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Abstract
In this paper, we present a single-condition sharp criterion for the oscillation of the
fourth-order linear delay differential equation

x(4)(t) + p(t)x(τ (t)) = 0

by employing a novel method of iteratively improved monotonicity properties of
nonoscillatory solutions. The result obtained improves a large number of existing
ones in the literature.
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1 Introduction
Consider the fourth-order linear delay differential equation

x(4)(t) + p(t)x
(
τ (t)

)
= 0, t ≥ t0 > 0, (1)

where p ∈ C([t0,∞)) is positive, and the delay function τ ∈ C([t0,∞)) satisfies τ (t) ≤ t and
τ (t) → ∞ as t → ∞.

By a solution of (1) we understand a four times differentiable real-valued function x that
satisfies (1) for all t large enough. Our attention is restricted to those solutions of (1) that
satisfy the condition sup{|x(t)| : T ≤ t < ∞} > 0 for any large T ≥ t0. We make a standing
hypothesis that equation (1) possesses such solutions. A nontrivial solution of (1) is said
to be oscillatory if it has infinitely many zeros and nonoscillatory otherwise. Equation (1)
is called oscillatory if all its solutions are oscillatory.

The study of fourth-order differential equations originated with the vibrating rod prob-
lem in the first half of the 18th century and is generally of great practical importance. Such
equations naturally arise in the modeling of physical and biological phenomena, such as,
for instance, elasticity problems, deformation of structures, or oscillations of neuromus-
cular systems; see, e.g., [1, 2] for more detail.

With regard to their practical importance and the number of mathematical problems
involved, the subject of the qualitative theory for such equations has undergone rapid de-
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velopment. In particular, oscillation theory of fourth-order differential equations involv-
ing (1) as a particular case has attracted a lot of attention over the last decades, which is
evidenced by extensive research in the area, and we refer the reader to the recent related
works [3–6] and the references therein. On the other hand, equation (1) can be under-
stood as a prototype of even-order binomial differential equations, investigated in detail
in the monographs of Elias [7], Kiguradze and Chanturia [8], Koplatadze [9], and Swanson
[10].

The aim of this paper is to obtain an unimprovable result for (1) to be oscillatory, de-
pending on whether the limit inferior

δ∗ := lim inf
t→∞

t
τ (t)

is finite or not. To start, we briefly explain where the motivation behind this research
comes from. As a particular case of a more complex work for half-linear delay differential
equations, Jadlovská and Džurina [11] showed, via a novel method of iteratively improved
monotonicity properties of nonoscillatory solutions, that the second-order delay differen-
tial equation

x′′(t) + p(t)x
(
τ (t)

)
= 0 (2)

is oscillatory if

lim inf
t→∞ τ (t)tp(t) >

⎧
⎨

⎩
0 for δ∗ = ∞,

M1 for δ∗ < ∞,
(3)

where

M1 := max
{

c(1 – c)δ–c
∗ : 0 < c < 1

}
. (4)

We recall that the main purpose of the method is to find for any nonoscillatory, say pos-
itive, solution x of the studied binomial equation optimal values of positive constants a
and b such that

ax(t) > x′(t)t and bx(t) < x′(t)t,

which correspond to the monotonicities

(
x(t)
ta

)′
< 0 and

(
x(t)
tb

)′
> 0,

respectively. The oscillation criterion is just an immediate consequence of these mono-
tonicities; see [12] for a detailed description of the method.

Very recently, Graef, Jadlovská, and Tunç [13] extended the approach from [11] and
showed that any nonoscillatory solution of the third-order delay differential equation

x′′′(t) + p(t)x
(
τ (t)

)
= 0 (5)
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tends to zero asymptotically if

lim inf
t→∞ τ 2(t)tp(t) >

⎧
⎨

⎩
0 for δ∗ = ∞,

M2 for δ∗ < ∞,
(6)

where

M2 := max
{

c(1 – c)(2 – c)δ–c
∗ : 0 < c < 1

}
. (7)

Three facts are important to notice about the above results. Firstly, no restriction is
posed on the monotonicity or boundedness of the delay function τ (t). Secondly, the re-
sult applies also in the ordinary case τ (t) = t. Thirdly, the oscillation constant M1 (M2) is
optimal for equation (2) (equation (5)) in the sense that the strict inequality in condition
(3) (condition (6)) cannot be replaced by a nonstrict one without affecting validity of the
result.

A natural question that arises is whether the method of iteratively improved monotonic-
ity properties employed in the above-mentioned works can be extended to obtain sharp
results for the fourth-order delay differential equation (1). In this paper, we give a posi-
tive answer to this question. Our arguments essentially uses a classical result of Kiguradze
[8, Lemma 1.1], by which the set S of all positive nonoscillatory solutions of (1) has the
decomposition

S = S1 ∪ S3,

where

x ∈ S1 ⇐⇒ x > 0, x′ > 0, x′′ < 0, x′′′ > 0,

x ∈ S3 ⇐⇒ x > 0, x′ > 0, x′′ > 0, x′′′ > 0.

