
Mekruksavanich et al. Journal of Inequalities and Applications        (2022) 2022:125 
https://doi.org/10.1186/s13660-022-02860-7

R E S E A R C H Open Access

Adapting step size algorithms for solving
split equilibrium problems with applications
to signal recovery
Sakorn Mekruksavanich1, Nattakarn Kaewyong2, Anuchit Jitpattanakul3 and
Kanokwan Sitthithakerngkiet3*

*Correspondence:
kanokwan.s@sci.kmutnb.ac.th
3Intelligent and Nonlinear Dynamic
Innovations Research Center,
Department of Mathematics,
Faculty of Applied Science, King
Mongkut’s University of Technology
North Bangkok, Bangkok, Thailand
Full list of author information is
available at the end of the article

Abstract
Recent developments in split equilibrium problems (SEPs) have found practical
applications in convex optimization problems, information theory, and signal
processing. In this paper, we present three novel algorithms with no prior knowledge
of the operator norm of a bounded linear operator to approximated solutions for
SEPs. Strong convergence results are well presented under appropriate conditions. In
addition, we illustrate our main results by providing various numerical examples. Their
computational performances are compared with those previously studied in the
literature, and the results are presented by showing numerical implementation of the
sparse sensor signal recovery problem.
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1 Introduction
Throughout this work, let two nonempty closed convex subsets C and D be in two real
Hilbert spaces H1 and H2, respectively. This paper focuses on the split equilibrium prob-
lems (SEPs) introduced by He [1], which are used to solve a point w∗ ∈ C that

f
(
w∗, p

) ≥ 0, ∀p ∈ C, (1)

and a point v∗ = Aw∗ ∈ D solves

g
(
v∗, q

) ≥ 0, ∀q ∈ D, (2)

where f and g are nonlinear bi-functions on C ×C and D×D, respectively, and an operator
A : H1 → H2 is bounded linear with its adjoint operator A∗. The equilibrium problem plays
a vital role in various branches of science, optimization, and economics (see [2–6] for
details). We provide a set of all solutions for the split equilibrium problems (SEPs) (1)–(2)

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-022-02860-7
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-022-02860-7&domain=pdf
https://orcid.org/0000-0002-8496-7803
mailto:kanokwan.s@sci.kmutnb.ac.th
http://creativecommons.org/licenses/by/4.0/


Mekruksavanich et al. Journal of Inequalities and Applications        (2022) 2022:125 Page 2 of 30

as follows:

�SEPs =
{

u ∈ EP(f ) : Au ∈ EP(g)
}

, (3)

where EP(f ) and EP(g) denote the solution sets of classical equilibrium problems (1) and
(2), respectively.

Over a decade, many methods have been constructed and developed to find solutions for
SEPs (1)–(2). The development of algorithms to solve the SEPs is stated as follows. Kazmi
and Rizvi [7], in 2013, devised an iterative technique to examine a solution for the SEPs.
Let a real number LA be the spectral radius of A∗A, PC be an orthogonal projection onto
C, and a map E : C → H1 be α-inverse strongly monotone. Their algorithm was defined
as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w1 ∈ H1, ∀n ≥ 1,

vn = Tf
rn (I + γ A∗(Tg

rn – I)A)wn,

un = PC(I – λnE)vn,

wn+1 = μnu + ρnwn + σnWun,

(4)

where γ ∈ (0, 1
LA

), rn > 0, λn ∈ (2, 2α), and real sequences {μn}, {ρn}, and {σn} are in (0, 1).
Under suitable conditions of all parameters, the iterative method (4) provided the strong
convergence for the SEPs.

In 2016, Suantai [8] presented an iterative algorithm for solving the SEPs as follows:

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ C, ∀n ≥ 1,

un = Tf
rn (I + γ A∗(Tg

rn – I)A)xn,

xn+1 ∈ μnxn + (1 – μn)Wun,

(5)

where W is a 1
2 -nonspreading multivalued mapping, γ ∈ (0, 1

LA
), {rn} ⊆ (0,∞), and {μn} ⊆

(0, 1). Suantai also provided a weak convergence result.
By using Suantai’s ideas, Onjai-uea and Phuengrattana [9] constructed and developed

an algorithm to solve the SEPs in 2017 as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ C, ∀n ≥ 1,

un = Tf
rn (I + γ A∗(Tg

rn – I)A)xn,

yn ∈ αnxn + (1 – αn)Wun,

xn+1 ∈ μnxn + (1 – μn)Wyn,

(6)

where W is a multivalued λ-hybrid mapping, γ ∈ (0, 1
LA

), {rn} ⊆ (0,∞), and {αn}, {μn} ⊆
(0, 1). Under some appropriate conditions, Onjai-uea and Phuengrattana presented that
algorithm (6) weakly converges to a solution for the SEPs. There are many methods to solve
the SEPs that are not mentioned above. The reader can refer to [1, 10–12] for details.

Note that the iterative methods (4), (5), and (6) are usually used with the stepsize γ

that depends on the operator norm ‖A‖. Hence this paper is focused on overcoming this
difficulty by constructing algorithms with no prior knowledge of operator norm ‖A‖. For
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more details about these ideas, the reader is directed to [13, 14]. For any rn > 0, we define

ψ(x) :=
1
2
∥∥(

I – Tf
rn

)
x
∥∥2; (7)

ω(x) :=
1
2
∥∥(

I – Tg
rn

)
Ax

∥∥2. (8)

Consider in case that f and g are indicator functions for the closed convex subsets C and
Q of Hilbert spaces, then Tf

rn = PC and Tg
rn = PQ. Recall that the squared distance func-

tions ‖x – PCx‖2 and ‖x – PQx‖2 are differentiable, we have the gradients ∇ψ and ∇ω of
operators ω and ψ , respectively, as follows:

∇ψ(x) :=
(
I – Tf

rn

)
x; (9)

∇ω(x) := A∗(I – Tg
rn

)
Ax. (10)

However, gradients (9) and (10) are not true in general.
By using operators (8)–(9), we construct a new step size by using self-adaptive method

to avoid computing the operator norm ‖A‖ as follows:

τn :=

⎧
⎨

⎩

ρnω(un)
‖∇ω(un)‖2+‖∇ψ(un)‖2 ‖∇ω(un)‖2 + ‖∇ψ(un)‖2 �= 0,

0 otherwise,
(11)

where 0 < ρn < 4.
Inspired by the above works, the aims of this papers are as follows: (1) To construct and

propose three modified step size algorithms by using new self-adaptive techniques; (2)
to obtain theoretical results of strong convergence for the SEPs based on the proposed
algorithms; (3) to show the performance of our proposed algorithms by comparing them
to the previously developed algorithms by Kazmi and Rizvi [7], Suantai [8], Onjai-uea and
Phuengrattana [9]; and (4) to demonstrate the presented results by showing numerical
implementation of the sparse sensor signal recovery problem.

The remainder of this paper is organized as follows. Section 2 establishes preliminaries
used in this work, and related definitions and lemma are presented. Section 3 introduces
the proposed step size algorithms for solving the SEPs with three modifications, and the
main theorems are proved. Section 4 then demonstrates the numerical examples of the
proposed algorithms and shows theoretical applications in split feasibility problem and
optimization problem. Section 5 then gives conclusions of this work.

2 Preliminaries
In this section, we give a preliminary result that is necessary for our consequent analysis.
In the weak topology, the set of all limit points is given by ωw(un) for a sequence {un} in
a real Hilbert space. Let f : C × C → R and g : D × D → R be nonlinear bi-functions.
Suppose the following assumptions for a bi-function f :

(A1) f (s, s) ≥ 0;
(A2) f (s, t) + f (t, s) ≤ 0 (f is monotone);
(A3) lim supζ→0 f (ζ s + (1 – ζ )t, w) ≤ f (t, w);
(A4) s → f (t, s) is a lower semicontinuous and convex function;
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for all s, t, w ∈ C. Let Tf
r : H1 → C be a mapping given by

Tf
r (w) =

{
s ∈ C : f (s, t) +

1
r
〈t – s, s – w〉 ≥ 0,∀t ∈ C

}
(12)

for r > 0 and for all w ∈ H1.

