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Abstract
In this research study, we investigate the existence and uniqueness of solutions for a
coupled multiorder system of fractional differential equations involving coupled
integro-differential boundary conditions in the Riemann–Liouville setting. The
presented results are obtained via classical Banach principle along with
Leray–Schauder and Krasnosel’skĭi’s fixed-point theorems. Examples are included to
support the effectiveness of the obtained results.
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1 Introduction and preliminaries
Fractional calculus is a powerful tool to express real-world problems than the integer-
order differentiation. Consequently, fractional calculus has been used in several areas such
as mathematics, physics, control systems, and other sciences; see, for example, [1–10]
and related references therein. Indeed, fractional operators associated with fractional dif-
ferential equations can describe some phenomena of nature more accurately than those
of integer order. Accordingly, many researchers have studied FDEs with boundary/initial
conditions, and the most important subject in the study of this field is showing the exis-
tence and uniqueness of a solution; see [3, 4, 6, 11–19]. Furthermore, an important class
of applied analysis is presented by boundary value problems of FDEs. Many authors have
considered the FDEs by using the Caputo or Riemann–Liouville derivative. Indeed, some
new models have been developed by engineers and scientists that involve FDEs with Ca-
puto or Riemann–Liouville derivatives. Besides, fractional differential equations involving
a coupled system have nonlocal nature and applications in many real-world processes and
synchronization of chaotic systems [20–27]. Hence many authors have studied coupled
systems of fractional differential equations, and in this regard, we can find a lot of mono-
graphs [23–25, 27].
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Niyom et al. [28] considered the following Riemann–Liouville fractional differential
equation:

⎧
⎨

⎩

λDk(p̌(b)) + (1 – λ)Dθ (p̆(b)) = ϒ̂(b, p̆(b)), b ∈ [0, T], k ∈ (1, 2],

p̆(0) = 0, μ1Dγ1 p̌(T) + (1 – μ1)Dγ2 p̆(T) = δ1,
(1.1)

and obtained some related results on the existence of a solution. Ntouyas et al. [29]
changed this problem to the following form with integral conditions:

⎧
⎨

⎩

λDk(p̌(b)) + (1 – λ)Dθ (p̆(b)) = ϒ̂(b, p̆(b)), b ∈ [0, T], k ∈ (1, 2],

p̌(0) = 0, μ2Iq1 p̆(T) + (1 – μ2)Iq2 p̌(T) = δ2.
(1.2)

Under similar assumptions, they proved some results in this regard. Recently, Chikh et al.
[30], by mixing the above ideas and using standard fixed-point methods have studied the
following multiorder Riemann–Liouville fractional differential equations in the context of
the boundary conditions in the form of the linear combinations of unknown function:

⎧
⎪⎪⎨

⎪⎪⎩

λDk(p̌(b)) + (1 – λ)Dθ (p̆(b)) = ϒ̂(b, p̆(b)), b ∈ [0, T], k ∈ [2, 3),

p̆(0) = 0, μ1Dγ1 p̆(T) + (1 – μ1)Dγ2 p̆(T) = δ1,

μ2Iq1 p̆(T) + (1 – μ2)Iq2 p̆(T) = δ1.

(1.3)

Inspired by the published papers on problems (1.1)–(1.3), in this direction, we investigate
the existence and uniqueness of solutions for the multiorder Riemann–Liouville fractional
BVPs (RL-FBVP) as the coupled fractional systems of the form

⎧
⎪⎪⎨

⎪⎪⎩

λ1Dk1 (p̌(b)) + (1 – λ1)Dθ1 (p̌(b)) = f (b, p̌(b), q̌(b)), b ∈ [0, 1],

λ2Dk2 (q̌(b)) + (1 – λ2)Dθ2 (q̌(b)) = g(b, ˇ̌p(b), q̌(b)), b ∈ [0, 1],

p̌(0) = 0, q̌(0) = 0, q̌(1) = λDγ1 p̌(η), p̌(1) = γ Iq1 q̌(ξ ),

(1.4)

where Dθ (θ ∈ {k1, k2, θ1, θ2,γ1}) and Iq1 are the Riemann–Liouville derivative and integral,
respectively, 1 < k1, k2 ≤ 2, 1 < θ1, θ2 < min{k1, k2}, 0 < λ1,λ2 ≤ 1, f , g ∈ C([0, 1] × R

2,R),
η, ξ ∈ (0, 1), λ,γ ∈R, q1 ∈R+, and 0 ≤ γ1 < min{k1 – θ1, k2 – θ2}.

The structure of this paper is as follows. First, we recall some main concepts in Sect. 2.
The classical Banach, Leray–Schauder, and Krasnosel’skii fixed point theorems are applied
to obtain the results on the existence and uniqueness in Sect. 3. Besides, to support the
obtained results, we include some examples.

For a function g : (0,∞) −→R, the Riemann–Liouville fractional integral of order η has
been defined by Iηg(b) =

∫ b
0

(b–s)η–1

	(η) g(s) ds, where the right-hand side is defined pointwise
on (0,∞) [2]. Besides, for a function g , the Riemann–Liouville fractional derivative of or-
der β is defined as Dβg(t) = 1

	(n–β) ( d
dt )n ∫ t

0
g(s)

(t–s)β–n+1 ds with n = [β] + 1 [2].
The following lemma is the main tool to present the main result in this paper.