For each of these classes of nonoscillatory solutions, it is possible to initiate an iterative
process that converges to the optimal monotonicity values a and b. As a side product
of this finding, we formulate a single-condition oscillation criterion with an unimprovable
oscillation constant. To the best of our knowledge, there is no qualitatively the same result
for (1) in the literature for general τ (t); see Remarks 2 and 3 for more details.

The organization of the paper is as follows. In Sect. 2, we introduce the basic notations
and the core of the method developed. In Sects. 3 and 4, we provide a series of lemmas, it-
eratively improving monotonicity properties of nonoscillatory solutions belonging to the
classes S3 and S1, respectively. In Sect. 5, we present our main result, an oscillation crite-
rion for (1). As usual, the improvement made over the existing results from the literature is
illustrated via Euler-type differential equations. Finally, we propose several open problems
for further research.

2 Notation
In our proofs, we will use the constants

β∗ := lim inf
t→∞

τ 3(t)tp(t)
3!

, γ∗ := lim inf
t→∞

τ (t)t3p(t)
3!

, and δ∗ := lim inf
t→∞

t
τ (t)

.
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All our results require, directly or indirectly, that β∗ and γ∗ are positive. Obviously, for
arbitrary but fixed β ∈ (0,β∗), γ ∈ (0,γ∗), δ ∈ (1, δ∗) for δ∗ > 1, and δ = δ∗ for δ∗ = 1, there
is t1 ≥ t0 large enough such that

τ 3(t)tp(t)
3!

≥ β ,
τ (t)t3p(t)

3!
≥ γ , and

t
τ (t)

≥ δ, t ≥ t1. (8)

In view of the above, let us define (as far as they exist) the sequences {βn} and {γn} by

[k]0 := [k]∗,

[k]n :=
3![k]0δ

[k]n–1∗
(3 – [k]n–1)(2 – [k]n–1)(1 – [k]n–1)

, n ∈N,
(9)

where [k] stands for either β or γ . By induction it is easy to show that if [k]i < 1 for i =
1, 2, . . . , n, then [k]n+1 exists, and

[k]n+1

[k]n
= �[k]n > 1, (10)

where

�[k]0 :=
[k]1

[k]0
=

3!δ[k]0∗
(3 – [k]0)(2 – [k]0)(1 – [k]0)

> 1,

�[k]n :=
[k]n+1

[k]n
=

δ[k]n∗ (3 – [k]n–1)(2 – [k]n–1)(1 – [k]n–1)
δ

[k]n–1∗ (3 – [k]n)(2 – [k]n)(1 – [k]n)
> 1, n ∈N.

For arbitrary but fixed [k] ∈ (0, [k]∗) and [k]i < 1, i = 1, 2, . . . , n, we also define the sequence
{ε[k]n}:

ε[k]0 =
[k]
[k]∗

< 1,

ε[k]n = ε[k]0
δ

ε[k]n–1 [k]n–1

δ
[k]n–1∗

(3 – [k]n–1)(2 – [k]n–1)(1 – [k]n–1)
(3 – ε[k]n–1 [k]n–1)(2 – ε[k]n–1 [k]n–1)(1 – ε[k]n–1 [k]n–1)

,

n ∈N.

(11)

Again, by induction it follows that 0 < ε[k]n < ε[k]n+1 < 1 for n ∈ N0 and

lim
[k]→[k]∗

ε[k]0 = 1,

lim
(δ→δ∗)([k]→[k]∗)

ε[k]n+1 = 1.

We will use these facts in our proofs. As usual, and without loss of generality, we can
suppose from now on that nonoscillatory solutions of (1) are eventually positive.

3 Nonexistence of S3-type solutions
In view of (8), from (1) we see that

x(4)(t) +
3!β

τ 3(t)t
x
(
τ (t)

) ≤ 0, t ≥ t1. (12)
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We begin with a simple lemma, which gives information on the behavior of possible
nonoscillatory solutions belonging to the class S3.

Lemma 1 Let β∗ > 0 and assume that x is a solution of (1) belonging to the class S3. Then
for t sufficiently large:

(i) limt→∞ x′′′(t) = limt→∞ x′′(t)/t = limt→∞ x′(t)/t2 = limt→∞ x(t)/t3 = 0;
(ii) x′′(t)/t is decreasing, and x′′(t) > tx′′′(t);
(iii) x′(t)/t2 is decreasing, and x′(t) > tx′′(t)/2;
(iv) x(t)/t3 is decreasing, and x(t) > tx′(t)/3.

Proof Let x ∈ S3 and choose t1 ≥ t0 such that x(τ (t)) > 0 for t ≥ t1.
(i) Since x′′′(t) is a nonincreasing positive function, there exists a finite limit

lim
t→∞ x′′′(t) = � ≥ 0.

If � > 0, then x′′′(t) ≥ � > 0, and so x(t) ≥ �(t – t1)3/3! eventually, say for t ≥ t2 ≥ t1. Using
this in (12) gives

–x(4)(t) ≥ β�

τ 3(t)t
(
τ (t) – t1

)3.

Clearly, there exists t3 > t2 such that

(
τ (t) – t1

)3 >
τ 3(t)

2
, t ≥ t3,

which implies

–x(4)(t) >
β�

2t
, t ≥ t3.