Definition 2.1 For any v, w ∈ C, the mapping S : C → H1 is said to be
1. monotone if 〈v – w, Sv – Sw〉 ≥ 0;
2. ϑ-inverse strongly monotone (for short ϑ-ism) if

〈w – v, Sw – Sv〉 ≥ ϑ‖Sw – Sv‖2 for some ϑ > 0;
3. L-Lipschitz continuous if ‖Sw – Sv‖ ≤ L‖w – v‖ for some L ∈ [0, 1);
4. nonexpansive if ‖Sw – Sv‖ ≤ ‖w – v‖;
5. firmly nonexpansive if ‖Sw – Sv‖2 ≤ 〈Sw – Sv, w – v〉.

Recall that every nonexpansive mapping S satisfies the following inequalities:
1. 〈(v – Sv) – (w – Sw), Sw – Sv〉 ≤ 1

2‖(Sv – v) – (Sw – w)‖2;
2. 〈v – Sv, w – Sv〉 ≤ 1

2‖Sv – v‖2.

Lemma 2.2 For any v, w ∈ H1 and θ ∈ [0, 1], the following relationships hold:
1. ‖w + u‖2 ≤ ‖w‖ + 2〈u, w + u〉;
2. ‖w – u‖2 = ‖w‖2 + ‖u‖2 – 2〈w – u, u〉;
3. ‖θw + (1 – θ )u‖2 = θ‖w‖2 + (1 – θ )‖u‖2 – θ (1 – θ )‖w – u‖2.

Lemma 2.3 For the metric projection PC , the following relationships hold:
1. PC is a nonexpansive mapping;
2. ‖PCv – PCw‖2 ≤ 〈v – w, PCv – PCw〉;
3. 〈v – PCv, w – PCw〉 ≤ 0;
4. ‖v – PCv‖2 + ‖w – PCv‖2 ≤ ‖v – w‖2;
5. ‖v – w‖2 – ‖PCv – PCw‖2 ≤ ‖(v – w) – (PCv – PCw)‖2;

for any v, w ∈ H1.

Lemma 2.4 ([3]) Assume that a bi-function f satisfies assumptions (A1)–(A4) and the
mapping Tf

r is defined by equation (12). Then:
1. Tf

r is nonempty, single-valued, and firmly nonexpansive;
2. EP(f ) = Fix(Tf

r );
3. EP(f ) is a closed convex set.
Moreover, see in [15], the mapping Tf

r satisfies the following inequality:

∥∥Tf
s v – Tf

r w
∥∥ ≤ ‖v – w‖ +

∣
∣∣
∣
s – r

s

∣
∣∣
∣
∥∥Tf

s w – w
∥∥ (13)

for any v, w ∈ H1 and r, s > 0.

Lemma 2.5 ([16]) Let {wn} and {vn} be two bounded sequences and a real sequence {ζn} ⊆
[0, 1] such that

wn+1 = (1 – ζn)vn + ζnwn, ∀n ≥ 1.
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If the following statements hold:
1. lim supn→∞(‖vn+1 – vn‖ – ‖wn+1 – wn‖) ≤ 0;
2. 0 < lim infn→∞ ζn ≤ lim supn→∞ ζn < 1.

Then limn→∞ ‖vn – wn‖ = 0.

Lemma 2.6 ([17]) The Hilbert space H satisfies the Opial condition, if wn ⇀ w for any
sequence {wn} ∈ H and element v ∈ H with v �= w, then

lim inf
n→∞ ‖wn – w‖ < lim inf

n→∞ ‖wn – v‖.

Lemma 2.7 ([18]) Let {wn} ⊆ (0,∞) be a sequence of real numbers with

wn+1 ≤ (1 – μn)wn + μnδn + ξn

for all n ≥ 1, where
1. {μn} ⊂ [0, 1] and

∑
μn = ∞,

2. lim sup δn ≤ 0,
3. ξn ≥ 0 and

∑
ξn < ∞.

Then limn→∞ wn = 0.

Lemma 2.8 ([19]) Suppose that a real number sequence {�m} does not decrease at infinity.
This means that there is {�mi} ⊆ {�m} with {�mi} < {�mi+1} ∀i ≥ 0. Let a sequence of integers
{σ (m)}m≥m0 be given by

σ (m) = max{l ≤ m : �l ≤ �l+1}.

Thus {σ (m)}m≥m0 is a nondecreasing sequence that verifies limm→∞ σ (m) = ∞,

max{�σ (m),�m} ≤ �σ (m)+1

for all m ≥ m0.

Lemma 2.9 Assume that ψ : H1 →R and ω : H2 →R are two functions given by equations
(7) and (8), respectively. Then the gradients ∇ω and ∇ψ of the functions ω and ψ are
Lipschitz continuous.

Proof Since ∇ω(p) = A∗(I – Tg
rn )Ap, we have

∥∥∇ω(p) – ∇ω(q)
∥∥2

=
〈
A∗((I – Tg

rn

)
Ap –

(
I – Tg

rn

)
Aq

)
, A∗(

(
I – Tg

rn

)
Ap –

(
I – Tg

rn

)
Aq

〉

=
〈(

I – Tg
rn

)
Ap –

(
I – Tg

rn

)
Aq, AA∗(

(
I – Tg

rn

)
Ap –

(
I – Tg

rn

)
Aq

〉

≤ LA
∥∥(

I – Tg
rn

)
Ap –

(
I – Tg

rn

)
Aq

∥∥2, (14)

where LA = ‖A‖2. On the other hand,

〈∇ω(p) – ∇ω(q), p – q
〉

=
〈
A∗((I – Tg

rn

)
Ap –

(
I – Tg

rn

)
Aq

)
, p – q

〉
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=
〈(

I – Tg
rn

)
Ap –

(
I – Tg

rn

)
Aq, A(p – q)

〉

≥ ∥∥(
I – Tg

rn

)
Ap –

(
I – Tg

rn

)
Aq

∥∥2. (15)

By combining (14) with (15), we get that

〈∇ω(p) – ∇ω(q), p – q
〉 ≥ 1

LA

∥∥∇ω(p) – ∇ω(q)
∥∥2.

Thus ∇ω is 1
LA

-inverse strongly monotone. Moreover,

〈∇ω(p) – ∇ω(q), p – q
〉 ≤ ‖p – q‖∥∥∇ω(p) – ∇ω(q)

∥
∥.

Hence ‖∇ω(p) – ∇ω(q)‖ ≤ LA‖p – q‖. Similarly, ∇ψ is Lipschitz continuous. �

3 Results
This section presents and analyzes our three iterative algorithms generated sequences that
strongly converge to a solution of SEPs (1)–(2) and the fixed point problems of a nonex-
pansive mapping. In the sequel, the solution set is given by

� = �SEPs ∩ Fix(S). (16)

Before starting the results, assume that two bi-functions f and g satisfy assumptions
(A1)–(A4) and g is upper semicontinuous. Let a mapping S be nonexpansive on C and
� �= ∅. Now, we constructed and then analyzed three algorithms as follows.

Condition 3.1 Suppose that {rn} ⊆ (0,∞), a is a constant, {ρn} is any positive sequence,
and real parameter sequences {αn}, {βn}, {γn}, and {κn} satisfy αn,βn,γn,κn ∈ (0, 1), and the
following conditions hold:

(C1) αn + βn + γn = 1;
(C2)

∑∞
n=0 αn = ∞, limn→∞ αn = 0;

(C3) limn→∞ κn = 0 and limn→∞ κn
αn

= 0;
(C4) limn→∞ |rn+1 – rn| = 0 and 0 < a ≤ rn;
(C5) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(C6) limn→∞( γn+1

1–βn+1
– γn

1–βn
) = 0;

(C7) infρn(4 – ρn) > 0 and 0 < ρn < 4.

Theorem 3.1 The sequence {xn} generated by Algorithm 1 converges strongly to a solution
s ∈ � , where s = P�u.

