting robust data, we aim to study this topic on Parseval K-frames. We find that
each finite set of equal-norm of vectors can be extended to an equal-norm K-frame.
We also find a correspondence between Parseval K-frames and the set of all closed
subspaces of a finite Hilbert space. Furthermore, we provide a construction of dual
equal-norm K-frames.
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1 Introduction
The concept of frames in Hilbert spaces was first introduced by Duffin and Schaeffer [11]
in 1952 to study some profound issues in nonharmonic Fourier series. Frames play such a
significant role in both pure and applied mathematics that are considered as a fundamen-
tal research area in mathematics, computer science and quantum information. In addition
to their former application they are also applied in some other fields, such as signal pro-
cessing, image processing, data compression and sampling theory.

Frames are redundant sets of vectors in a Hilbert space that yield one natural represen-
tation for each vector in the space, but they may also have infinite different representations
for a given vector [2–5, 8, 9, 11, 18–20]. Recently, several new applications for (uniform
tight) frames have been developed. The first one was developed by Goyal, Kovaĉević, and
Vetterli [14–16] that uses the redundancy of a frame to mitigate the effect of losses in
packet-based communication systems. Modern communication networks transport pack-
ets of data from a source to a recipient. These packets are sequences of information bits of
a certain length surrounded by error-control, addressing, and timing information that as-
sure that the packet is delivered without errors. This is accomplished by not delivering the
packet if it contains errors. Failures here are due primarily to buffer overflows at interme-
diate nodes in the network. Hence, to most users, the behavior of a packet network is not
characterized by random loss, but by unpredictable transport time This is due to a pro-
tocol, invisible to the user, that retransmits lost packets. Retransmission of packets takes
much longer than the original transmission in many applications, retransmission of lost
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packets is not feasible and the potential for a large delay is unacceptable. Another recent
important application of uniform normalized tight frames is in multiple-antenna code de-
sign [17]. Much theoretical work has been done to show that communication systems that
employ multiple antennas can have very high channel capacities [12, 21].

Frames for operators or K-frames have been introduced by Găvruţa in [13] to study the
nature of atomic systems for a separable Hilbert space with respect to a bounded linear
operator K . In fact, K-frames are more general than the classical frames and due to the
higher generality of K-frames, many properties of frames may not hold for K-frames, such
as the corresponding synthesis operator for these frames is not surjective and hence, the
frame operator is not invertible (see [22]).

In this paper, we will prove some fundamental results for the Parseval K-frames, which
have already been proved for tight frames in [6] and we will show that each finite set of
K-norm vectors can be extended to become a K-norm of a K-frame.

Throughout this paper, H , H1, and H2 are separable Hilbert spaces and B(H1, H2) is the
collection of all the bounded linear operators of H1 into H2. If H1 = H2 = H , then B(H , H)
will be denoted by B(H). The notation W ≺ H means that W is a closed subspace of H ,
also PW is the orthogonal projection from H onto the closed subspace W ≺ H and {Hj}j∈J
is a sequence of Hilbert spaces, where J is a subset of Z. When dim H < ∞, we say that H
is the finite Hilbert space.

2 Review of operator theory and K-frames
In this part, we aim to review some topics and notations about bounded operators and
frames on Hilbert spaces.

Let U be an operator with closed range (or, R(U) be closed), then there exists a right-
inverse operator U† (pseudoinverse of U) in the following senses.

Lemma 2.1 ([7]) Let U ∈ B(H1, H2) be a bounded operator with closed range R(U). Then,
there exists a bounded operator U† ∈ B(H2, H1) for which

UU†x = x, x ∈R(U).

Lemma 2.2 ([7]) Let U ∈ B(H1, H2). Then, the following assertions hold:
(1) (U∗)† = (U†)∗.
(2) The orthogonal projection of H2 onto R(U) is given by UU†.
(3) The orthogonal projection of H1 onto R(U†) is given by U†U .
(4) ker U† = R⊥(U) and R(U†) = (ker U)⊥.
(5) On R(U) we have U† = U∗(UU∗)–1.