Integrating the above inequality from t3 to t gives

x′′′(t3) ≥ x′′′(t) +
β�

2
ln

t
t3

≥ � +
β�

2
ln

t
t3

→ ∞ as t → ∞,

which is a contradiction. Hence � = 0.
Note that if x ∈ S3, then x(t) → ∞ and x′(t) → ∞ as t → ∞. Also, if x′′(t) �→ ∞, then

x′′(t)
t → 0 as t → ∞ since x′′(t) > 0 is increasing. Hence we can apply l’Hôpital’s rule to see

that (i) holds.
(ii) Again using the fact that x′′′(t) is positive and nonincreasing, we find that

x′′(t) = x′′(t1) +
∫ t

t1

x′′′(s) ds ≥ x′′(t1) + x′′′(t)(t – t1).

In view of (i), there is t4 > t1 such that x′′(t1) > t1x′′′(t) for t ≥ t4. Therefore

x′′(t) > tx′′′(t), t ≥ t4,
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and so
(

x′′(t)
t

)′
=

x′′′(t)t – x′′(t)
t2 < 0, t ≥ t4,

which proves (ii).
(iii) Since x′′(t)/t is a decreasing function tending to zero (see (i) and (ii)), we have

x′(t) = x′(t4) +
∫ t

t3

x′′(s) ds ≥ x′(t4) +
x′′(t)

t

(
t2

2
–

t2
4
2

)

=
x′′(t)t

2
+ x′(t4) –

x′′(t)t2
4

2t
>

tx′′(t)
2

, t ≥ t5,

for some t5 > t4. Therefore

(
x′(t)

t2

)′
=

x′′(t)t – 2x′(t)
t3 < 0, t ≥ t5,

which proves (iii).
(iv) Similarly, since x′(t)/t2 is a decreasing function tending to zero (see (i) and (iii)), we

get

x(t) = x(t5) +
∫ t

t5

x′(s) ds ≥ x(t5) +
x′(t)

t2

(
t3

3
–

t3
4
3

)
>

x′(t)t
3

, t ≥ t6,

for some t6 > t5. Thus

(
x(t)
t3

)′
=

x′(t)t – 3x(t)
t4 < 0, t ≥ t6,

which proves (iv) and completes the proof of the lemma. �

Remark 1 When investigating the asymptotic properties of solutions of higher-order dif-
ferential equations, authors often refer to the famous monograph of Kiguradze and Chan-
turia [8] and use the following result: for the function h satisfying h(i)(t) > 0, i = 0, 1, . . . , m,
and h(m+1)(t) ≤ 0 eventually, h(t)/h′(t) ≥ t/m. However, as remarked in [14], only

h(t)
h′(t)

≥ �
t
m

(13)

holds eventually for every � ∈ (0, 1). The necessity of the constant � ∈ (0, 1) in inequality
(13) has been shown by means of counterexamples; see [14] for details. Obviously, the
application of (13) to the solution x(t) ∈ S3 would lead to

x(i)(t) ≥ �
x(i+1)(t)

i + 1
, i = 0, 1, 2,

which is a weaker result than Lemma 1 provides. The omission of the constant � was made
possible by the requirement of having β∗ positive.

The next lemma provides some additional properties of solutions in the class S3.
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Lemma 2 Let β∗ > 0 and assume that x is a solution of (1) belonging to the class S3. Then
for any β ∈ (0,β∗) and t sufficiently large:

(v) x′′(t)/t1–β is decreasing, and (1 – β)x′′(t) > tx′′′(t);
(vi) β < 1;
(vii) limt→∞ x′′(t)/t1–β = limt→∞ x′(t)/t2–β = limt→∞ x(t)/t3–β = 0;
(viii) x′(t)/t2–β is decreasing, and x′(t) > tx′′(t)/(2 – β);
(ix) x(t)/t3–β is decreasing, and x(t) > tx′(t)/(3 – β).

Proof Let x ∈ S3 and choose t1 ≥ t0 such that x(τ (t)) > 0 and parts (i)–(iv) of Lemma 1
hold for t ≥ t1.

(v) Define the function

z(t) := x′′(t) – tx′′′(t), (14)

which is positive in view of (ii). Differentiating z and using (12) and the monotonicity of
x(t)/t3 (see (iv)), we obtain

z′(t) = –tx(4)(t) ≥ 3!β
x(τ (t))
τ 3(t)

≥ 3!β
x(t)
t3 . (15)

Using the estimates from (iv) and (iii), respectively, in the above inequality, we find

z′(t) > 2β
x′(t)

t2 > β
x′′(t)

t
. (16)

Integrating (16) from t1 to t and using the fact that x′′(t)/t is decreasing and tends to zero
(see (i) and (ii)), we obtain

z(t) > z(t1) + β

∫ t

t1

x′′(s)
s

ds ≥ z(t1) + β
x′′(t)

t
(t – t1) > βx′′(t), t ≥ t2,

for some t2 > t1, that is,

(1 – β)x′′(t) > tx′′′(t), t ≥ t2,

and so
(

x′′(t)
t1–β

)′
=

x′′′(t)t – (1 – β)x′′(t)
t2–β

< 0, t ≥ t2. (17)