Proof Since � is a nonempty set, take each c ∈ � , this implies c = Tf
rn (c) and Ac = Tg

rn (Ac).
Thus (I – Tg

rn )Ac = Ac – Ac = 0. Since ∇ω(xn) = A∗(Tg
rn – I)Axn and Tg

rn – I is a firmly non-
expansive mapping, we find that

〈∇ω(xn), xn – c
〉

=
〈
A∗(Tg

rn – I
)
Axn, xn – c

〉

=
〈(

Tg
rn – I

)
Axn –

(
Tg

rn – I
)
As, Axn – Ac

〉
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Algorithm 1 The first algorithm to solve split equilibrium problems
• Initialization: Let x1, u ∈ H1 be arbitrarily chosen. Choose some positive sequences

{ρn}, {αn}, {βn}, {γn}, and {κn} satisfying Condition 3.1. Put n = 1.
• Iterative step: Given the current iterate xn, for rn > 0, compute

un = Tf
rn

(
xn + τnA∗(Tg

rn – I
)
Axn

)
,

where

τn =

⎧
⎨

⎩

ρnω(xn)
‖∇ω(xn)‖2+‖∇ψ(xn)‖2 ‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2 �= 0,

0 otherwise,

xn+1 = αnu + βnxn + γnS
[
κnv + (1 – κn)un

]
.

• Stopping criterion: If xn+1 = xn = un, stop. If not, set n = n + 1 and go to Iterative
step.

≥ ∥
∥(

Tg
rn – I

)
Axn

∥
∥2

= 2ω(xn). (17)

By using the fact that Tf
rn (I + τnA∗(Tg

rn – I)A) is a nonexpansive mapping, we can easily
verify that

‖un – c‖2 =
∥
∥Tf

rn

(
I + τnA∗(Tg

rn – I
)
A

)
xn – Tf

rn c
∥
∥2

≤ ∥
∥(

I + τnA∗(Tg
rn – I

)
A

)
xn – c

∥
∥2

=
∥
∥xn – τn∇ω(xn) – c

∥
∥2

≤ ‖xn – c‖2 + τ 2
n
∥
∥∇ω(xn)

∥
∥2 – 2τn

〈
xn – c,∇ω(xn)

〉

≤ ‖xn – c‖2 + τ 2
n
∥∥∇ω(xn)

∥∥2 – 4τnω(xn)

= ‖xn – c‖2 +
ρ2

nω2(xn)
(‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2)2

∥
∥∇ω(xn)

∥
∥2

– 4
ρnω

2(xn)
‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2

≤ ‖xn – c‖2 +
ρ2

nω2(xn)
‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2

– 4
ρnω

2(xn)
‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2

= ‖xn – c‖2 – ρn(4 – ρn)
ω2(xn)

‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2 . (18)

This implies that

‖un – c‖ ≤ ‖xn – c‖. (19)
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Now, let v ∈ C be fixed and yn = κnv + (1 – κn)un. We find that

‖yn – c‖ =
∥
∥κnv + (1 – κn)un – c

∥
∥

≤ (1 – κn)‖un – c‖ + κn‖v – c‖
≤ (1 – κn)‖xn – c‖ + κn‖v – c‖. (20)

Also, we find that

‖yn – c‖2 =
∥∥(1 – κn)(un – c) + κn(v – c)

∥∥2

≤ (1 – κn)‖un – c‖2 + 2κn〈v – c, yn – c〉. (21)

By setting �n = (αn + κnγn) and using (18) and (20), we obtain

‖xn+1 – c‖ = ‖αnu + βnxn + γnSyn – c‖
= βn‖xn – c‖ +

∥∥αn(u – c) + γ (Syn – c)
∥∥

≤ βn‖xn – c‖ + αn‖u – c‖ + γn‖yn – c‖
≤ αn‖u – c‖ + βn‖xn – c‖ + γn

{
κn‖v – c‖ + (1 – κn)‖xn – c‖}

= (βn + γn – κnγn)‖xn – c‖ + αn‖u – c‖ + κnγn‖v – c‖
≤ (1 – �n)‖xn – c‖ + �n max

{‖u – c‖,‖v – c‖}

≤ max
{‖xn – c‖,‖u – c‖,‖v – c‖}. (22)

It concludes that {xn} is bounded, and two sequences {un}, {yn} are also bounded. Because
c = Tf

rn c and Tf
rn is a firmly nonexpansive mapping, thus

‖un – c‖2 = ‖Tf
rn

(
xn + τnA∗(Tg

rn – I
)
Axn

)
) – c‖2

≤ 〈
xn + τnA∗(Tg

rn – I
)
Axn – c, un – c

〉

=
1
2
{‖xn – s‖2 – ‖xn – un‖2 – τ 2

n
∥∥∇ω(xn)

∥∥ + ‖un – c‖2

+ 2τn
〈∇ω(xn), xn – un

〉}

≤ ‖xn – c‖2 – ‖xn – un‖2 + 2τn‖xn – un‖
∥
∥∇ω(xn)

∥
∥. (23)

Thus, by using inequalities (21) and (23), we get that

‖xn+1 – c‖2 ≤ βn‖xn – c‖2 + αn‖u – c‖2 + γn‖Syn – c‖2

≤ βn‖xn – c‖2 + αn‖u – c‖2 + κnγn‖v – c‖2 + γn(1 – κn)‖un – c‖2

≤ αn‖u – c‖2 + βn‖xn – c‖2 + κnγn‖v – c‖2

+ (γn – κnγn)
{‖xn – c‖2 – ‖xn – un‖2 + 2τn‖xn – un‖

∥
∥∇ω(xn)

∥
∥}

≤ αn‖un – c‖2 + (1 – αn – κnγn)‖xn – c‖2 + κnγn‖v – c‖2

+ (κnγn – γn)‖xn – un‖2 + 2ρnγn(1 – κn)ω(xn)‖xn – un‖



Mekruksavanich et al. Journal of Inequalities and Applications        (2022) 2022:125 Page 9 of 30

≤ αn‖u – c‖2 + ‖xn – c‖2 + κnγn‖v – c‖2 – (γn + κnγn)‖xn – un‖2

+ 2ρn(γn – κnγn)ω(xn)‖xn – un‖. (24)

This implies that

(γn – κnγn)‖xn – un‖2 ≤ ‖xn – c‖2 + αn‖u – c‖2 – ‖xn+1 – c‖2

+ 2ρn(γn – κnγn)ω(xn)‖un – xn‖. (25)

By setting s = P�u, we next prove that ‖xn+1 – xn‖ → 0 and xn → s. By using inequality
(18), we note that

‖xn+1 – s‖2 = ‖αnu + βnxn + γnSyn – s‖2

≤ αn‖u – s‖2 + βn‖xn – s‖2 + κnγn‖v – s‖2 + γn(1 – κn)‖un – s‖2

≤ αn‖u – s‖2 + βn‖xn – s‖2 + κnγn‖v – s‖2 + (γn – κnγn)
[
‖xn – s‖2

–
(
4ρn – ρ2

n
) ω2(xn)
‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2

]

≤ αn‖u – s‖2 + ‖xn – s‖2 + κnγn‖v – s‖2

– γn(1 – κn)
(
4ρn – ρ2

n
) ω2(xn)
‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2 . (26)

This implies that

γn(1 – κn)ρn(4 – ρn)
ω2(xn)

‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2

≤ ‖xn – s‖2 + αn‖u – s‖2 + κnγn‖v – s‖2 – ‖xn+1 – s‖2. (27)

Next, we consider two possible cases to show ‖xn – s‖ → 0 as n → ∞.
Case 1. Assume that, for existing n0 ∈ N, a sequence {‖xn – s‖2} is nonincreasing. Then

the limit of a sequence limn→∞ ‖xn – s‖ exists and

lim
n→∞

(‖xn+1 – s‖ – ‖xn – s‖) = 0.

Since the sequences αn and κn tend to 0, then by using inequality (27), we get that

ρn(4 – ρn)
γnω

2(xn)
‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2 → 0.

Since ∇ω and ∇ψ are Lipschitz continuous, and lim infγn > 0 and infρn(4 – ρn) > 0. Thus
we obtain limn→∞ ω2(xn) = 0, and also ω(xn) → 0 as n → ∞.