The operator U : H → H is called a unitary operator if U∗ = U–1. In this case, it is ob-
vious that ‖U‖ = 1. The following lemma characterizes all orthonormal bases by unitary
operators.

Lemma 2.3 ([7]) Let {ej}j∈J be an orthonormal basis for H . Then, the orthonormal bases
for H are precisely the sets {Uej}j∈J, where U : H → H is unitary.

Suppose that W , V are closed subspaces of H with

dim W = dim V = m,
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then, we can check that there is a unitary operator U on H so that U|W = PV . Indeed, if we
choose Uej = e′

j, where {ej}m
j=1 and {e′

j}m
j=1 are orthonormal bases for W and V , respectively,

then U is unitary.
Assume that T and S are operators on H . The operator S is called unitarily equivalent

to T if there is a unitary operator U on H such that S = UTU∗.

Lemma 2.4 ([10]) Let L1 ∈ B(H1, H) and L2 ∈ B(H2, H) be on given Hilbert spaces. Then,
the following assertions are equivalent:

(1) R(L1) ⊆R(L2);
(2) L1L∗

1 ≤ λ2L2L∗
2 for some λ > 0;

(3) there exists a mapping U ∈ B(H1, H2) such that L1 = L2U .
Moreover, if those conditions are valid, then there exists a unique operator U such that
(a) ‖U‖2 = inf{α > 0 | L1L∗

1 ≤ αL2L∗
2};

(b) ker(L1) = ker(U);
(c) R(U) ⊆R(L∗

2).

Definition 2.1 (frame) Let {fj}j∈J be a sequence of members of H . We say that {fj}j∈J is a
frame for H if there exist 0 < A ≤ B < ∞ such that for each f ∈ H ,

A‖f ‖2 ≤
∑

j∈J

∣∣〈f , fj〉
∣∣2 ≤ B‖f ‖2. (1)

The constants A and B are called frame bounds. If the right-hand side of (1) holds, we
say that {fj}j∈J is a Bessel sequence with bound B. We say that {fj}j∈J is an A-tight frame for
H , if we have

∑

j∈J

∣∣〈f , fj〉
∣∣2 = A‖f ‖2,

for each f ∈ H . If A = 1, the set {fj}j∈J is called a Parseval frame.
It is easy to check that if {fj}j∈J is a frame for H with bounds A and B, then by (1), the

set {Pfj}j∈J is a frame for PH with the same bounds, where P is an orthonormal projection
on H . We say that two frames {fj}j∈J and {gj}j∈J are unitarily equivalent if there is a unitary
operator U on H such that gj = Ufj. In this case, we treat both the frames as the same.

Let {fj}j∈J be a Bessel sequence, then the synthesis and the analysis operators are defined
by

T :�2(N) → H , T{cj}j∈J =
∑

j∈J
cjfj, (2)

and

T∗ : H → �2(N), T∗f =
{〈f , fj〉

}
j∈J. (3)

Now, the frame operator is defined by S = TT∗ and this is an invertible and positive oper-
ator on H and also (see [7])

Sf =
∑

j∈J
〈f , fj〉fj,
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and

〈Sf , f 〉 =
∑

j∈J

∣∣〈f , fj〉
∣∣2,

for each f ∈ H . The following result characterizes all Parseval frames as a projection of an
orthonormal basis from a larger space.

Lemma 2.5 ([6]) A set {fj}j∈J in H is a Parseval frame if and only if there are a larger Hilbert
space M ⊇ H and an orthonormal basis {ej}j∈J for M so that the orthonormal projection P
of M onto H satisfies fj = Pej for each j ∈ J.

In the next part, we review notations of K-frames from [1, 13, 22].