Hence part (v) holds.
(vi) This clearly follows from (v) and the fact that x′′(t) is increasing.
(vii) To show

lim
t→∞

x′′(t)
t1–β

= 0, (18)

it suffices to prove that there is ε > 1 such that, for sufficiently large t,

(
x′′(t)
t1–εβ

)′
< 0. (19)
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Indeed, if

x′′(t)
t1–β

≥ c > 0,

then

x′′(t)
t1–β–β(ε–1) ≥ ctβ(ε–1) → ∞ as t → ∞,

which is a contradiction. Using (17), we see that for any k ∈ ((2 – β)/2, 1), there is t3 ≥ t2

sufficiently large such that

x′(t) = x′(t2) +
∫ t

t2

x′′(s)
s1–β

s1–β ds

≥ x′(t2) +
x′′(t)
t1–β

∫ t

t2

s1–β ds

= x′(t2) +
x′′(t)
t1–β

(t2–β – t2–β
2 )

2 – β
>

k
2 – β

x′′(t)t, t ≥ t3.

(20)

Using this in (16), we have

z′(t) > 2β
x′(t)

t2 >
2kβ

(2 – β)
x′′(t)

t
.

Integrating from t3 to t and using (i), this becomes

z(t) ≥ z(t3) +
2kβ

(2 – β)
x′′(t)

t
(t – t3) >

2kβ

(2 – β)
x′′(t), t ≥ t4,

for some t4 > t3. In view of the definition of z (see (14)), the above inequality implies

(
1 –

2kβ

2 – β

)
x′′(t) > x′′′(t).

Then it is easy to see that (19) holds with

ε =
2k

2 – β
> 1.

The remaining limits in (vii) follow from (18) and an application of l’Hôpital’s rule.
(viii) Using (18) in (20), we have

x′(t) ≥ x′′(t)t
2 – β

+ x′(t2) –
x′′(t)t2–β

2
t1–β(2 – β)

>
x′′(t)t
2 – β

, t ≥ t5,

for some t5 > t4. Thus

(
x′(t)
t2–β

)′
=

x′′(t)t – (2 – β)x′(t)
t3–β

< 0, t ≥ t5.
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(ix) Finally, since x′(t)/t2–β is a decreasing function tending to zero (see (vii) and (viii)),
we have

x(t) = x(t5) +
∫ t

t5

x′(s)
s2–β

s2–β ds

≥ x(t5) +
x′(t)
t2–β

(t3–β – t3–β

5 )
3 – β

=
x′(t)t
3 – β

+ x(t5) –
x′(t)t3–β

5
t2–β (3 – β)

>
x′(t)t
3 – β

, t ≥ t6,

for some t6 > t5. Therefore

(
x(t)
t3–β

)′
=

x′(t)t – (3 – β)x(t)
t4–β

< 0, t ≥ t6.

The proof is complete. �

The next result is a simple consequence of (ix).

Lemma 3 Assume that β∗ > 0 and δ∗ = ∞. Then S3 = ∅.

Proof Suppose to the contrary that x ∈ S3 and let t1 ≥ t0 be such that x(τ (t)) > 0 for t ≥ t1.
Using (ix) and (8) in (15), we find

z′(t) = –tx(4)(t) ≥ 3!β
x(τ (t))

τ 3–β (t)τβ(t)
≥ 3!β

x(t)
t3

(
t

τ (t)

)β

≥ 3!βδβ x(t)
t3 .

Also, from (ix) and (viii) it follows, respectively, that

z′(t) >
3!βδβ

(3 – β)
x′(t)

t2 >
3!βδβ

(3 – β)(2 – β)
x′′(t)

t

eventually, say for t ≥ t2 for some t2 ≥ t1. Proceeding as in the proof of (v), we arrive at

(
1 –

3!βδβ

(3 – β)(2 – β)

)
x′′(t) > tx′′′(t).

Since δ can be arbitrarily large, we choose it so that

δβ >
(3 – β)(2 – β)

3!β
.

This implies that –x′′(t) > tx′′′(t), which is a contradiction. This proves the lemma. �

In view of Lemma 2(vi) and Lemma 3, it is reasonable to assume that δ∗ < ∞, so that
S3 �= ∅. The following lemma can be seen as an iterative version of Lemma 2.

Lemma 4 Let β∗ > 0 and assume that x is a solution of (1) belonging to the class S3. Then
for any εβn ∈ (0, 1) and sufficiently large t,
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(I)n x′′(t)/t1–β̃n is decreasing, and (1 – β̃n)x′′(t) > tx′′′(t);
(II)n β̃n < 1;
(III)n limt→∞ x′′(t)/t1–β̃n = limt→∞ x′(t)/t2–β̃n = limt→∞ x(t)/t3–β̃n = 0;
(IV)n x′(t)/t2–β̃n is decreasing, and x′(t) > tx′′(t)/(2 – β̃n);
(V)n x(t)/t3–β̃n is decreasing, and x(t) > tx′(t)/(3 – β̃n);

where β̃n = εβnβn.