Lemma 1.1 ([2]) Let p̌ ∈ CR(0, 1). Then, for ρ > 0, we have

IρDρ p̌(b) = p̌(b) + C1bρ–1 + C2bρ–2 + · · · + cnbρ–n,

where n – 1 < ρ < n, and C1, C2, . . . , Cn are some real constants.
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The following three theorems due to Banach, Leray and Schauder, and Krasnosel’skii
play the main role in our arguments. X is a Banach space in both theorems.

Theorem 1.1 ([31]) Assume that D is a closed set in X and T̂ : D −→ D satisfies

|T̂x – T̂y| ≤ λ|x – y| ∀x, y ∈ D

for some λ ∈ (0, 1). Then T admits a unique fixed point in D.

Theorem 1.2 ([32]) Suppose that � is a closed bounded convex in X and O is an open set
contained in � with 0 ∈ O. Let T : U → � be continuous and compact. Then

(a) T has a fixed point in U , or
(aa) ∃u ∈ U and μ̂ ∈ (0, 1) such that u = μ̂T(u).

Lemma 1.2 (Krasnosel’skii fixed point theorem [33]) Assume that M is a closed, bounded,
convex, and nonempty subset of a Banach space X . Besides, assume that A, B are two op-
erators such that (i) Ax + By ∈ M for x, y ∈ M, (ii) A is compact and continuous, and (iii) B
is a contraction mapping. Then A + B has a fixed point in M.

2 An auxiliary result
The following lemma is a key result, which will be applied to verify the fundamental re-
sults.

Lemma 2.1 Let h1, h2 ∈ C([0, 1],R). Then the pair (p̌, q̌) is a solution to the linear multi-
order RL-FBVPs

⎧
⎪⎪⎨

⎪⎪⎩

λ1Dk1 (p̌(b)) + (1 – λ1)Dθ1 (p̌(b)) = h1(b), b ∈ [0, 1],

λ2Dk2 (q̌(b)) + (1 – λ2)Dθ2 (q̌(b)) = h2(b), b ∈ [0, 1],

p̌(0) = 0, q̌(0) = 0, q̌(1) = λDγ1 p̌(η), p̌(1) = γ Iq1 q(ξ ),

(2.1)

if and only if

p̌(b) =
λ1 – 1

λ1
× 1

	(k1 – θ1)

∫ b

0
(b – s)k1–θ1–1p̌(s) ds

+
1
λ1

× 1
	(k1)

∫ b

0
(b – s)k1–1h1(s) ds

+
bk1–1



[
γ (λ2 – 1)

λ2
Ik2–θ2+q1 q̌(ξ ) +

γ

λ2
Ik2+q1 h2(ξ )

+
�1λ(λ1 – 1)

λ1
Ik1–θ1–γ1 p̌(η) +

�1λ

λ1
Ik1–γ1 h1(η)

–
(λ2 – 1)�1

λ2
Ik2–θ2 q̆(1) –

�1

λ2
Ik2 h2(1)

–
λ1 – 1

λ1
Ik1–θ1 p̌(1) –

1
λ1

Ik1 h1(1)
]
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and

q̌(b) =
λ2 – 1

λ2
× 1

	(k2 – θ2)

∫ b

0
(b – s)k2–θ2–1q̌(s) ds

+
1
λ2

× 1
	(k2)

∫ t

0
(b – s)k2–1h2(s) ds +

bk2–1

||
[

λ(λ1 – 1)
λ1

Ik1–θ1–γ1 p̌(η)

+
λ

λ1
Ik1–γ1 h1(η) –

(λ2 – 1)
λ2

Ik2–θ2 q̌(1) –
1
λ2

Ik2 h2(1)

+ �2(
γ (λ2 – 1)

λ2
Ik2–θ2+q1 q̌(ξ ) +

γ

λ2
Ik2+q1 h2(ξ )

–
(λ1 – 1)

λ1
Ik1–θ1 p̌(1) –

1
λ1

h1(1)
]

,

where

�1 = γ ξ k2–1+q1
	(k2)

	(k2 + q1)
,

�2 =
	(k1)

	(k1 – γ1)
ηk1–γ1–1,  = 1 – �1�2 �= 0.

Proof Taking the operator Ik1 on both sides of the first equation in (2.1), by Lemma 1.1 we
deduce that

p̌(b) =
λ1 – 1

λ1

1
	(k1 – θ1)

∫ b

0
(b – s)k1–θ1–1p̌(s) ds

+
1
λ1

1
	(k1)

∫ b

0
(b – s)k1–1h1(s) ds + bk1–1C1 + bk1–2C2. (2.2)

Similarly, taking the operator Ik2 on both sides of the second equation in (2.1), we get

q̌(b) =
λ2 – 1

λ2

1
	(k2 – θ2)

∫ b

0
(b – s)k2–θ2–1q̌(s) ds

+
1
λ2

1
	(k2)

∫ b

0
(b – s)k2–1h2(s) ds + C3bk2–1 + C4bk2–2, (2.3)

where C1, C2, C3 ∈R. From p̌(0) = 0 and q̌(0) = 0 we obtain C2 = C4 = 0. Consequently,

p̌(b) =
λ1 – 1

λ1

1
	(k1 – θ1)

∫ b

0
(b – s)k1–θ1–1p̌(s) ds

+
1
λ1

1
	(k1)

∫ b

0
(b – s)k1–1h1(s) ds + bk1–1C1,

and

q̌(b) =
λ2 – 1

λ2

1
	(k2 – θ2)

∫ b

0
(b – s)k2–θ2–1q̌(s) ds

+
1
λ2

1
	(k2)

∫ b

0
(b – s)k2–1h2(s) ds + C3bk2–1.
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Now, applying the operators Iq1 and Dγ1 , we get

Iq1 q̌(b) =
λ2 – 1

	(k2 – θ2 + q1)λ2

∫ b

0
(b – s)k2–θ2+q1–1q̌(s) ds

+
1

λ2	(k2 + q1)

∫ b

0
(b – s)k2+q1–1h2(s) ds + C3bk2–1+q1

	(k2)
	(k2 + q1)

,

Dγ1 p̌(b) =
λ1 – 1

λ1	(k1 – θ1 – γ1)

∫ b

0
(b – s)k1–θ1–γ1–1p̌(s) ds

+
1

λ1	(k1 – γ1)

∫ b

0
(b – s)k1–γ1–1h1(s) ds + bk1–γ1–1 C1	(k1)

	(k1 – γ1)
.