Next we prove ‖xn – s‖ → 0 as n → ∞ by dividing the proof into three steps as follows.
Step 1. First, we must show that limn→∞ ‖Syn – yn‖ = 0. By using the fact that Tf

rn+1 and
Tg

rn+1 are firmly nonexpansive mappings, and the mapping Tf
rn+1 (I + τnA∗(Tg

rn+1 – I)A) is a
nonexpansive mapping, we find that

‖un+1 – un‖
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≤ ∥∥Tf
rn+1

(
xn+1 + τn+1A∗(Tg

rn+1 Axn+1 – Axn+1
))

– Tf
rn+1

(
xn + τnA∗(Tg

rn+1 Axn – Axn
))∥∥

+
∥∥Tf

rn+1

(
xn + τnA∗(Tg

rn+1 Axn – Axn
))

– Tf
rn

(
xn + τnA∗(Tg

rn Axn – Axn
))∥∥

≤ ‖xn+1 – xn‖ +
∥∥(

xn + τnA∗(Tg
rn+1 Axn – Axn

))
–

(
xn + τnA∗(Tg

rn Axn – Axn
))∥∥

+
∣∣
∣∣1 –

rn

rn+1

∣∣
∣∣
∥
∥Tf

rn+1

(
xn + τnA∗(Tg

rn+1Axn – Axn
))

–
(
xn + τnA∗(Tg

rn+1Axn – Axn
))∥∥

≤ ‖xn+1 – xn‖ + |τn|‖A‖∥∥(
Tg

rn+1Axn – Axn
)

–
(
Tg

rn Axn – Axn
)∥∥ +

∣∣
∣∣1 –

rn

rn+1

∣∣
∣∣ζn

≤ ‖xn+1 – xn‖ +
∣
∣∣
∣
rn+1 – rn

rn+1

∣
∣∣
∣
(|τn|‖A‖σn + ζn

)

= ‖xn+1 – xn‖ +
1
a
|rn+1 – rn|B, (28)

where

σn :=
∥
∥Tg

rn+1 Axn – Axn
∥
∥,

ζn :=
∥
∥Tf

rn+1

(
xn + τnA∗(Tg

rn+1 – I
)
Axn

)
–

(
xn + τnA∗(Tg

rn+1 – I
)
Axn

)∥∥,

and B = supn≥1(|τn|‖A‖σn + ζn). Next, by using inequality (28), we get that

‖yn+1 – yn‖
=

∥
∥κn+1v + (1 – κn+1)un+1 – κnv – (1 – κn)un

∥
∥

≤ |κn+1 – κn|‖v – un‖ + (1 – κn+1)‖un+1 – un‖

≤ (1 – κn+1)‖xn+1 – xn‖ + |κn+1 – κn|K +
1
a
|rn+1 – rn|M, (29)

where K = supn≥1 ‖v – un‖. If we put xn+1 = βnxn + (1 – βn)dn, then by using Algorithm 1,
we get that dn = (αnu + γnSyn)/(1 – βn). Further, we have that

dn+1 – dn =
αn+1u + γn+1Syn+1

1 – βn+1
–

αnu + γnSyn

1 – βn

=
(

αn+1

1 – βn+1
–

αn

1 – βn

)
u +

(
γn+1

1 – βn+1
–

γn

1 – βn

)
Syn

+
γn+1

1 – βn+1
(Syn+1 – Syn). (30)

Thus, by combining the above inequality with (29), we find that

‖dn+1 – dn‖

≤
∣∣
∣∣

αn+1

1 – βn+1
–

αn

1 – βn

∣∣
∣∣‖u‖ +

∣∣
∣∣

γn+1

1 – βn+1
–

γn

1 – βn

∣∣
∣∣‖Syn‖

+
γn+1

1 – βn+1
‖yn+1 – yn‖

≤ ‖xn+1 – xn‖ + |κn+1 – κn|K +
1
a
|rn+1 – rn|M



Mekruksavanich et al. Journal of Inequalities and Applications        (2022) 2022:125 Page 11 of 30

+
∣∣
∣∣

αn+1

1 – βn+1
–

αn

1 – βn

∣∣
∣∣‖u‖ +

∣∣
∣∣

γn+1

1 – βn+1
–

γn

1 – βn

∣∣
∣∣‖Syn‖. (31)

This implies that

‖dn+1 – dn‖ – ‖xn+1 – xn‖ ≤ |κn+1 – κn|K +
∣
∣∣∣

γn+1

1 – βn+1
–

γn

1 – βn

∣
∣∣∣‖Syn‖

+
1
a
|rn+1 – rn|M +

∣
∣∣
∣

αn+1

1 – βn+1
–

αn

1 – βn

∣
∣∣
∣‖u‖. (32)

Thus, by using conditions (C2)–(C6), we have

lim sup
n→∞

(‖dn+1 – dn‖ – ‖xn+1 – xn‖
) ≤ 0. (33)

Using Lemma 2.5, and from inequality (33), we find that limn→∞ ‖dn – xn‖ = 0. Moreover,
we can conclude that

lim
n→∞‖xn+1 – xn‖ = 0. (34)

Now, by combining the above information with inequality (25), we have

lim
n→∞‖un – xn‖ = 0. (35)

Since ‖yn – un‖ = κn‖un – v‖ and κn → 0 as n → ∞, we find that

lim
n→∞‖yn – un‖ = 0. (36)

We next consider

‖xn – Syn‖ ≤ ‖xn+1 – Syn‖ + ‖xn – xn+1‖
≤ ‖xn+1 – xn‖ + αn‖Syn – u‖ + βn‖Syn – xn‖. (37)

Then it is easy to see that

‖xn – Syn‖ ≤ 1
1 – βn

‖xn+1 – xn‖ +
αn

1 – βn
‖Syn – u‖. (38)

Since ‖xn+1 – xn‖ → 0 and αn → 0 as n → ∞. By using condition (C5), we get that

lim
n→∞‖Syn – xn‖ = 0. (39)

Note that

‖yn – Syn‖ ≤ ‖yn – un‖ + ‖un – xn‖ + ‖xn – Syn‖. (40)

Thus, by using inequalities (35), (36), and (39), we obtain

lim
n→∞‖yn – Syn‖ = 0. (41)
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Step 2. We will prove that lim supn→∞〈u – s, s – Syn〉 ≥ 0 with s = P�u. Then we choose
{ynl } ⊆ {yn} such that

lim sup
n→∞

〈u – s, Syn – s〉 = lim
l→∞

〈u – s, Synl – s〉.

By using the fact that {ynl } is a bounded sequence, we can find the {ynlj
} ⊆ {ynl } that weakly

converges to y. Thus we can assume that ynl ⇀ y without losing a generality. So, we have
that Synl ⇀ y since ‖Syn – yn‖ → 0 as n → ∞.

Next, claim that y ∈ Fix(S), suppose by contradiction that y /∈ Fix(S). By using Lemma 2.6,
we find that

lim inf
l→∞

‖ynl – y‖ < lim inf
l→∞

‖ynl – Sy‖

≤ lim inf
l→∞

(‖ynl – Synl‖ + ‖Synl – Sy‖)

≤ lim inf
l→∞

‖ynl – y‖, (42)

it implies a contradiction. Hence, y ∈ Fix(S).
Next, we will prove that y ∈ �SEPs. Because y is a weak limit point of the sequence {yn},

by using inequalities (39) and (41), there is a subsequence {xnk } ⊆ {xn} that xnk ⇀ y. By
using the fact that ω is lower semicontinuous, we find that

0 ≤ ω(y) ≤ lim
k→∞

ω(xnk ) = lim
n→∞ω(xn) = 0.

This implies that ω(y) = 1
2‖(I – Tg

rn )Ay‖2 = 0. Therefore Ay ∈ EP(f ). We then consider

∥∥un – Tf
rn xn

∥∥ ≤ |τn|
∥∥A∗(Tg

rn – I
)
Axn

∥∥ (43)

and

∥
∥xn – Tf

rn xn
∥
∥ ≤ ‖xn – un‖ +

∥
∥un – Tf

rn xn
∥
∥. (44)

Since we have ω(xn) → 0 as n → ∞, we get by using inequality (43) that ‖un – Tf
rn xn‖ → 0

as n → ∞. Moreover, we obtain by applying (35) and ‖un – Tf
rn xn‖ → 0 into (43) that

‖xn – Tf
rn xn‖ → 0. Since ψ is lower semicontinuous, we find that

0 ≤ ψ(y) ≤ lim inf
k→∞

ψ(xnk ) = lim inf
n→∞ ψ(xn) = 0.

This implies that 1
2‖(I –Tf

rn )y‖2 = 0. Therefore y ∈ EP(g). Thus y ∈ �SEPs. We now conclude
that y ∈ � .