Proof Let x ∈ S3 with x(τ (t)) > 0 for t ≥ t1 for some t1 ≥ t0. We will proceed by induction
on n. For n = 0, the conclusion clearly follows from Lemma 2 with β = β̃0. Next, assume
that (I)n–(IV)n hold for n ≥ 1 and t ≥ tn ≥ t1. We need to show that they all hold for n + 1.

(I)n+1 Using (viii) and (8) in (15), we have

z′(t) =
(
x′′(t) – tx′′′(t)

)′ ≥ 3!β̃0
x(τ (t))
τ 3(t)

= 3!β̃0
x(τ (t))

τ 3–β̃n (t)τ β̃n (t)

≥ 3!β̃0
x(t)
t3

(
t

τ (t)

)β̃n

≥ 3!β̃0δ
β̃n x(t)

t3 .

Then by (V)n and (IV)n we get

z′(t) >
3!β̃0δ

β̃n

(3 – β̃n)
x′(t)

t2 >
3!β̃0δ

β̃n

(3 – β̃n)(2 – β̃n)
x′′(t)

t
. (21)

Integrating (21) from tn to t and using (I)n and (III)n in the resulting inequality, we see that
there exists t′

n > tn such that

z(t) ≥ z(tn) +
3!β̃0δ

β̃n

(3 – β̃n)(2 – β̃n)

∫ t

tn

x′′(s)
s1–β̃n sβ̃n

ds

≥ z(tn) +
3!β̃0δ

β̃n

(3 – β̃n)(2 – β̃n)(1 – β̃n)
x′′(t)
t1–β̃n

(
t1–β̃n – t1–β̃n

n
)

>
3!β̃0δ

β̃n

(3 – β̃n)(2 – β̃n)(1 – β̃n)
x′′(t)

= β̃n+1x′′(t), t ≥ t′
n,

i.e.,

(1 – β̃n+1)x′′(t) > tx′′′(t) (22)

and
(

x′′(t)
t1–β̃n+1

)′
< 0, (23)

which proves (I)n+1.
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(II)n+1 This follows immediately from (I)n+1 and the fact that x′′(t) is increasing.
(III)n+1 As for the case n = 0, it suffices to show that there is ε > 1 such that

(
x′′(t)

t1–εβ̃n+1

)′
< 0. (24)

Using (23), we see that for any k ∈ (0, 1), there is t′′
n ≥ t′

n sufficiently large such that

x′(t) = x′(t′
n
)

+
∫ t

t′n

x′′(s)
s1–β̃n+1

s1–β̃n+1 ds

≥ x′(t′
n
)

+
x′′(t)

t1–β̃n+1

∫ t

t′n
s1–β̃n+1 ds

= x′(t′
n
)

+
x′′(t)

t1–β̃n+1

(t2–β̃n+1 – (t′
n)2–β̃n+1 )

2 – β̃n+1

>
k

2 – β̃n+1
x′′(t)t, t ≥ t′′

n .

(25)

Combining this with (21), we obtain

z′(t) >
3!β̃0δ

β̃n

(3 – β̃n)
x′(t)

t2 >
3!kβ̃0δ

β̃n

(3 – β̃n)(2 – β̃n+1)
x′′(t)

t
,

which after integrating from t′′
n to t and using (III)n yields

z(t) > z
(
t′′
n
)

+
3!kβ̃0δ

β̃n

(3 – β̃n)(2 – β̃n+1)

∫ t

t′′n

x′′(s)
s1–β̃n sβ̃n

ds

>
3!kβ̃0δ

β̃n

(3 – β̃n)(2 – β̃n+1)(1 – β̃n)
x′′(t)

=
k(2 – β̃n)
(2 – β̃n+1)

β̃n+1x′′(t)

= εβ̃n+1x′′(t), t ≥ t′′′
n > t′′

n .

Since β̃n < β̃n+1, we can choose k such that ε > 1, and hence (19) holds. The rest of proof
is the same as that for n = 0.

(IV)n+1 Using (III)n+1 in (25) gives

(2 – β̃n+1)x′(t) > x′′(t)t,

and so (IV)n+1 holds.
(V)n+1 As in the case n = 0, using the fact that x′/t2–β̃n+1 is decreasing and tends to zero,

we get

x(t) = x
(
t′′′
n
)

+
∫ t

t′′′n

x′(s)
s2–β̃n+1

s2–β̃n+1 ds >
x′(t)t

3 – β̃n+1
, (26)

which implies (V)n+1 and completes the proof of the lemma. �
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From the above arguments we can immediately obtain the following lemma.

Lemma 5 Assume that δ∗ < ∞ and

lim inf
t→∞ τ 3(t)tp(t) > M, (27)

where

M := max
{

c(1 – c)(2 – c)(3 – c)δ–c
∗ : 0 < c < 1

}
. (28)

Then S3 = ∅.