Hence, in view of q̌(1) = λDγ1 p̌(η) and p̌(1) = γ Iq1 q̌(ξ ), we have

C1 – C3�1 = d1,

C3 – C1�2 = d2,

where

d1 =
γ (λ2 – 1)

λ2
Ik2–θ2+q1 q̌(ξ ) +

γ

λ2
Ik2+q1 h2(ξ ) –

(λ1 – 1)
λ1

Ik1–θ1 p̌(1) –
1
λ1

h1(1),

d2 ==
λ(λ1 – 1)

λ1
Ik1–θ1–γ1 p̌(η) +

λ

λ1
Ik1–γ1 h1(η) –

(λ2 – 1)
λ2

Ik2–θ2 q̌(1) –
1
λ2

Ik2 h2(1).

Accordingly, C1 = d1+d2�1


and C3 = d2+�2d1


. By inserting the values of C1 and C3 into (2.2)
and (2.3) the conclusion follows. The converse is obtained by direct computation. �

3 Results concerning the existence and uniqueness
In this subsection, by applying some classical fixed point theorems, we present some re-
sults. First, we apply the Banach fixed point theorem to obtain our first existence result.

Let X = C([0, 1],R) be the Banach space of all continuous mappings on [0, 1] with norm

‖x̌‖ = sup
{∣
∣x̌(b)

∣
∣; b ∈ [0, 1]

}
.

It is clear that the space X×X with norm ‖(x̌, y̌)‖ = ‖x̌‖ + ‖y̌‖ is a Banach space. In the fol-
lowing theorem, we apply the classical Banach fixed point theorem to obtain the unique-
ness result for the RLFBVP (1.4). For convenience, we set

A1 =
1

λ1	(k1 + 1)
+

�1λ

λ1	(k1 – γ1 + 1)
+

1
λ1	(k1 + 1)

,

A2 =
γ

λ2	(k2 + q1 + 1)
+

�1

λ2	(k2 + 1)
,

A3 =
|λ1 – 1|

λ1	(k1 – θ1 + 1)
+

|λ1 – 1|
λ1	(k1 – θ1 + 1)

+
�1λ|λ1 – 1|

λ1	(k1 – θ1 – γ1 + 1)
,

A4 =
γ |λ2 – 1|

λ2	(k2 – θ2 + q1 + 1)
+

�1|λ2 – 1|
λ2	(k2 – θ2 + 1)

,

B1 =
λ

λ1	(k1 – γ1 + 1)
+

�2

λ1	(k1 + 1)
,
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B2 =
1

λ2	(k2 + 1)
+

�2γ

λ2	(k2 + q1 + 1)
+

1
λ2	(k2 + 1)

,

B3 =
λ|λ1 – 1|

λ1	(k1 – θ1 – γ1 + 1)
+

�2|λ1 – 1|
λ1	(k1 – θ1 + 1)

+
|λ2 – 1|

λ2	(k2 – θ2 + 1)
,

B4 =
|λ2 – 1|

λ2	(k2 – θ2 + 1)
+

�2γ |λ2 – 1|
λ2	(k2 – θ2 + q1 + 1)

. (3.1)

Theorem 3.1 Let f , g : [0, 1] × R
2 −→ R be two continuous functions such that for all

(ǔ1, v̌1), (ǔ2, v̌2) ∈R
2,

∣
∣f (b, ǔ1, v̌1) – f (b, ǔ2, v̌2)

∣
∣ ≤ �1

(|ǔ1 – ǔ2| + |v̌1 – v̌2|
)
,

∣
∣g(b, ǔ1, v̌1) – g(b, ǔ2, v̌2)

∣
∣ ≤ �2

(|ǔ1 – ǔ2| + |v̌1 – v̌2|
)
, (3.2)

where �1,�2 ∈ R. Besides, assume that �1(A1 + B1) + �2(A2 + B2) + (A3 + A4 + B3 + B4) < 1
where Ai, Bi are given in (3.1). Then the RL-FBVP (1.4) admits a unique solution on [0, 1].

Proof Consider supt∈[0,1] |g(t, 0, 0)| = N and supt∈[0,1] |f (t, 0, 0)| = M coupled with

Br =
{

(ǔ, v̌) ∈ X×X;
∥
∥(ǔ, v̌)

∥
∥ ≤ r

}
,

where

r ≥ M(A1 + B1) + N(A2 + B2)
1 – [�1(A1 + B1) + �2(A2 + B2) + A3 + A4 + B3 + B4]

.