Definition 2.2 (K-frame) [13] Let {fj}j∈J be a sequence of members of H and K ∈ B(H).
We say that {fj}j∈J is a K-frame for H if there exist 0 < A ≤ B < ∞ such that for each f ∈ H ,

A
∥∥K∗f

∥∥2 ≤
∑

j∈J

∣∣〈f , fj〉
∣∣2 ≤ B‖f ‖2. (4)

We say that {fj}j∈J is an equal-norm-K-frame for H , when {fj}j∈J is a K-frame and ‖fj‖ = c
for every j ∈ J. When c = ‖K‖, we call {fj}j∈J a K-norm-frame. We say that {fj}j∈J is a tight
K-frame for H , if we have

∑

j∈J

∣∣〈f , fj〉
∣∣2 = A

∥∥K∗f
∥∥2,

for each f ∈ H . If A = 1, the set {fj}j∈J is called a Parseval K-frame.
Since every K-frame is a Bessel sequence, then the synthesis and analysis operators are

defined by (2) and (3). However, the frame operator S = TT∗ is not invertible on H . Also,
S : R(K) → S(R(K)) is invertible when the operator K has closed range ([22]). Hence, we
can construct a Parseval frame for R(K) by the following result.

Proposition 2.1 Let {fj}j∈J be a K-frame for H and K has closed range. If S(R(K)) = R(K),
then

(I) {S 1
2 PR(K )fj}j∈J is a Parseval frame for R(K).

(II) {S 1
2 PR(K )fj}j∈J is a Parseval PR(K )-frame for H .

Proof (I). Since the operator S is invertible and positive on R(K), S–1|S(R(K )) has a unique
positive root as S– 1

2 and this operator commutes with S–1 and so with S. Now, for each
f ∈R(K) we have

f = S–1S|R(K )f

= S– 1
2 S|R(K )S– 1

2 f

=
∑

j∈J

〈
S– 1

2 f , PR(K )fj
〉
S– 1

2 PR(K )fj

=
∑

j∈J

〈
f , S– 1

2 PR(K )fj
〉
S– 1

2 PR(K )fj.
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Therefore,

‖f ‖2 = 〈f , f 〉 =
∑

j∈J

∣∣〈f , S– 1
2 PR(K )fj

〉∣∣2.

This completes the proof.
(II). Take f ∈ H , hence we can write f = f1 + f2, where f1 ∈R(K) and f2 ∈R(K)⊥. Then,

〈
S– 1

2 PR(K )fi, f2
〉

= 0.

Thus, we compute that

∑

j∈J

∣∣〈f , S– 1
2 PR(K )fj

〉∣∣2 =
∑

j∈J

∣∣〈f1, S– 1
2 PR(K )fj

〉
+

〈
f2, S– 1

2 PR(K )fj
〉∣∣2

=
∑

j∈J

∣∣〈f1, S– 1
2 PR(K )fj

〉∣∣2 +
∑

j∈J

∣∣〈f2, S– 1
2 PR(K )fj

〉∣∣2

+ 2
∑

j∈J
Re

〈
f1, S– 1

2 PR(K )fj
〉〈

S– 1
2 PR(K )fj, f2

〉

=
∑

j∈J

∣∣〈f1, S– 1
2 PR(K )fj

〉∣∣2.

Now, by item (I), we conclude that

∑

j∈J

∣∣〈f , S– 1
2 PR(K )fj

〉∣∣2 = ‖PR(K )f ‖2.
�

Remark 2.1 Assume that F = {fj}j∈J is a Parseval K-frame for H and K has closed range.
It is obvious that ker KK∗ = ker K∗, therefore we obtain R(KK∗) = R(K). If S is the frame
operator of F , then 〈Sf , f 〉 = ‖K∗f ‖2. Hence, S = KK∗ and we conclude that R(S) = R(K).

The following theorem gives a characterization of K-frames using linear bounded op-
erators.

Lemma 2.6 ([13]) Let {fj}j∈J be members of H . Then, {fj}j∈J is a K-frame if and only if there
exists a linear bounded operator T : �2(J) → H such that fj = Tδj and R(K) ⊆R(T), where
{δj}j∈J is an orthonormal basis for �2(J).

In the proof of Lemma 2.6, we can check that the operator T is the synthesis operator
(see Theorem 4 in [13]).