Proof Suppose to the contrary that x ∈ S3 and let t1 ≥ t0 be such that x(τ (t)) > 0 for t ≥ t1.
We claim that

βn–1 < 1, n ∈N. (29)

By (II)n, β̃n < 1. Since εβn ∈ (0, 1) can be chosen arbitrarily, set εβn > 1/�βn , where �βn is
defined by (10). Then

1 > β̃n = εβn�βnβn–1 > βn–1,

which proves the claim. In view of (29), we conclude that the sequence {βn}∞n=0 defined by
(9) is increasing and bounded from above, that is, there exists a finite limit

lim
n→∞βn = c,

where c ∈ (0, 1) is a root of the equation

c(3 – c)(2 – c)(1 – c)δ–c
∗ = 3!β∗. (30)

However, condition (27) implies that (30) does not possess positive solutions. Hence S3 =
∅, and the proof is complete. �

4 Nonexistence of S1-type solutions
In this section, we prove similar results to those in Sect. 3 for solutions in the class S1. In
view of (8), equation (1) becomes

x(4)(t) +
3!γ

τ (t)t3 x
(
τ (t)

) ≤ 0, t ≥ t1. (31)

Lemma 6 Let γ∗ > 0 and assume that x is a solution of (1) belonging to the class S1. Then
for t sufficiently large:

(i) limt→∞ x′(t) = limt→∞ x(t)/t = 0;
(ii) x(t)/t is decreasing.
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Proof Let x ∈ S1 and choose t1 ≥ t0 such that x(τ (t)) > 0 for t ≥ t1.
(i) Since x′(t) is a decreasing positive function, there exists a finite limit

lim
t→∞ x′(t) = � ≥ 0.

If � > 0, then x′(t) ≥ � > 0, and so x(t) ≥ �(t – t1) > �t/3 for t ≥ t2 for some t2 ≥ t1. Using
this in (31) gives

–x(4)(t) ≥ 2�γ

t3 .

Integrating twice from t to ∞, we have

–x′′(t) ≥ �γ

t
,

and after integrating from t2 to t,

x′(t1) ≥ x(t) + �γ ln
t
t2

→ ∞ as t → ∞,

which is a contradiction. Hence � = 0. Applying l’Hôpital’s rule, we see that (i) holds.
(ii) Again using the monotonicity of x′ and (i), we see that

x(t) = x(t1) +
∫ t

t1

x′(s) ds ≥ x(t1) + x′(t)(t – t1) > x′(t)t

for t ≥ t3 > t1, where t3 is sufficiently large such that x(t1) – x′(t)t1 > 0 for t ≥ t3. Thus

(
x(t)

t

)′
=

x′(t)t – x(t)
t2 < 0, t ≥ t3,

and the proof is complete. �

Lemma 7 Let γ∗ > 0 and assume that x is a solution of (1) belonging to the class S1. Then
for any γ ∈ (0,γ∗) and t sufficiently large:

(iii) x(t)/t1–γ is decreasing;
(iv) γ < 1;
(v) limt→∞ x(t)/t1–γ = 0;
(vi) x(t)/tγ is nondecreasing.

Proof Let x ∈ S1 and choose t1 ≥ t0 such that x(τ (t)) > 0 for t ≥ t1.
(iii) Since x(t)/t is decreasing (see (ii)) in (31), we obtain

–x(4)(t) ≥ 3!γ
t3

x(τ (t))
τ (t)

≥ 3!γ
x(t)
t4 .

Integrating this inequality twice from t to ∞ and using at each step that x is increasing
yields

–x′′(t) ≥ γ
x(t)
t2 . (32)
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Define the function

w(t) = x(t) – tx′(t),

which is clearly positive in view of (ii). Differentiating w and using (32), we see that

w′(t) := –tx′′(t) ≥ γ
x(t)

t
. (33)

Integrating from t1 to t and using again that x(t)/t is decreasing and tends to zero, we have

w(t) ≥ w(t1) + γ

∫ t

t1

x(s)
s

ds ≥ w(t1) + γ
x(t)

t
(t – t1) > γ x(t), t ≥ t2, (34)

where t2 > t1 is sufficiently large such that w(t1) – t1x(t)/t > 0 for t ≥ t2. Hence

(1 – γ )x(t) > tx′(t)

and
(

x(t)
t1–γ

)′
=

x′(t)t – (1 – γ )x(t)
t2–γ

< 0, t ≥ t2, (35)

so (iii) holds.
(iv) This clearly follows from (iii) and the fact that x is increasing.
(v) To prove this, similarly to the proof for the class S3, it suffices to show that

(
x(t)

t1–εγ

)′
< 0 (36)

for some ε > 1. Using (35) in (34), we see that for any k ∈ (1 – γ , 1), there is t3 ≥ t2 such
that

w(t) ≥ w(t2) + γ

∫ t

t2

x(s)
s1–γ sγ

ds

≥ w(t2) +
γ

1 – γ

x(t)
t1–γ

(
t1–γ – t1–γ

2
)

>
kγ

1 – γ
x(t), t ≥ t3,

(37)

from which it follows that
(

1 –
kγ

1 – γ

)
x(t) > tx′(t).

Now it is clear that (36) holds with ε = k/(1 – γ ) > 1.
(vi) Integrating (32) from t to ∞ and using the monotonicity of x, we get

x′(t) ≥ γ

∫ ∞

t

x(s)
s2 ds ≥ γ

x(t)
t

,

and so
(

x(t)
tγ

)′
≥ 0.
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The proof of the lemma is now complete. �

Lemma 8 Assume that γ∗ > 0 and δ∗ = ∞. Then S1 = ∅.