Now by Lemma 2.1 we define the operator F : X×X→ X×X by

F(ǔ, v̌)(b) =
(
F1(ǔ, v̌)(b), F2(ǔ, v̌)(b)

)
,

where

F1(ǔ, v̌)(b) =
λ1 – 1

λ1
× 1

	(k1 – θ1)

∫ b

0
(b – s)k1–θ1–1ǔ(s) ds

+
1
λ1

× 1
	(k1)

∫ b

0
(b – s)k1–1f

(
s, ǔ(s), v̌(s)

)
ds

+
bk1–1



[
γ (λ2 – 1)

λ2
Ik2–θ2+q1 v̌(ξ ) +

γ

λ2
Ik2+q1 g

(
ξ , ǔ(ξ ), v̌(ξ )

)

+
�1λ(λ1 – 1)

λ1
Ik1–θ1–γ1 ǔ(η) +

�1λ

λ1
Ik1–γ1 f

(
η, ǔ(η), v̌(η)

)

–
(λ2 – 1)�1

λ2
Ik2–θ2 v̌(1) –

�1

λ2
Ik2 g

(
1, ǔ(1), v(1)

)

–
λ1 – 1

λ1
Ik1–θ1 ǔ(1) –

1
λ1

Ik1 f
(
1, ǔ(1), v̌(1)

)
]

and

F2(ǔ, v̌)(b) =
λ2 – 1

λ2
× 1

	(k2 – θ2)

∫ b

0
(b – s)k2–θ2–1v̌(s) ds
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+
1
λ2

× 1
	(k2)

∫ b

0
(b – s)k2–1g(

(
s, ǔ(s), v̌(s)

)
ds

+
bk2–1

||
[

λ(λ1 – 1)
λ1

Ik1–θ1–γ1 ǔ(η) +
λ

λ1
Ik1–γ1 f

(
η, ǔ(η), v̌(η)

)

–
(λ2 – 1)

λ2
Ik2–θ2 v̌(1) –

1
λ2

Ik2 g
(
1, ˇ̌u(1), v̌(1)

)

+ �2

(
γ (λ2 – 1)

λ2
Ik2–θ2+q1 v̌(ξ ) +

γ

λ2
Ik2+q1 g

(
ξ , ǔ(ξ ), v̌(ξ )

)

–
(λ1 – 1)

λ1
Ik1–θ1 ǔ(1) –

1
λ1

f
(
1, ǔ(1), v̌(1)

)
)]

.

First, we prove that F(Br) ⊆ Br . For all (ǔ, v̌) ∈ Br and b ∈ [0, 1], we have

∣
∣f

(
b, ǔ(b), v̌(b)

)∣
∣ ≤ ∣

∣f
(
b, ǔ(b), v̌(b)

)
– f (b, 0, 0)

∣
∣ +

∣
∣f (b, 0, 0)

∣
∣

≤ �1
(∣
∣u(t)

∣
∣ +

∣
∣v(t)

∣
∣
)

+ M

≤ �1r + M.

Similarly, we have

∣
∣g

(
b, ǔ(b), v̌(b)

)∣
∣ ≤ �2r + N .

Consequently,

∣
∣F1(ǔ, v̌)(b)

∣
∣

≤ (�1r + M)
[

1
λ1	(k1 + 1)

+
�1λ

λ1	(k1 – γ1 + 1)
+

1
λ1	(k1 + 1)

]

+ (�2r + N)
[

γ

λ2	(k2 + q1 + 1)
+

�1

λ2	(k2 + 1)

]

+ r
[ |λ1 – 1|

λ1	(k1 – θ1 + 1)
+

γ |λ2 – 1|
λ2	(k2 – θ2 + q1 + 1)

+
�1λ|λ1 – 1|

λ1	(k1 – θ1 – γ1 + 1)

+
|λ2 – 1|�1

λ2	(k2 – θ2 + 1)
+

|λ1 – 1|
λ1	(k1 – θ1 + 1)

]

.

Thus

∥
∥F1(ǔ, v̌)

∥
∥ ≤ (�1r + M)A1 + (�2r + N)A2 + r(A3 + A4). (3.3)

Similarly, we have

∥
∥F2(ǔ, v̌)

∥
∥

≤ (�1r + M)
[

λ

λ1	(k1 – γ1 + 1)
+

�2

λ1	(k1 + 1)

]

+ (�2r + N)
[

1
λ2	(k2 + 1)

+
�2γ

λ2	(k2 + q1 + 1)
+

1
λ2	(k2 + 1)

]



Samadi et al. Journal of Inequalities and Applications        (2022) 2022:123 Page 8 of 16

+ r
[ |λ2 – 1|

λ2	(k2 – θ2 + 1)
+

λ|λ1 – 1|
λ1	(k1 – θ1 – γ1 + 1)

+
|λ2 – 1|

λ2	(k2 – θ2 + 1)

+
�2γ |λ2 – 1|

λ2	(k2 – θ2 + q1 + 1)
+

�2|λ1 – 1|
λ1	(k1 – θ1 + 1)

]

,

which leads to

∥
∥F2(ǔ, v̌)

∥
∥ ≤ (�1r + M)B1 + (�2r + N)B2 + r(B3 + B4). (3.4)

Using (3.3) and (3.4), we infer that

∥
∥F(ǔ, v̌)

∥
∥ ≤ ∥

∥F1(ǔ, v̌)
∥
∥ +

∥
∥F2(ǔ, v̌)

∥
∥

≤ (�1r + M)(A1 + B1) + (�2r + N)(A2 + B2)

+ r(A3 + A4 + B3 + B4)

≤ r.