Proposition 2.2 Let {fj}j∈J be a Parseval K-frame for H and {λk}n
k=1 be the eigenvalues for

the frame operator S, where n = dim H . Then, λk > 0 for each k = 1, 2, . . . , n and

n
∥∥K∗ek

∥∥2 =
∑

j∈J
‖fj‖2,

where {ek}n
k=1 is an orthonormal basis for H .
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Proof First, we note that the equality:

n∑

j=1

λj =
∑

i∈J
‖fi‖2 (5)

holds for K-frames similar to the proof of Theorem 1.1.12 in [7] for ordinary frames. Sup-
pose that {λk}n

k=1 are the eigenvalues of S and Sf = λkf for some 0 �= f ∈ H . Since S is
self-adjoint, then λk ∈ R for every k = 1, 2, . . . , n and also there is an orthonormal basis
{ek}n

k=1 for H such that each ek is an eigenvalue vector for S. Since S = KK∗, therefore
‖K∗f ‖2 = λk‖f ‖2 and we conclude that λk > 0 for each k = 1, 2, . . . , n and also by (5), we can
obtain

n‖K∗f ‖2

‖f ‖2 =
∑

j∈J
‖fj‖2.

This completes the proof. �

Now, if {fj}m
j=1 is an equal-norm-Parseval K-frame for H , then by Proposition 2.2, for

each k = 1, . . . , n, we can obtain

‖fj‖2 =
n
m

∥∥K∗ek
∥∥2, (j = 1, . . . , m).

Definition 2.3 ([1]) Let F := {fj}j∈J be a K-frame and G := {gj}j∈J be a Bessel sequence for
H with synthesis operators T and �, respectively. We say that G is a K-dual for F if

T�∗ = K . (6)

In this case, from (6) we can write for each f ∈ H ,

Kf =
∑

j∈J
〈f , gj〉fj, (7)

and it is easy to see that G is a K∗-frame for H . In the following, we can begin to charac-
terize all K-dual of a K-frame.

Lemma 2.7 ([1]) Let F := {fj}j∈J be a K-frame. Then, {gj}j∈J is a K-dual of F if and only if
{gj}j∈J = {Vδj}j∈J, where {δj}j∈J is the standard orthonormal basis of �2 and V : �2 → H is a
bounded operator such that TV ∗ = K . In this case, {gj}j∈J is in fact a Parseval V -frame.

3 Main results
The following result that is a general case of Theorem 3.2 in [6], shows that each finite set
of K-norm vectors can be extended to become a K-norm of a K-frame.

Theorem 3.1 If F := {fj}m
j=1 is a set of K-norm vectors in H , then there is a K-norm-frame

for H that contains the set F .
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Proof Let 1 ≤ j ≤ m and {eij}i∈I be an orthonormal basis for H that contains the vector uj,
where uj := fj

‖K‖ . For any f ∈ H we have

m
∥∥K∗f

∥∥2 ≤ m‖K‖2‖f ‖2 =
m∑

j=1

∑

i∈I

∣∣〈f ,‖K‖eij
〉∣∣2.

Therefore, {‖K‖eij}m
j=1,i∈I is a K-frame for H with bounds m and m‖K‖2 and is made up of

K-norm vectors. �

Corollary 3.1 If K has closed range, F := {fj}m
j=1 is a set of K-norm vectors in H and

‖K‖‖K†‖ = 1, then there is a K-norm-tight frame for R(K) that contains the set F .

Proof Chose f ∈R(K), such that

‖K‖‖f ‖ = ‖K‖∥∥(
K†

)∗K∗f
∥∥ ≤ ∥∥K∗f

∥∥,

hence we obtain ‖K∗f ‖ = ‖K‖‖f ‖. Now, by Theorem 3.1, if {eij}i∈I is an orthonormal basis
for R(K), then {‖K‖eij}m

j=1,i∈I is a K-norm-tight frame for R(K). �

The next result is the same as Lemma 2.5 for Parseval K-frames.