Proof Suppose to the contrary that x ∈ S1 and let t1 ≥ t0 be such that x(τ (t)) > 0 for t ≥ t1.
Using (iii) and (8) in (31), we see that

–x(4)(t) ≥ 3!γ
t3

x(τ (t))
τ 1–γ (t)τ γ (t)

≥ 3!γ
x(t)
t4

(
t

τ (t)

)γ

≥ 3!γ δγ x(t)
t4 .

Integrating twice from t to ∞ and using repeatedly that x is increasing, we obtain

–x′′(t) ≥ γ δγ x(t)
t2 . (38)

Then using (38) in (33) yields

w′(t) ≥ γ δγ x(t)
t

.

Integrating as in (34) with γ replaced by γ δγ leads to

(
1 – γ δγ

)
x(t) > tx′(t).

Since δ can be arbitrarily large, we can choose it so that

δγ >
1
γ

,

which implies that –x(t) > tx′(t), a contradiction. This proves the lemma. �

Next, we obtain an iterative form of Lemma 7.

Lemma 9 Let γ∗ > 0 and assume that x is a solution of (1) belonging to the class S1. Then
for any εγn ∈ (0, 1) and sufficiently large t:

(I)n x(t)/t1–γ̃n is decreasing;
(II)n γ̃n < 1;
(III)n limt→∞ x(t)/t1–γ̃n = 0;
(IV)n x(t)/tγ̃n is nondecreasing;

where γ̃n = εγnγn.

Proof Let x ∈ S1 with x(τ (t)) > 0 for t ≥ t1 for some t1 ≥ t0. We will proceed by induction
on n. For n = 0, the conclusion follows from Lemma 7. Next, assume that (I)n–(IV)n hold
for n ≥ 1 and t ≥ tn ≥ t1 and let us show that (I)n+1 holds. Using (I)n in (31) gives

–x(4)(t) ≥ 3!γ̃0

t3
x(τ (t))

τ 1–γ̃n (t)τ γ̃n (t)
≥ 3!γ

x(t)
t4

(
t

τ (t)

)γ̃n

≥ 3!γ̃0δ
γ̃n x(t)

t4 .
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Integrating the above inequality from t to ∞ and using the fact that x(t)/tγ̃n is increasing
(see (IV)n), we obtain

x′′′(t) ≥ 3!γ̃0δ
γ̃n

∫ ∞

t

x(s)
sγ̃n s4–γ̃n

ds

≥ 3!γ̃0δ
γ̃n x(t)

tγ̃n

∫ ∞

t

1
s4–γ̃n

ds

=
3!γ δγ̃n

3 – γ̃n

x(t)
t3 . (39)

Repeating this step, we get

–x′′(t) ≥ 3!γ δγ̃n

(3 – γ̃n)(2 – γ̃n)
x(t)
t2 ,

and using this in (33), we have

w′(t) := –tx′′(t) ≥ 3!γ δγ̃n

(3 – γ̃n)(2 – γ̃n)
x(t)

t
.

Integrating from tn to t and using (I)n and (III)n, we obtain

w(t) ≥ w(tn) +
3!γ̃0δ

γ̃n

(3 – γ̃n)(2 – γ̃n)

∫ t

tn

x(s)
s1–γ̃n sγ̃n

ds

≥ w(tn) +
3!γ̃0δ

γ̃n

(3 – γ̃n)(2 – γ̃n)(1 – γ̃n)
x(t)
t1–γ̃n

(
t1–γ̃n – t1–γ̃n

n
)

> γ̃n+1x(t), t ≥ t′
n, (40)

where t′
n > tn is sufficiently large such that w(tn) – t1–γ̃n

n x(t)/t1–γ̃n > 0 for t ≥ t′
n. By the defi-

nition of w we see that

(1 – γ̃n+1)x(t) > tx′(t)

and

(
x(t)

t1–γ̃n+1

)′
=

x′(t)t – (1 – γ̃n+1)x(t)
t2–γ̃n+1

< 0, t ≥ t′
n, (41)

which proves (I)n+1. Since the proofs of the other parts are similar to those in the case
n = 0, we omit the details. �

Lemma 10 Assume that δ∗ < ∞ and

lim inf
t→∞ τ (t)t3p(t) > M, (42)

where M is defined by (28). Then S1 = ∅.

Proof The proof is similar to that of Lemma 5 and hence is omitted. �
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5 Main result and discussion
Combining the results from the previous two sections, we now present the main result in
this paper.

Theorem 1 Assume that

lim inf
t→∞ τ 3(t)tp(t) >

⎧
⎨

⎩
0 for δ∗ = ∞,

M for δ∗ < ∞,
(43)

where

M := max
{

c(1 – c)(2 – c)(3 – c)δ–c
∗ : 0 < c < 1

}
.

Then equation (1) is oscillatory.