On the other hand, for all (ǔ1, v̌1), (ǔ2, v̌2) ∈ Br and b ∈ [0, 1], we get

∣
∣F1(ǔ1, v̌1)(b) – F1(ǔ2, v̌2)(b)

∣
∣

≤ |λ1 – 1|
λ1	(k1 – θ1 + 1)

(‖ǔ1 – ǔ2‖
)

+
�1

λ1	(k1 + 1)
(‖ǔ1 – ǔ2‖ + ‖v̌1 – v̌2‖

)

+
γ |λ2 – 1|

λ2	(k2 – θ2 + q1 + 1)
(‖v̌1 – v̌2‖

)

+
γ

λ2	(k2 + q1 + 1)
�2

(‖ǔ1 – ǔ2‖ + ‖v̌1 – v̌2‖
)

+
�1λ(|λ1 – 1)|

λ1	(k1 – θ1 – γ1 + 1)
‖ǔ1 – ǔ2‖

+
�1λ

λ1	(k1 – γ1 + 1)
�1

(‖ǔ1 – ǔ2‖ + ‖v̌1 – v̌2‖
)

+
�1|λ2 – 1|

λ2	(k2 – θ2 + 1)
‖v̌1 – v̌2‖ +

�1

λ2	(k2 + 1)
�2

(‖ǔ1 – ǔ2‖ + ‖v̌1 – v̌2‖
)

+
|λ1 – 1|

λ1	(k1 – θ1 + 1)
(‖ǔ1 – ǔ2‖

)
+

1
λ1	(k1 + 1)

�1
(‖u1 – u2‖ + ‖v1 – v2‖

)

= (�1A1 + �2A2)
(|ǔ1 – ǔ2‖ + |v̌1 – v̌2‖

)
+ A3‖ǔ1 – ǔ2‖ + A4‖v̌1 – v̌2‖

≤ (
(�1A1 + �2A2) + A3 + A4

)
)
(|ǔ1 – ǔ2‖ + |v̌1 – v̌2‖

)
. (3.5)

Similarly, we obtain

∥
∥F2(ǔ1, v̌1)(b) – F2(ǔ2, v̌2)(b)

∥
∥ ≤ (

(�1B1 + �2B2) + B3 + B4
)(‖ǔ1 – ǔ2‖ + ‖v̌1 – ˇ̌v2‖

)
. (3.6)
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From (3.5) and (3.6) we obtain

∥
∥F(ǔ1, v̌1) – F(ǔ2, ǔ2)

∥
∥

≤ (
�1(A1 + B1) + �2(A2 + B2) + (A3 + A4 + B3 + B4)

)(|ǔ1 – ǔ2‖ + |v̌1 – v̌2‖
)
.

As �1(A1 + B1) + �2(A2 + B2) + (A3 + A4 + B3 + B4) < 1, F is a contraction, and Theorem 1.1
yields the desired result on the existence of a unique fixed-point for F and, accordingly, of
a unique solution to the multiorder RL-FBVP (1.4). �

In the following theorem, we apply Theorem 1.2 to prove the second result.

Theorem 3.2 Let f , g : [0, 1] ×R
2 −→ R be continuous functions such that for all (ǔ1, v̌1) ∈

R
2,

∣
∣f (b, ǔ1, v̌1)

∣
∣ ≤ α0 + α1|ǔ1| + α2|v̌1|,

∣
∣g(b, ǔ1, v̌1)

∣
∣ ≤ β0 + β1|ǔ1| + β2|v̌1| (3.7)

for some αi,βi ≥ 0 (i = 1, 2) and α0,β0 > 0. Moreover, assume that (A1 +B1)α1 +(A2 +B2)β1 +
A3 +B3 < 1 and (A1 +B1)α2 +(A2 +B2)β2 +A4 +B4 < 1. Then the multiorder RL-FBVP system
(1.4) admits a solution.

Proof First, we claim that F : X × X → X × X is completely continuous. Indeed, by the
continuity of f and g we infer the continuity of F1 and F2. Further, we show that F is uni-
formly bounded. For a bounded subset Br = {(x̌, y̌) ∈ X × X;‖(x̌, y̌)‖ ≤ r} ⊆ X × X, there
exist positive constants M1, M2 such that |f (b, ǔ(t), v̌(b))| ≤ M1 and |g(b, ǔ(b), v̌(b))| ≤ M2.
Then for all (ǔ, v̌) ∈ Br , we write

∣
∣F1(ǔ, v̌)(b)

∣
∣

≤ |λ1 – 1|
λ1	(k1 – θ1 + 1)

r +
M1

λ1	(k1 + 1)
+

γ |λ2 – 1|
λ2	(k2 – θ2 + q1 + 1)

r

+
γ M2

λ2	(k2 + q1 + 1)
+

�1λ|λ1 – 1|
λ1	(k1 – θ1 – γ1 + 1)

r +
�1λ

λ1	(k1 – γ1 + 1)
M1

+
|λ2 – 1|�1

λ2	(k2 – θ2 + 1)
r +

�1

λ2	(k2 + 1)
M2 +

|λ1 – 1|
λ1	(k1 – θ1 + 1)

r

+
M1

λ1	(k1 + 1)
.