Next, by using the fact that y ∈ � , s = P�u, 〈u – P�u, y – P�u〉 ≤ 0, and inequality (39).
Thus

lim sup
n→∞

〈u – s, xn+1 – s〉 = lim sup
n→∞

〈u – s, Syn – s〉

= lim
l→∞

〈u – s, Synl – s〉
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= 〈u – s, y – s〉
≤ 0. (45)

Step 3. We show that xn → s = P�u. We observe that

‖xn+1 – s‖2

= 〈xn+1 – s,αnu + βnxn + γnSyn – s〉

≤ βn

2
[‖xn+1 – s‖2 + ‖xn – s‖2] +

γn

2
[‖xn+1 – s‖2 + ‖Syn – s‖2]

+ αn〈xn+1 – s, u – s〉

≤ βn

2
[‖xn+1 – s‖2 + ‖xn – s‖2] +

γn

2
[‖xn+1 – s‖2 + 2κn‖yn – s‖‖v – s‖

+ ‖xn – s‖2] + αn〈xn+1 – s, u – s〉. (46)

And we observe that

‖xn+1 – s‖2 ≤ (1 – αn)‖xn – s‖2 + 2αn〈xn+1 – s, u – s〉 + κn‖v – s‖‖yn – s‖. (47)

Thus, by using inequality (45), conditions (C2)–(C3), the boundedness of {yn}, and
Lemma 2.7, we find that xn → s = P�u.

Case 2. Assume that {‖xn – s‖2} is an increasing sequence. From inequality (25), κn → 0,
and αn → 0, it is easy to see that ω(xn) → 0. By using a similar way as Case 1, we get
‖xn+1 – xn‖ → 0 as n → ∞.

Next, let a mapping σ be defined on integers n > n0 (where n0 is large enough) by

σ (n) = max
{

m ≤ n : ‖xm – s‖ ≤ ‖xm+1 – s‖}. (48)

Then we see that σ (n) → ∞ as n → ∞ and

‖xσ (n) – s‖ ≤ ‖xσ (n)+1 – s‖. (49)

Thus {‖xσ (n) – s‖} is a nondecreasing sequence. By virtue of Case 1, we find that

lim
n→∞

ω2(xσ (n))
‖∇ω(xσ (n))‖2 + ‖∇ψ(xσ (n))‖2 = 0. (50)

Consequently, we have limn→∞ ω(xσ (n)) = 0. Moreover, we find that

lim
n→∞‖Syσ (n) – xσ (n)‖ = 0

and

lim sup
n→∞

〈u – s, xσ (n)+1 – s〉 ≤ 0.



Mekruksavanich et al. Journal of Inequalities and Applications        (2022) 2022:125 Page 14 of 30

From (47) we get that

‖xσ (n) – s‖2 ≤ 2〈u – s, xσ (n)+1 – s〉 +
κσ (n)

ασ (n)
‖v – s‖‖yn – s‖. (51)

This inequality yields

lim
n→∞‖xσ (n) – s‖ = 0.

By using inequality (47), we have

lim sup
n→∞

‖xσ (n)+1 – s‖2 = lim sup
n→∞

‖xσ (n) – s‖2 = 0.

Therefore limn→∞ ‖xσ (n)+1 – s‖ = 0. Next, by using Lemma 2.8, we have

0 ≤ ‖xn – s‖ ≤ max
{‖xσ (n) – s‖,‖xn – s‖} ≤ ‖xσ (n)+1 – s‖ → 0, (52)

which implies that the sequence xn → s = P�u. �

Now, let us set the following conditions for some parameters used in Algorithm 2 and
Algorithm 3.

Condition 3.2 Suppose that {rn} ⊆ (0,∞), a is a constant, {ρn} is any positive sequence,
and {αn} and {κn} are real sequences that 0 < αn,κn < 1 and satisfy:

(C1)
∑∞

n=0 αn = ∞, limn→∞ αn = 0;
(C2) limn→∞ κn = 0 and limn→∞ κn

αn
= 0;

(C3) limn→∞ |rn+1 – rn| = 0 and 0 < a ≤ rn;
(C4) infρn(4 – ρn) > 0 and 0 < ρn < 4.

Algorithm 2 The second algorithm to solve split equilibrium problems
• Initialization: Let x1, u ∈ H1 be arbitrarily chosen. Choose some positive sequences

{ρn}, {αn}, and {κn} satisfying Condition 3.2. Put n = 1.
• Iterative step: Given the current iterate xn, for rn > 0, compute

un = Tf
rn

(
xn + τnA∗(Tg

rn – I
)
Axn

)
,

where

τn =

⎧
⎨

⎩

ρnω(xn)
‖∇ω(xn)‖2+‖∇ψ(xn)‖2 ‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2 �= 0,

0 otherwise,

xn+1 = αnu + (1 – αn)S
[
κnv + (1 – κn)un

]
.

• Stopping criterion: If xn+1 = xn = un, stop. If not, set n = n + 1 and go to Iterative
step.
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Theorem 3.2 The sequence {xn} generated by Algorithm 2 converges strongly to a solution
s ∈ � , where s = P�u.

Proof Since � is a nonempty set, take each c ∈ � . By using inequalities (20), (19) and
proving similar to inequality (22), we obtain that three sequences {xn}, {un}, and {yn} are
bounded. Next, we note that

‖xn+1 – Syn‖ =
∥
∥κnv + (1 – κn)Syn – Syn

∥
∥

= κn‖v – Syn‖.

Since κn → 0 as n → ∞. Then

lim
n→∞‖xn+1 – Syn‖ = 0. (53)

By putting s = P�u and using inequality (21), we find that

‖xn+1 – s‖2

=
∥
∥αnu + (1 – αn)Syn – s

∥
∥2

≤ 2αn〈xn+1 – s, u – s〉 + (1 – αn)‖yn – s‖2

≤ 2αn〈xn+1 – s, u – s〉 + (1 – αn)
[
(1 – κn)‖un – s‖2 + 2κn〈v – s, yn – s〉]

≤ 2αn〈xn+1 – s, u – s〉 + (1 – αn)‖xn – s‖2 + 2κn〈v – s, yn – s〉

– ρn(4 – ρn)(1 – αn)
ω2(xn)

‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2 . (54)

This implies that

ρn(4 – ρn)(1 – αn)
ω2(xn)

‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2

≤ 2αn〈u – s, xn+1 – s〉 + 2κn〈v – s, yn – s〉 + ‖xn – s‖2 – ‖xn+1 – s‖2. (55)

Next, to show that limn→∞ ‖xn – s‖ = 0, we divide it into two possible cases.
Case 1. Let a sequence {‖xn – s‖2} be nonincreasing. By virtue of Theorem 3.1 (Case 1),

we obtain

lim
n→∞

(‖xn+1 – s‖ – ‖xn – s‖) = 0.

By applying limn→∞ αn = 0 and limn→∞ κn = 0 into inequality (55), we have

lim
n→∞ρn(4 – ρn)(1 – αn)

ω2(xn)
‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2 = 0.

Since infρn(4 – ρn) > 0, and ∇ω and ∇ψ are Lipschitz continuous, then ω(xn) → 0 as
n → ∞. Observe that

‖xn+1 – xn‖ ≤ |αn – αn–1|‖u‖ + |αn – αn–1|‖Syn–1‖ + (1 – αn)‖Syn – Syn–1‖
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≤ |αn – αn–1|M + (1 – αn)‖yn – yn–1‖, (56)

where M := supn≥1 ‖u – Syn–1‖. We observe that

‖yn – yn–1‖ =
∥
∥κnv + (1 – κn)un – κn–1v – (1 – κn–1)un–1

∥
∥

≤ (1 – κn)‖un – un–1‖ + |κn – κn–1|K , (57)

where K := supn≥1 sup‖v – un–1‖. By virtue of inequality (28), we find that

‖un – un–1‖ ≤ ‖xn – xn–1‖ +
1
a
|rn+1 – rn|B, (58)

where

B = sup
n≥1

(|τn|‖A‖σn + ζn
)
,

σn :=
∥∥Tg

rn+1 Axn – Axn
∥∥ and

ζn :=
∥
∥Tf

rn+1

(
xn + τnA∗(Tg

rn+1 – I
)
Axn

)
–

(
xn + τnA∗(Tg

rn+1 – I
)
Axn

)∥∥.