Proof Notice that condition (43) implies β∗ > 0, and since

lim inf
t→∞ τ 3(t)tp(t) ≤ lim inf

t→∞ τ (t)t3p(t),

we see that γ∗ > 0. Now if δ∗ = ∞, then Lemmas 3 and 8 imply that S1 = S3 = ∅. For δ∗ < ∞,
the same conclusion follows from Lemmas 5 and 10. This proves the theorem. �

Corollary 1 Let τ (t) = αt with 0 < α ≤ 1. If

lim inf
t→∞ t4p(t) > max

{
c(1 – c)(2 – c)(3 – c)αc–3 : 0 < c < 1

}
, (44)

then (1) is oscillatory.

Remark 2 As an important related result, we recall a particular case of integral-type cri-
terion due to Koplatadze [9, Corollary 6.4] obtained by a different technique for even-
order differential equations with deviating arguments. He proved that (1) is oscillatory if
τ (t) ≥ αt, 0 < α ≤ 1, and

lim inf
t→∞ t

∫ ∞

t
s2p(s) ds > max

{
c(1 – c)(2 – c)(3 – c)αc–3 : 0 < c < 1

}
. (45)

Clearly, if τ (t) = αt, then (44) and (45) are qualitatively the same for (1). Hence, for n = 4,
Theorem 1 can be regarded as a generalization of [9, Corollary 6.4], removing the restric-
tive condition τ (t) ≥ αt. For similar related comparison results, we refer the reader to [15].

We demonstrate the sharpness of the newly obtained oscillation criterion on Euler-type
differential equations.

Example 1 Consider the fourth-order Euler delay differential equation

x(4)(t) +
p0δ

3∗
t4 x

(
1
δ∗

t
)

= 0, p0 > 0, δ∗ ≥ 1, t > 1. (46)
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The associated characteristic equation is

f (α) := α(1 – α)(2 – α)(3 – α)δα–3
∗ = p0, (47)

which is obtained by setting

x(t) = tα . (48)

Denoting the local maxima of f (α) by

m1(δ∗) = max
(
f (α) : 0 < α < 1

)
,

m3(δ∗) = max
(
f (α) : 2 < α < 3

)
= max

{
f (3 – c) : 0 < c < 1

}
= M,

and noting that for any δ∗,

m1(δ∗) ≤ m3(δ∗) = M,

it is easy to verify that (46) has the nonoscillatory solution (48) if

p0 ≤ M.

By Theorem 1, equation (46) is oscillatory if

p0 > M, (49)

which shows that our oscillation constant cannot be improved. As a result, we see that this
paper provides an optimal method for the study of oscillatory properties of fourth-order
delay differential equations.

In the particular case δ∗ = 2, we see that equation (46) is oscillatory if

p0 > m3(2) � 0.78483. (50)

Remark 3 For completeness, we review a few known oscillation constants for equation
(46) with δ∗ = 2 given in the previous works.

1. Grace and Lalli [16, 17]:

p0 > 1728;

2. Zafer [18]:

p0 >
192

e ln 2
� 101.902;

3. Grace [19]:

p0 >
6

1 + ln 2
� 3.545;
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4. Karpuz et al. [20], Zhang and Yan [21]:

p0 >
6

e ln 2
� 3.184;

5. Koplatadze [22]:

p0 >
3!

3 + ln 2
� 1.625;

6. Baculíková and Džurina [23]:

p0 > 1.

It is worth noting that cases (2)–(5) above require τ (t) < t and τ ′(t) ≥ 0, which is not
needed in Theorem 1. Hence Theorem 1 significantly improves many existing results in
the literature, even without the usual restrictive assumptions on the deviating argument.

Remark 4 The results presented in this paper open many fruitful problems for further
research, and we state at least the most obvious ones.

The first problem consists in extending the sharp results from this paper to the more
general fourth-order equation

(
r3(t)

(
r2(t)

(
r1(t)x′(t)

)′)′)′ + p(t)x
(
τ (t)

)
= 0 (51)

with ri ∈ C([t0,∞), (0,∞)) in the so-called canonical form, i.e., where

∫ ∞

t0

1
ri(s)

ds = ∞, i = 1, 2, 3. (52)

For a similar extension in the case of third-order equations, we refer the reader to the
recent paper [24].

It is also an open question how to obtain a sharp single-condition oscillation criterion
for (51) in the noncanonical case where

∫ ∞

t0

1
ri(s)

ds < ∞, i = 1, 2, 3. (53)

Note that the nonexistence of eight possible classes of nonoscillatory solutions must be
shown for (51) to be oscillatory (see [2, 25] for more detail).

It would be also interesting to establish the corresponding results for equation (51) with
an advanced argument τ (t) ≥ t in either the canonical or noncanonical case. We refer the
reader to [26] for a similar sharp oscillation criteria for second-order advanced differential
equations. It is also worth mentioning that the method of iteratively improved monotonic-
ities of nonoscillatory solutions has not as yet been applied to equations with damping. In
view of the increasing interest in the study of third- and fourth-order difference equations
with deviating arguments, another possible direction for future research is to extend the
approach used in this paper to the discrete case, similar to what was done for second-order
difference equations with deviating arguments in [27, 28].
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Finally, another possibility is developing a unified approach by investigating the oscilla-
tory and asymptotic properties of solutions of fourth-order dynamic equations with devi-
ating arguments on time scales via the method of iteratively improved monotonicities.
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