Hence

∥
∥F1(ǔ, v̌)

∥
∥ ≤ A1M1 + A2M2 + (A3 + A4)r. (3.8)

Similarly, we obtain

∥
∥F2(ǔ, v̌)

∥
∥ ≤ B1M1 + B2M2 + (B3 + B4)r. (3.9)
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Due to the last two inequalities, we get

∥
∥F(ǔ, v̌)

∥
∥ ≤ (A1 + B1)M1 + (A2 + B2)M2 + r(A3 + A4 + B3 + B4),

so that F is uniformly bounded.
Now we prove the equicontinuity of F . Let ť1, ť2 ∈ [0, 1] with ť1 < ť2. For all (ǔ, v̌) ∈ Br ,

we have

∣
∣F1(ǔ, v̌)(ť2) – F1(ǔ, v̌)(ť1)

∣
∣

≤ r|λ1 – 1|
	(k1 – θ1 + 1)λ1

[
2(ť2 – ť1)k1–θ1 +

∣
∣ťk1–θ1

2 – ťk1–θ1
1

∣
∣
]

+
M1

λ1	(k1 + 1)
[
2(ť2 – ť1)k1–θ1 +

∣
∣ťk1–θ1

2 – ťk1–θ1
1

∣
∣
]

+
(
ťk1–1
2 – ťk1–1

1
)
[

γ |λ2 – 1|
λ2	(k2 – θ2 + q1 + 1)

r +
γ

λ2	(k2 + q1 + 1)
M2

+
�1λ|λ1 – 1|

λ1	(k1 – γ1 – θ1 + 1)
r +

�1λ

λ1	(k1 – γ1 + 1)
M1

+
|λ2 – 1|�1

λ2	(k2 – θ2 + 1)
r +

�1

λ2	(k2 + 1)
M1

+
|λ1 – |

λ1	(k1 – θ1 + 1)
r +

1
λ1	(k1 + 1)

M1

]

.

Accordingly, |F1(ǔ, v̌)(ť2) – F1(ǔ, v̌)(ť2)| −→ 0 as ť2 −→ ť1 Analogously, we conclude that
|F2(ǔ, v̌)(ť2) – F2(ǔ, v̌)(ť1)| −→ 0 as ť2 −→ ť1. Thus F is equicontinuous. Finally, we show the
boundedness of the set

D =
{

(ǔ, v̌) ∈ X×X; (ǔ, v̌) = ηF(ǔ, v̌), 0 < η < 1
}

.

Suppose that (ǔ, v̌) ∈ D. For b ∈ [0, 1], we have ǔ(b) = ηF1(ǔ, v̌)(b), v̌(b) = ηF2(ǔ, v̌)(b).
Therefore, using condition (3.7), we get

‖ǔ‖ ≤ (
α0 + α1‖ǔ‖ + α2‖v̌‖)A1 +

(
β0 + β1‖ǔ‖ + β2‖v̌‖)A2 + ‖u‖A3 + ‖v‖A4,

‖v̌‖ ≤ (
α0 + α1‖ǔ‖ + α2‖v̌‖)B1 +

(
β0 + β1‖ǔ‖ + β2‖v̌‖)B2 + ‖ǔ‖B3 + ‖v̌‖B4.

Consequently,

‖ǔ‖ + ‖v̌‖
≤ (A1 + B1)α0 + (A2 + B2)β0

+
[
(A1 + B1)α1 + (A2 + B2)β1 + A3 + B3

]‖ǔ‖
+

[
(A1 + B1)α2 + (A2 + B2)β2 + (A4 + B4)

]‖v̌‖.

Hence

∥
∥(ǔ, v̌)

∥
∥ ≤ (A1 + B1)α0 + (A2 + B2)β0

D∗ ,
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where

D∗ = min
{

1 – (A1 + B1)α1 – (A2 + B2)β1 – (A3 + B3),

1 – (A1 + B1)α2 – (A2 + B2)β2 – (A4 + B4)
}

.

Therefore D is bounded, and by Lemma 1.2 the operator F has a solution that is a solution
of system (1.4). �

Now we apply Krasnosel’skii’s fixed point theorem (Lemma 1.2) to present another ex-
istence result.

Theorem 3.3 Let that f , g : [0, 1] ×R
2 −→ R be continuous functions satisfying condition

(3.2) in Theorem 3.1. Besides, let K1, K2 be two positive constants such that for all t ∈ [0, 1]
and ǔi, v̌i ∈ R, i = 1, 2, we have

∣
∣f (b, ǔ1, v̌1)

∣
∣ ≤ K1,

∣
∣g(b, ǔ1, v̌1)

∣
∣ ≤ K2. (3.10)

Moreover, assume that A3 + A4 < 1, B3 + B4 < 1, and [ 1
λ1	(k1+1)�1 + 1

λ2	(k2+1)�2] < 1. Then
problem (1.4) admits a solution on [0, 1].

Proof First, we decompose the operator F in Theorem 3.1, into four operators

H1(ǔ, v̌)(b) =
λ1 – 1

λ1
× 1

	(k1 – θ1)

∫ b

0
(b – s)k1–θ1–1ǔ(s) ds

+
bk1–1



[
γ (λ2 – 1)

λ2
Ik2–θ2+q1 ˇ̌v(ξ ) +

γ

λ2
Ik2+q1 g

(
ξ , ǔ(ξ ), v̌(ξ )

)

+
�1λ(λ1 – 1)

λ1
Ik1–θ1–γ1 ǔ(η) +

�1λ

λ1
Ik1–γ1 f

(
η, ǔ(η), v̌(η)

)

–
(λ2 – 1)�1

λ2
Ik2–θ2 v̌(1) –

�1

λ2
Ik2 g

(
1, ǔ(1), v̌(1)

)

–
λ1 – 1

λ1
Ik1–θ1 ǔ(1) –

1
λ1

Ik1 f
(
1, ǔ(1), v̌(1)

)
]

,

H2(ǔ, v̌)(b) =
1
λ1

× 1
	(k1)

∫ b

0
(b – s)k1–1f

(
s, ǔ(s), v̌(s)

)
ds =

1
λ1

Ik1 fǔ,v̌(b),

H3(ǔ, v̌)(b) =
λ2 – 1

λ2
× 1

	(k2 – θ2)