By combining inequality (56) with inequalities (57) and (58), we find that

‖xn+1 – xn‖

≤ (1 – αn)‖xn – xn–1‖ +
1
a
|rn+1 – rn|M + |κn – κn–1|M + |αn – αn–1|K . (59)

Thus, by using Lemma 2.7, we get that

lim
n→∞‖xn+1 – xn‖ = 0. (60)

Moreover, by virtue of formula (39), we conclude that

‖Syn – xn‖ ≤ ‖Syn – xn+1‖ + ‖xn+1 – xn‖ → 0 (61)

as n → ∞. Also,

‖Syn – yn‖ = ‖Syn – xn‖ + ‖xn – xn+1‖ → 0 (62)

as n → ∞. By following the proof in Theorem 3.1 (Case 1), we have ww(xn) ⊂ � . Moreover,
by the property of metric projection P� ,

lim sup
n→∞

〈u – s, xn+1 – x〉 = max
w∈ww(xn)

〈u – P�u, w – P�u〉 ≤ 0. (63)

Next, by following inequality (54), we find that

‖xn+1 – s‖2

≤ (1 – αn)‖xn – s‖2 + 2αn

[
〈u – s, xn+1 – s〉 +

κn

αn
‖v – s‖‖yn – s‖

]
. (64)



Mekruksavanich et al. Journal of Inequalities and Applications        (2022) 2022:125 Page 17 of 30

Algorithm 3 The third algorithm to solve split equilibrium problems
• Initialization: Let x1 ∈ H1 be arbitrarily chosen. Choose some positive sequences

{ρn}, {αn}, and {κn} satisfying Condition 3.2. Put n = 1.
• Iterative step: Given the current iterate xn, for rn > 0, compute

un = Tf
rn

(
xn + τnA∗(Tg

rn – I
)
Axn

)
,

where

τn =

⎧
⎨

⎩

ρnω(xn)
‖∇ω(xn)‖2+‖∇ψ(xn)‖2 ‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2 �= 0,

0 otherwise,

xn+1 = αnxn + (1 – αn)S
[
κnv + (1 – κn)un

]
.

• Stopping criterion: If xn+1 = xn = un, stop. If not, set n = n + 1 and go to Iterative
step.

By applying Lemma 2.7, inequality (63), and condition (C2) into inequality (64), we find
that xn → s = P�u.

Case 2. Assume that {‖xn – s‖2} is an increasing sequence. From inequality (55), αn → 0
and κn → 0, it is easy to see that ω(xn) → 0 as n → ∞. By following the proof in Case 1,
we find that

lim
n→∞‖xn+1 – xn‖ = 0.

Suppose that the map σ is given by Theorem 3.1. By using formula (64), we complete
the proof for this case in the same way as in the proof of Case 2 in Theorem 3.1. �

Theorem 3.3 The sequence {xn} generated by Algorithm 3 converges strongly to a solution
s ∈ � , where s = P�v.

Proof By using the fact that � is a nonempty set, we then take each c ∈ � . Moreover, by
using inequality (20), we find that

‖xn+1 – c‖ ≤ αn‖xn – c‖ + (1 – αn)‖Syn – c‖
≤ αn‖xn – c‖ + (1 – αn)

[
κn‖v – c‖ + (1 – κn)‖xn – c‖]

≤ αn‖xn – c‖ + (1 – αn) max
{‖v – c‖,‖xn – c‖}

≤ max
{‖xn – c‖,‖v – c‖}. (65)

This inequality implies {xn} is bounded. Thus, from inequalities (19) and (20), we then
find that {un} and {yn} are also bounded.

Setting s = P�v, we now show ‖xn+1 – xn‖ → 0 and xn → s as n → ∞. By inequality (21),
we obtain

‖xn+1 – s‖2 =
∥∥αnxn + (1 – αn)Syn – s

∥∥2
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≤ αn‖xn – s‖2 + (1 – αn)
[
κn‖v – s‖2 + ‖un – s‖2]

≤ αn‖xn – s‖2 + κn‖v – s‖2 + (1 – κn)
[
‖xn – s‖2

– ρn(4 – ρn)
ω2(xn)

‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2

]
. (66)

This inequality implies that

(1 – κn)ρn(4 – ρn)
ω2(xn)

‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2

≤ ‖xn – s‖2 – ‖xn+1 – s‖2 + κn‖v – s‖2. (67)

Next, to prove that limn→∞ ‖xn – s‖ = 0, we divide it into two possible cases.
Case 1. Assume that a sequence {‖xn – s‖2} is nonincreasing. By virtue of Theorem 3.1

(Case 1), we have

lim
n→∞

(‖xn+1 – s‖ – ‖xn – s‖) = 0.

Since limn→∞ αn = 0 and limn→∞ κn = 0, by following inequality (55), we find that

lim
n→∞ρn(4 – ρn)

ω2(xn)
‖∇ω(xn)‖2 + ‖∇ψ(xn)‖2 = 0.

Since and ∇ω and ∇ψ are Lipschitz continuous, and infρn(4 – ρn) > 0, we obtain that
ω(xn) → 0 as n → ∞. We then observe

‖xn+1 – xn‖ ≤ (1 – αn)‖Syn – Syn–1‖ + |αn – αn–1|‖xn‖ + |αn – αn–1|‖Syn–1‖
≤ (1 – αn)‖yn – yn–1‖ + |αn – αn–1|K , (68)

where K = supn≥1{‖xn‖ + ‖Syn–1‖}. By a similar argument to the proof of inequality (59),
we combine the above inequality with inequalities (57) and (58). Then

lim
n→∞‖xn+1 – xn‖ = 0.

Next, consider

‖xn+1 – s‖2

= αn〈xn+1 – s, xn – s〉 + (1 – αn)〈xn+1 – s, Syn – s〉

=
αn

2
[‖xn+1 – s‖2 + ‖xn – s‖2] +

(1 – αn)
2

[‖xn+1 – s‖2 + ‖yn – s‖2]

≤ 1
2
[
αn‖xn – s‖2 + αn‖xn+1 – s‖2 + (1 – αn)‖xn+1 – s‖2]

+
(1 – αn)(1 – κn)

2
‖xn – s‖2 + κn(1 – αn)〈v – s, yn – s〉. (69)
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Consequently,

‖xn+1 – s‖2 ≤ (
1 – (1 – αn)κn

)‖xn – s‖2 + 2κn(1 – αn)〈v – s, yn – s〉. (70)

By a similar argument to the proof of Theorem 3.1, we have y ∈ � and

lim sup
n→∞

〈v – s, yn – s〉 ≤ 0. (71)

By applying the above inequality, Lemma 2.7, conditions (C1)–(C2) into inequality (70),
we find that xn → s = P�v.

Case 2. Assume that {‖xn – z‖2} is an increasing sequence. From inequality (67), αn → 0,
and κn → 0, it is easy to see that ω(xn) → 0 as n → ∞. By following the proof in Case 1,
we find that

lim
n→∞‖xn+1 – xn‖ = 0.

Suppose that the map σ is given by Theorem 3.1. By using formula (70), we complete
the proof for this case in the same way as in the proof of Case 2 in Theorem 3.1. �

Remark 3.3 Because of the conditions of all parameters, our three proposed theorems are
entirely different.

4 Numerical examples and applications
In this section, we implement our proposed algorithms to show their performance of com-
putation in three different numerical examples. The proposed Algorithms 1, 2, and 3 are
coded with MATLAB (R2021a) programming language. CPU time and numbers of itera-
tion are considered the computational performance of the iteration algorithms.

Example 4.1 In this example, we illustrate our main results. We consider the numerical
behavior of the proposed algorithms by comparing them with different ρn.