Theorem 3.2 Let {fj}j∈J be a Parseval K-frame for H and K be closed range. Then, there
is a larger Hilbert space M ⊇ R(K†) and an orthonormal basis {ej}j∈J for M so that the
orthonormal projection P of M onto R(K†) satisfies fj = KPej for each j ∈ J.

Proof Assume that {fj}j∈J is a Parseval K-frame for H . Via Lemma 2.6, there exists an
orthonormal basis {e′

j}j∈J in which fj = Te′
j for all j ∈ J. Since {fj}j∈J is a Parseval K-frame,

we have KK∗ = TT∗ and by Lemma 2.4 we can obtain R(T) = R(K). Therefore, fj ∈R(K).
Suppose that f ∈R(K†), by Lemma 2.2 we have

∑

j∈J

∣∣〈f , K†fj
〉∣∣2 =

∑

j∈J

∣∣〈(K†
)∗f , fj

〉∣∣2 =
∥∥K∗(K†

)∗f
∥∥2 = ‖f ‖2.

Hence, {K†fj}j∈J is a Parseval frame for R(K†). Hence, by Lemma 2.5, there exists a larger
Hilbert space M ⊇R(K†) and an orthonormal basis {ej}j∈J for M so that K†fj = Pej for each
j ∈ J or fj = KPej. �

The next result is a general case of Theorem 3.4 in [6] for K-frames. In the following,
we let dim H = n with an orthonormal basis {ej}n

j=1.

Theorem 3.3 Let K be closed range, P be an orthonormal projection on H onto R(K†) such
that KP be a rank-m. Define

K = {all Parseval K-frames for KPH}
M = {W ≺ H , dim W = m}.

Then, there exists a natural one-to-one correspondence between K and M.
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Proof For each F := {fj}n
j=1 ∈ K , by Theorem 3.2, there is an orthonormal basis {e′

j}n
j=1 such

that fj = KPe′
j for any 1 ≤ j ≤ n. Define a unitary operator UF on H by UF ej = e′

j. Hence, we
have fj = KPUF ej, which is unitarily equivalent to f ′

j := U∗
F KPUej. Define

� : K −→ M,

�{fj}n
j=1 = U∗

F KPUF H .

It is clear that the operator � is well defined. Assume that W ∈ M, thus there exists a
unitary operator U on H such that UW = KPH . Hence, we obtain U∗KPUH = W , while
{KPej}n

j=1 ∈ K , which corresponds to W . This means that � is surjective. Finally, suppose
that G := {gj}n

j=1 ∈ K and VG is a unitary operator on H such that U∗
F KPUF H = V ∗

GKPVGH
which gives

VGej = e′′
j , gj = KPe′′

j = KPVGej.

Since U∗
F KPUF ej = V ∗

GKPVGej for each 1 ≤ j ≤ n, we have U∗
F fj = V ∗

Ggj. Hence, fj and gj are
unitarily equivalent for each j. Hence, F and G are two identical K-Parseval frames, then
� is injective. �

Theorem 3.4 Let {fj}j∈J be a Parseval K-frame for H with the synthesis operator T and
{gj}j∈J be a Parseval K∗-frame for H with the synthesis operator �. If {gj}j∈J is a K-dual for
{fj}j∈J, then we have

∥∥(
T∗ – �∗K∗)f

∥∥2 =
∥∥KK∗f

∥∥2 –
∥∥K∗f

∥∥2, (∀f ∈ H).

Moreover, if K has closed range, then we can obtain the following inequality:

∥∥(
KK∗)–1∥∥–2(1 –

∥∥K†
∥∥2) ≤ ‖T – K�‖2 ≤ ‖K‖2(‖K‖2 – 1

)
.

Proof Since T�∗ = K and TT∗ = KK∗, we obtain T(T∗ – �∗K∗) = 0. Therefore, for every
f , g ∈ H we have

〈
T∗g,

(
T∗ – �∗K∗)f

〉
=

〈
g, T

(
T∗ – �∗K∗)f

〉
= 0.