∫ b

0
(b – s)k2–θ2–1v̌(s) ds

+
bk2–1

||
[

λ(λ1 – 1)
λ1

Ik1–θ1–γ1 ǔ(η) +
λ

λ1
Ik1–γ1 f

(
η, ǔ(η), v̌(η)

)

–
(λ2 – 1)

λ2
Ik2–θ2 v̌(1) –

1
λ2

Ik2 g
(
1, ǔ(1), v̌(1)

)

+ �2

(
γ (λ2 – 1)

λ2
Ik2–θ2+q1 v̌(ξ ) +

γ

λ2
Ik2+q1 g

(
ξ , ǔ(ξ ), v̌(ξ )

)

–
(λ1 – 1)

λ1
Ik1–θ1 ǔ(1) –

1
λ1

f
(
1, ǔ(1), v̌(1)

)
)]

,
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H4(ǔ, v̌)(t) =
1
λ2

× 1
	(k2)

∫ b

0
(b – s)k2–1g

(
s, ǔ(s), v̌(s)

)
=

1
λ2

Ik2 gǔ,v̌(b). (3.11)

Accordingly, F1(ǔ, v̌)(b) = H1(ǔ, v̌)(b) + H2(ǔ, v̌)(b) and F2(ǔ, v̌)(b) = H3(ǔ, v̌)(b) +
H4(ǔ, v̌)(b). Define Dε = {(ǔ, v̌) ∈ X×X;‖(ǔ, v̌)‖ ≤ ε} with

ε ≥ max

{
A1K1 + A2K2

1 – (A3 + A4)
,

B1K1 + B2K2

1 – (B3 + B4)

}

.

We claim that F1(ǔ, v̌) + F2(ǔ, v̌) ∈ Dε . For all (ǔ, v̌) ∈ Dε , we have

∣
∣H1(ǔ, v̌)(b) + H2(ǔ, v̌)(b)

∣
∣ ≤ A1K1 + A2K2 + (A3 + A4)ε ≤ ε,

∣
∣H3(x̌, y̌)(b) + H4(x̌, y̌)(b)

∣
∣ ≤ B1K1 + B2K2 + (B3 + B4)ε ≤ ε. (3.12)

Consequently, F1(ǔ, v̌) + F2(ǔ, v̌) ∈ Dε , and we obtain condition (i) of Lemma 1.2. Now we
show that the operator (H2, H4) is a contraction. For (x̌1, y̌1), (ǔ1, v̌1) ∈ Dε , we have

∣
∣H2(x̌1, y̌1)(b) – H2(ǔ1, v̌1)(b)

∣
∣

≤ 1
λ1

Ik1 |fx̌1,y̌1 – fǔ1,v̌1 |(b)

≤ �1

λ1

(‖x̌1 – ǔ1‖ + ‖y̌1 – v̌1‖
)
Ik1 (1)(1)

≤ �1

λ1	(k1 + 1)
(‖x̌1 – ǔ1‖ + ‖y̌1 – v̌1‖

)
(3.13)

and

∣
∣H4(x̌1, y̌1)(b) – H4(ǔ1, v̌1)(b)

∣
∣

≤ 1
λ2

Ik2 |gx̌1,y̌1 – gǔ1,v̌1 |(b)

≤ �2

λ2	(k2)
(‖x̌1 – ǔ1‖ + ‖y̌1 – v̌1‖

)
Ik2 (1)(1)

≤ �2

λ2	(k2 + 1)
(‖x̌1 – ǔ1‖ + ‖y̌1 – v̌1‖

)
. (3.14)

Due to (3.13) and (3.14), we get

∥
∥(H2, H4)(x̌1, y̌1) – (H2, H4)(ǔ1, v̌1)

∥
∥

≤
[

�1

λ1	(k1 + 1)
+

�2

λ2	(k2 + 1)

]
(‖x̌1 – ǔ1‖ + ‖y̌1 – v̌1‖

)
. (3.15)

Since �1
λ1	(k1+1) + �2

λ2	(k2+1) < 1, the operator (H2, H4) is a contraction, and condition (iii)
of Lemma 1.2 is satisfied. Now we verify condition (ii) of Lemma 1.2 for the operator
(H1, H3). Since f , g are continuous, the operator (H1, H3) is also continuous. Moreover, for
any (ǔ, v̌) ∈ Dε , similarly to the proof of Theorem 3.1, we have

∣
∣H1(ǔ, v̌)(b)

∣
∣ ≤

(

A1 –
1

λ1	(k1 + 1)

)

K1 + A2K2 + (A3 + A4)ε = G∗,
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∣
∣H3(ǔ, v̌)(b)

∣
∣ ≤ B1K1 +

(

B2 –
1

λ2	(k2 + 1)

)

K2 + (B3 + B4)ε = L∗. (3.16)

Accordingly, we have ‖(H1, H3)(ǔ, v̌)‖ ≤ G∗ +L∗, which implies that (H1, H3)Dε is uniformly
bounded. Finally, we show that the set (H1, H3)Dε is equicontinuous. Let τ1, τ2 ∈ [0, 1] be
such that τ1 < τ2. For any (ǔ, v̌) ∈ Dε , as in the proof of the existence in Theorem 1.2, we
can show that |H1(ǔ, v̌)(τ2) – H1(ǔ, v̌)(τ1)|, |H3(ǔ, v̌)(τ2) – H3(ǔ, v̌)(τ1)| −→ 0 as τ1 −→ τ2.
Consequently, the set (H1, H3)Dε is equicontinuous, and by the Arzelà–Ascoli theorem
(H1, H3) is compact on Dε . Therefore by Lemma 1.2 problem (1.4) has a solution on [0, 1].
This completes the proof. �

4 Example
Example 4.1 Define the system of BVPs with integro-differential conditions

⎧
⎪⎪⎨

⎪⎪⎩

( 1
2 D2ǔ(ž) + 1

2 D 3
2 ǔ(ž)) = f (ž, ǔ(ž), v̌(ž)),

z ( 1
3 D 1

2 v̌(ž) + 2
3 D 1

4 v̌(ž)) = g(ž, ǔ(ž), v̌(ž)),
ˇ̌u(0) = 0, v̌(0) = 0, v̌(1) = 2D 1

4 ǔ( 1
4 ), ˇ̌u(1) = –10I1v̌( 2

5 ).