Let H1 = H2 = R
N and A : RN →R

N be defined by Ax := 1
2 (x1, x2, . . . , xN ) with its adjoint

operator A∗x := 1
2 (x1, x2, . . . , xN ) for all x = {xi}N

i=1 ∈ R
N . We define the sets C = D = R

N .
Suppose that f (p, q) = p2 – pq for all p, q ∈ C. Then we derive the resolvent function Tf

rn as
follows: find s ∈ C such that f (s, q) + 1

rn
〈q – s, s – x〉 ≥ 0 for all q ∈ C and x ∈ H1. We observe

that

f (s, q) +
1
rn

〈q – s, s – x〉 ≥ 0 ⇔ s(s – q) +
1
rn

〈q – s, s – x〉 ≥ 0

⇔ rns(s – q) + (q – s)(s – x) ≥ 0

⇔ (q – s)
[
(1 – rn)s – x

] ≥ 0.

It follows from Lemma 2.4 that Tf
rn is single-valued; therefore we get that s = x

1–rn
. This

implies that

Tf
rn (x) =

x
1 – rn

.
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Let g(v, w) = v2 + vw – 2w2 for all v, w ∈ D. Then we derive the resolvent function Tg
rn as

follows: find u ∈ C such that g(u, w) + 1
rn

〈w – u, u – y〉 ≥ 0 for all w ∈ C and y ∈ H2. We
observe that

g(u, w) +
1
rn

〈w – u, u – y〉 ≥ 0

⇔ rnu2 + rnuw – 2rw2 + uw – wy – u2 + uy ≥ 0

⇔ –2rnw2 + rnuw + uw – wy + rnu2 – u2 + uy ≥ 0

⇔ –2rnw2 + (rnu + u – y)w + rnu2 – u2 + uy ≥ 0.

Let M(w) = –2rnw2 +(rnu+u–y)w+rnu2 –u2 +uy. Then M is a quadratic function of w with
coefficient a = –2rn, b = rnu + u – y, c = rnu2 – u2 + uy. We observe that the discriminant of
M(w) can be computed as follows:

b2 – 4ac = (rnu + u – y)(rnu + u – y) – 4(–2rn)
(
rnu2 – u2 + uy

)

= r2
nu2 + ru2 – rnuy + rnu2 + u2 – uy – rnuy – uy + y2

+ 8r2
nu2 – 8rnu2 + 8rnuy

= 9r2
nu2 – 6rnu2 + 6rnuy – 2uy + u2 + y2

= y2 + 6rnuy – 2uy + 9r2
nu2 – 6rnu2 + u2

= y2 – 2
(
(1 – 3rn)u

)
y +

(
(1 – 3rn)u

)2

=
(
y – (1 – 3rn)u

)2. (72)

Thus b2 – 4ac ≥ 0 for all y ∈ H2. It follows from Lemma 2.4 that Tg
rn is single-valued; there-

fore we get that

Tg
rn (x) =

x
1 – 3rn

.

It is easy to check that assumptions (A1)–(A4) are satisfied. We take S : C → C by
1
2 (x1, x2, . . . , xN ) for all x = {xi}N

i=1 ∈ R
N and choose αn = 1

2n+2 , κn = 1
(2n+2)2 , βn = n

2n+2 , γn = 1
2 ,

rn = 1
2n , u = 0.1, v = 0.5.

We test our proposed algorithms for different values of the parameter ρn by using E(n) =
‖xn+1–xn‖
‖x2–x1‖ < 10–5, N = 3, and the initial value x1 ∈ ([–5, 5], 1, N) (randomly generated vector

in R
N ) as follows:

Case I: ρn = 0.01;
Case II: ρn = 2.00;

Case III: ρn = 3.99.
In addition, Fig. 1–Fig. 3 show the error E(n) and behavior ‖xn+1 – xn‖ and Table 1

presents the CPU times and the number of iterations in three cases for testing suitable
values of the parameter ρn.

Remark 4.2 By the results of Example 4.1, we observed that:
(a) the third algorithm was more efficient than other proposed algorithms regarding

CPU time;
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Figure 1 Computational results for Example 4.1 Case I

Figure 2 Computational results for Example 4.1 Case II

Figure 3 Computational results for Example 4.1 Case III

(b) in case II (ρn = 2.00), the first algorithm was more efficient than other proposed
algorithms regarding the number of iterations.

Example 4.3 In this example, we show our performance of the proposed algorithms by
comparing them with algorithms (4)–(6) in the literature.
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Table 1 Computational results for Example 4.1

Case I Case II Case III

CPU time (S) No. of iter. CPU time (S) No. of iter. CPU time (S) No. of iter.

Algorithm 1 0.0299 52 0.00162 13 0.00212 17
Algorithm 2 0.0185 27 0.0192 27 0.0213 27
Algorithm 3 0.00192 16 0.00183 16 0.00195 16

Let H1 = H2 = l2(R) and A : l2 → l2 be defined by Ax := 1
4 (x1, x2, . . . , xi, . . . , ) with its ad-

joint operator A∗x := 1
4 (x1, x2, . . . , xi, . . . , ) for all x = {xi}∞i=1 ∈ l2. We define the sets C = D :=

{z ∈ l2 : ‖z‖ ≤ 1}. Suppose that f (p, q) = –11p2 + pq + 10q2 for all p, q ∈ C. Then we derive
the resolvent function Tf

rn as follows: find s ∈ C such that f (s, q) + 1
rn

〈q – s, s – x〉 ≥ 0 for all
q ∈ C and x ∈ H1. We observe that

f (s, q) +
1
rn

〈q – s, s – x〉 ≥ 0

⇔ –11rns2 + rnsq + 10rnq2 + sq – qx – s2 + sx ≥ 0

⇔ 10rnq2 + rnsq + sq – qx – 11rns2 – s2 + sx ≥ 0

⇔ 10rnq2 + (rns + s – x)q +
(
–11rns2 – s2 + sx

) ≥ 0.

Let P(q) = 10rnq2 +(rns+s–x)q+(–11rns2 –s2 +sx). Then P is a quadratic function of q with
coefficient a = 10rn, b = rns + s – x, c = –11rns2 – s2 + sx. We observe that the discriminant
of P(q) can be computed as follows:

b2 – 4ac = (rns + s – x)(rns + s – x) – 4(10rn)
(
–11rns2 – s2 + sx

)

= r2
ns2 + rs2 – rnsx + rns2 + s2 – sx – rnsx – sx + x2

+ 440r2
ns2 + 40rns2 – 40rnsx

= 441r2
ns2 + 42rns2 – 42rnsx – 2sx + s2 + x2

= x2 – 42rnsx – 2sx + 441r2
ns2 + 42rns2 + s2

= x2 – 2
(
(1 + 21rn)s

)
y +

(
(1 + 21rn)s

)2

=
(
x – (1 + 21rn)s

)2. (73)

Thus b2 – 4ac ≥ 0 for all x ∈ H1. It follows from Lemma 2.4 that Tf
rn is single-valued;

therefore we get that

Tf
rn (x) =

x
1 + 21rn

.

Let g(v, w) = –15v2 + vw + 14w2 for all v, w ∈ D. Then we derive the resolvent function Tg
rn

as follows: find u ∈ C such that g(u, w) + 1
rn

〈w – u, u – y〉 ≥ 0 for all w ∈ C and y ∈ H2. We
observe that

g(u, w) +
1
rn

〈w – u, u – y〉 ≥ 0

⇔ –15rnu2 + rnuw + 14rnw2 + uw – wy – u2 + uy ≥ 0
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⇔ 14rnw2 + rnuw + uw – wy – 15rnu2 – u2 + uy ≥ 0

⇔ 14rnw2 + (rnu + u – y)w +
(
–15rnu2 – u2 + uy

) ≥ 0.

Let M(w) = 14rnw2 + (rnu + u – y)w + (–15rnu2 – u2 + uy). Then M is a quadratic function
of w with coefficient a = 14rn, b = rnu + u – y, c = –15rnu2 – u2 + uy. We observe that the
discriminant of M(w) can be computed as follows:

b2 – 4ac = (rnu + u – y)(rnu + u – y) – 4(14rn)
(
–15rnu2 – u2 + uy

)

= r2
nu2 + ru2 – rnuy + rnu2 + u2 – uy – rnuy – uy + y2

+ 840r2
nu2 + 58rnu2 – 58rnuy

= 841r2
nu2 – 58rnu2 + 58rnuy – 2uy + u2 + y2

= y2 – 58rnuy – 2uy + 841r2
nu2 + 58rnu2 + u2

= y2 – 2
(
(1 + 29rn)u

)
y +

(
(1 + 29rn)u

)2

=
(
y – (1 + 29rn)u

)2. (74)

Thus b2 – 4ac ≥ 0 for all y ∈ H2. It follows from Lemma 2.4 that Tg
rn is single-valued; there-

fore we get that

Tg
rn (x) =

x
1 + 29rn

.