Hence, we compute that

∥∥�∗K∗f
∥∥2 =

∥∥T∗f – T∗f + �∗K∗f
∥∥2

=
∥∥T∗f –

(
T∗ – �∗K∗)f

∥∥2

=
∥∥T∗f

∥∥2 +
∥∥(

T∗ – �∗K∗)f
∥∥2

–
〈
T∗f ,

(
T∗ – �∗K∗)f

〉
–

〈
T∗f ,

(
T∗ – �∗K∗)f

〉

=
∥∥T∗f

∥∥2 +
∥∥(

T∗ – �∗K∗)f
∥∥2.

However, via the hypothesis, we have ‖T∗f ‖2 = ‖K∗f ‖2 and ‖�∗f ‖2 = ‖Kf ‖2. For the sec-
ond part, the right inequality is evident. Since K has closed range, it is easy to check
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that the operator KK∗ : R(K) → R(K) is invertible. Hence, for any 0 �= f ∈ R(K) we have
‖f ‖2 ≤ ‖(KK∗)–1‖2‖KK∗f ‖2. On the other hand, via Lemma 2.2, we obtain

∥∥K∗f
∥∥2 =

∥∥K†KK∗f
∥∥2 ≤ ∥∥K†

∥∥2∥∥KK∗f
∥∥2.

Hence, we conclude that

‖T – K�‖2 =
∥∥T∗ – �∗K∗∥∥2 ≥ ‖(T∗ – �∗K∗)f ‖2

‖f ‖2 ≥ ∥∥(
KK∗)–1∥∥–2(1 –

∥∥K†
∥∥2).

This completes the proof. �

In the next result, which is a general case of Proposition 3.3 in [6], we define K � as a left
inverse of K and {δj}m

j=1 is the orthonormal basis for �2.

Theorem 3.5 Let F = {fj}m
j=1 be an equal-norm-Parseval K-frame for the finite Hilbert

space H with the synthesis operator T such that T∗H ⊥ U∗H and K �fj ⊥ Uδj for each
1 ≤ j ≤ m, where U ∈ B(�2, H) and K �|F are two isometries. Then, {fj}m

j=1 has infinitely many
dual equal-norm K-frames.

Proof Choose V = aU∗, where a �= 0. Since (K �T +U)T∗ = K∗, via Lemma 2.7, if gj = (K �T +
V ∗)δj for 1 ≤ j ≤ m, then {gj}m

j=1 is a dual K-frame of {fj}m
j=1.

Assume that P : �2 → T∗H is an orthonormal projection so that Pδj = T∗fj for any 1 ≤
j ≤ m and {ek}n

k=1 is an orthonormal basis for H where n = dim H . Since Tδj = fj, therefore
for each 1 ≤ j ≤ m,

gj = K �fj + V ∗(I – P)δj.

Fix k = 1, . . . , n. It is easy to check that 〈K �fj, V (I – P)δj〉 = 0 and also via Proposition 2.2,
we can obtain

‖fj‖2 =
n
m

∥∥K∗ek
∥∥2,

and

‖Pδj‖2 =
∥∥T∗fj

∥∥2 =
∥∥K∗fj

∥∥2 =
n
m

∥∥K∗ek
∥∥2

λk ,

where λk is the eigenvalue of the frame operator SF . Since

〈δj, Pδj〉 =
〈
δj, P2δj

〉
= 〈Pδj, Pδj〉 = ‖Pδj‖2,

and also

∥∥(I – P)δj
∥∥2 = 〈δj – Pδj, δj – Pδj〉 = 1 – ‖Pδj‖2,

thus, for each j = 1, . . . , m, we conclude that

‖gj‖2 =
〈
K �fj + V (I – P)δj, K �fj + V (I – P)δj

〉
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=
∥∥K �fj

∥∥2 +
∥∥V (I – P)δj

∥∥2

= ‖fj‖2 + a2∥∥(I – P)δj
∥∥2

=
n
m

∥∥K∗ek
∥∥2 + a2

(
1 –

n
m

∥∥K∗ek
∥∥2

λk

)

= a2 +
n
m

(
1 – a2λk

)∥∥K∗ek
∥∥2. �
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