(4.1)

Here k1 = 2, θ1 = 1.3, k2 = 3
2 , θ2 = 1.4, λ1 = 1

2 , λ2 = 1
3 , λ = 2, γ1 = 1

4 , η = 1
4 , γ = –10, ξ = 2

5 , q1 =
1, �1 ≈ –1.686738, �2 ≈ 0.034043,  ≈ 1.040554, A1 ≈ –1.533673, A2 ≈ –12.333418,
A3 ≈ –1.46116, A4 ≈ –7.597032, B1 ≈ 2.413185, B2 ≈ 4.217126, B3 ≈ 2.182248, B4 ≈
3.245973.

(i) If the functions f , g are taken as

f (ž, ǔ, v̌) =
e–ž

103 sin
(∣
∣ǔ(ž) – v̌(ž)

∣
∣
)
, g(ž, ǔ, v̌) =

e–ž

102 cos
(∣
∣ǔ(ž) – v̌(ž)

∣
∣
)
,

then we can verify that

∣
∣f (ž, ǔ1, v̌1) – f (ž, ǔ2, v̌2)

∣
∣ ≤ 1

103

(|ǔ1 – ˇ̌u2| + |v̌1 – v̌2|
)
,

∣
∣f (ž, ǔ1, v̌1) – f (ž, ǔ2, v̌2)

∣
∣ ≤ 1

102

(|ǔ1 – ǔ2| + |v̌1v̌2|
)
.

Hence f , g satisfy the Lipschitz conditions in Theorem 3.1 with �1 = 1
103 and �2 = 1

102 .
Moreover,

�1(A1 + B1) + �2(A2 + B2) + (A3 + A4 + B3 + B4) ≈ –3.710254 < 1.

Hence all conditions of Theorem 3.1 are satisfied, and as a conclusion, we can infer that
the coupled system (4.1) has a unique solution on [0, 1].

(ii) Now define the functions f , g as

f (ž, ǔ, v̌) =
1

ž + 1
+

1
3

( |ǔ|
8 + |ǔ|

)

+
1
5

e–v̌|v̌|,

g(ž, ǔ, v̌) =
| cos ǔ| + 1

4
+

1
10

(
1 + | sin v̌|)|ǔ| +

|v̌|
2(2 + |v̌|) .
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Accordingly,

∣
∣f (ž, ǔ, v̌)

∣
∣ ≤ 1 +

1
3
|ǔ| +

1
5
|v̌|,

∣
∣g(ž, ǔ, v̌)

∣
∣ ≤ 1

2
+

1
5
|ǔ| +

1
2
|v̌|.

Thus in view of Theorem 3.2, the constants ǔi, v̌i are obtained by α0 = 1, α1 = 1
3 , α2 = 1

5 ,
β0 = 1

2 , β1 = 1
5 , β2 = 1

2 . On the other hand, we have

(A1 + B1)α1 + (A2 + B2)β1 + A3 + B3 ≈ –0.609 < 1,

(A1 + B1)α2 + (A2 + B2)β2 + A4 + B4 ≈ –8.219972 < 1.

Consequently, by Theorem 3.2 we conclude that the coupled system (4.1) has a solution
on [0, 1].

(iii) Now we take the nonlinear bounded functions f , g defined as

f (ž, ǔ, v̌) =
1
3

+
1
4

ž +
1

12

( |ǔ|
1 + |ǔ|

)

+
1
2

cos |v̌|,

g(ž, ǔ, v̌) = 1 +
4

44
tan–1 |ǔ| +

4
84

( |v̌|
1 + |v̌|

)

.

We easily see that these functions are bounded since

∣
∣f (ž, ǔ, v̌)

∣
∣ ≤ 9

6
,

∣
∣g(ž, ǔ, v̌)

∣
∣ ≤ 96

84
.

Besides, we conclude condition (H1) of Theorem 3.1 with �1 = 1
2 and �2 = 4

44 . Conse-
quently, [ 1

λ1	(k1+1)�1 + 1
λ2	(k2+1)�2] = 1

2 + 12
44	( 5

2 )
< 1. On the other hand, we have A3 + A4 ≈

–9.058863 < 1 and B3 + B4 ≈ 5.428221 > 1. Therefore we cannot apply Theorem 3.3 to
obtain a solution of problem (4.1) on [0, 1].

5 Conclusions
In this paper, we investigated a coupled system of fractional differential equations involv-
ing integro-differential conditions. Firstly, we presented a lemma that was the basic tool in
proving the main results. After that, by applying Banach’s fixed point theorem we investi-
gated the existence of a unique solution for system (1.4). We applied the Leray–Schauder
alternative and Krasnosel’skii’s fixed point theorems to obtain the existence of solutions
for system (1.4). Moreover, our main results were supported by presented examples. The
standard methods have been used to prove the main results, but new formation is con-
structed on problem (1.4).
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