It is easy to check that assumptions (A1)–(A4) are satisfied. We take S : C → C by
1
2 (x1, x2, . . . , xi, . . .) for all x = {xi}∞i=1 ∈ l2 and choose αn = 1

2n+2 , κn = 1
(2n+2)2 , βn = n

2n+2 ,
γn = 1

2 , rn = 1
2n , u = 0.1, v = 0.5, ρn = 2.00. For algorithms (4)–(6), we take D ≡ I , Sx =

{ 1
2 (x1, x2, . . . , xi, . . .)} for all x = {xi}∞i=1 ∈ l2, γ = 0.01, αn = 1

2n+2 , and βn = n
2n+2 .

We test all of the algorithms for different values of initial values x1 by using E(n) =
‖xn+1–xn‖
‖x2–x1‖ < 10–5 as follows:

Case I: x1 = (1, 1, 1, . . . , 1, 0200, . . .);
Case II: x1 = (1.8, –2.56, 0.6, 0.6, . . . , 0.6100, 0, . . .);

Case III: x1 = (5.3, 1, 1.02, 0, 0, . . .);
Case IV: x1 = (4, –2, 6, –1, 1, 1, 1, . . . , 1100, 0, . . .).
In addition, Fig. 4–Fig. 7 show the error E(n) and behavior ‖xn+1 – xn‖ and Table 2

presents the CPU times and the number of iterations in four cases for comparing three
proposed algorithms with algorithms (4)–(6).

Remark 4.4 By examining the outcomes of Example 4.3, we found that our proposed al-
gorithms were more efficient than other algorithms in the literature.

4.1 Application to the optimization problem
Let P : C →R and Q : D →R be two functions. Given f (v, w) = P(w) – P(v) for all v, w ∈ C,
and g(y, z) = Q(z) – Q(y) for all y, z ∈ D. The optimization problem is to find a point s ∈ C
such that

F(s) ≤ F(s̄), ∀x̄ ∈ C, (75)
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Figure 4 Computational results for Example 4.3 Case I

Figure 5 Computational results for Example 4.3 Case II

Figure 6 Computational results for Example 4.3 Case III

and a point t = As ∈ D solves

G(t) ≤ G(t̄), ∀t̄ ∈ D. (76)

A solution set of the optimization problem (75)–(76) is defined by �, and assume that
� �= ∅. It is easy to check that assumptions (A1)–(A4) are satisfied. Clearly, � = � . Theo-
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Figure 7 Computational results for Example 4.3 Case IV

Table 2 Computational results for Example 4.3

Case I Case II Case III Case IV

CPU time (S) No. of iter. CPU time (S) No. of iter. CPU time (S) No. of iter. CPU time (S) No. of iter.

Algorithm 1 0.0269 32 0.0224 29 0.00165 13 0.00167 13
Algorithm 2 0.0215 27 0.0211 27 0.0219 27 0.0221 27
Algorithm 3 0.00184 16 0.00191 16 0.00188 16 0.00190 16
Algorithm of
Kazmi and
Rizvi

0.0678 169 0.0916 210 0.0560 96 0.0613 152

Algorithm of
Suantai

0.0614 160 0.0568 147 0.0416 63 0.0592 136

Algorithm of
Onjai-eua

0.0437 97 0.0419 88 0.0311 38 0.0513 83

rems 3.1–3.3 can be reduced to the strong convergence theorems for approximating the
common solution of split minimization problems and fixed point problems of a nonex-
pansive mapping.

4.2 Application to the split feasibility problem
The well-known split feasibility problem (SFP) was introduced in 1994 by Censor and
Elfving [20]. This problem was defined as follows: find a point

ν ∈ C such that Aν ∈ D. (77)

The SFP has attracted many researchers due to its applications in a large variety of prob-
lems such as in image reconstruction, signal processing, intensity-modulation radiation
therapy treatment planning (IMRT). The reader can refer to [21–24] for details.

Denote a solution set of (77) by � and assume that � �= ∅. Let f (p, q) = iC(q) – iC(p)
for all p, q ∈ C, and g(v, w) = iD(w) – iD(v) for all v, w ∈ D, where iC and iD are indicator
functions of the subsets C and D, respectively. It is easy to see that all assumptions are
satisfied. Clearly, � = � . By putting Tf

rn = PC and Tg
rn = PD into Theorems 3.1–3.3, Theo-

rems 3.1–3.3 can be reduced to the strong convergence theorems for approximating the
common solution of split feasibility problems and fixed point problems of a nonexpansive
mapping. Moreover, by these settings, we present the following numerical implementation
to solve the LASSO problem.
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Example 4.5 In this example, we show the performance of our algorithms for the sparse
signal recovery problem in compressed sensing. This problem can be considered as the
following linear inverse problem:

b = Ax + ε, (78)

where A : RM → R
N , ε is the observed data with noisy in R

M , x is the signal to recover in
R

N . The linear inverse problem (78) can be solved by transforming it into the following
LASSO problem:

min
x∈RN

1
2
‖b – Ax‖2 subject to ‖x‖1 ≤ q, (79)

where q > 0 is a constant. LASSO problem (79) can be considered as the split feasibility
problem (SFP) (77) if the sets C = {x ∈ R

N : ‖x‖1 ≤ q} and D = {b}. Thus we can apply our
algorithms to solve (79).

In all algorithms, we take S ≡ I for all x = {xi}N
i=1 ∈R

N and choose αn = 1
2n+2 , κn = 1

(2n+2)2 ,
βn = n

2n+2 , γn = 1
2 , rn = 1

2n , u = 0.1, v = 0.5, and ρn = 2.
In this example, the matrix A is generated by the normal distribution with μ = 0 and

σ = 1, the sparse vector x ∈ R
N is generated from uniform distribution in the interval

[–1, 1] with k (0 < k � N ), and the observation y is generated by the white Gaussian noise
with SNR = 40.

We test all of the algorithms for different dimension N and different sparsity k with q = k,
the initial point x1 = zeros(N , 1), and the restoration accuracy as the mean squared error
MSE = 1

N ‖x∗ – xn‖2 < 10–4, where x∗ is the original signal, as follows:
Case I: N = 400, k = 10;

Case II: N = 400, k = 30;
Case III: N = 1000, k = 50;
Case IV: N = 1000, k = 100.

The MSE values against the number of iterations are presented in Fig. 8–Fig. 12. From
the numerical results in Fig. 8–Fig. 12, we can summarize that the proposed algorithms
outperform the other previous algorithms in [7–9] with greater efficiency and faster com-
putations. Considering the proposed algorithms, the implemented results show that Al-
gorithm 3 solves the sparse sensor signal recovery problem with the fastest computation
time, as shown in Fig. 12.

Remark 4.6 By observing the outcomes of Example 4.5, we obtain that:
(a) As shown in Fig. 8–Fig. 11, the signal x can be recovered by our proposed

algorithms. However, it is revealed that among these methods, Algorithm 3 has the
smallest number of iterations and also the shortest CPU time for all cases;

(b) In Fig. 12, we plotted the mean squared error (MSE) value per iteration. It is evident
that the errors obtained by Algorithm 3 decrease faster than for the other proposed
algorithms.

5 Conclusions
This work proposed three modified step size algorithms to solve the SEPs. These iterative
algorithms were developed to approximate solutions for the SEPs with no prior knowl-
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Figure 8 Computational results for Example 4.5 Case I

Figure 9 Computational results for Example 4.5 Case II
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Figure 10 Computational results for Example 4.5 Case III

Figure 11 Computational results for Example 4.5 Case IV
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Figure 12 Convergence behavior of MSE for Example 4.5

edge. Strong convergence theorems are well established and proved under appropriate
conditions. We gave some of the applications to solve the split feasibility problem and op-
timization problem. Numerical examples were presented to show the usefulness of our
main results. Moreover, we showed the computational performance of the proposed algo-
rithms by comparing them with the existing algorithms. The compared results show that
the proposed algorithms outperform the state-of-the-art algorithms.
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