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Abstract
This paper is devoted to the study of a class of generalized nonexpansive mappings
called generalized nearly asymptotically nonexpansive mappings and to show that it
properly includes the class of nearly asymptotically nonexpansive mappings. We
investigate the problem of approximating a common element of the set of solutions
of a system of generalized nonlinear variational-like inclusions involving P-η-accretive
mappings and of the set of fixed points of a generalized nearly asymptotically
nonexpansive mapping. To this end, we suggest a new iterative algorithm with mixed
errors. As an application of the obtained equivalence, we prove the strong
convergence and stability of the sequence generated by the proposed iterative
algorithm to a common point of the two sets mentioned above.
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1 Introduction
In 1959, Signorini [1] posed the first problem involving a variational inequality, the so-
called Signorini contact problem. The term variational inequality for such a problem was
first coined by Fichera. After the emergence of the theory of variational inequalities in the
1960s, Stampacchia [2] and Fichera [3] initiated its study in 1964, and the interest in this
theory has much increased during the past five decades. Such an interest is explained by
the fact that in the last 50 years, variational inequalities have emerged as a strong tool
in the mathematical study of many nonlinear problems of physics and mechanics, as the
complexity of the boundary conditions and the diversity of the constitutive equations lead
to variational formulations of inequality type. The motivation for the development and
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generalization of variational inequalities in various directions comes from the study of
some problems arising in different fields of science and engineering, which lead to the
problems involving generalized forms of variational inequalities. The need to extend and
generalize variational inequalities in different directions gave rise to substantial progress
in this area. For more detail, we refer the interested reader, for example, to [4–9] and the
references therein.

Among the generalizations existing in the literature, variational inclusion has appeared
as an efficient and a productive tool for solving and studying a large number of problems
arising in diverse branches of pure and applied sciences. For this reason, after the intro-
duction of the concept of variational inclusion, in the last twenty years, there has been a
major activity in the study of various kinds of variational inclusion problems in a Hilbert
or Banach space setting; see, for instance, [10–20] and the references therein.

Simultaneously with the study of variational inequality (inclusion) problems, many au-
thors have turned their attentions to the design of methods for approximation of their
solutions. Thereby, in the course of the past few decades, many computational methods
for solving them have been developed and proposed in the setting of Hilbert and Banach
spaces. The simplest of these is the projection method, and the method based on the re-
solvent operator technique as a generalization of the projection method is one of the best
and widely known methods for solving variational inequalities/inclusions and related op-
timization problems. For a detailed description of this method along with relevant com-
mentaries, the reader is referred to [10, 13–16, 21–27] and the references therein.

Monotone operators were independently introduced by Browder [28] and Minty [29,
30]. It is worth mentioning that the term monotone operator first appeared in a work by
Kačurovskĭi [31], who proved that the subdifferential of a convex function on a Hilbert
space is monotone. Those monotone ones, which are maximal or satisfy the range con-
dition, play a key role in modern optimization and variational analysis. The beginning of
the study of the notion of accretive mapping comes back to the 1960s with the pioneer-
ing studies of Browder [32] and Kato [33]. Interest in such mappings stems mainly from
their firm connection with the existence theory for nonlinear evolution equations in Ba-
nach spaces. At the same time the study of nonlinear semigroups, differential equations
in Banach spaces, and fully nonlinear partial differential equations is closely connected
with notion of an m-accretive mapping, that is, accretive one that satisfies the range con-
dition. Inspired by their wide applications, developing and generalizing the notions of
maximal monotone operators and m-accretive mappings occur naturally and have been
frequently done in recent decades. For example, the classes of maximal η-monotone op-
erators [34], η-subdifferential operators [17, 35], generalized m-accretive mappings [36],
H-monotone operators [14], general H-monotone operators [37], H-accretive mappings
[13], (H ,η)-monotone operators [16], and several other interesting generalizations have
been introduced in the literature in this direction. With the goal of providing a unifying
framework for the classes mentioned above, Kazmi and Khan [24] proceeded to the in-
troduction and study of the class of P-η-accretive mappings in a real q-uniformly smooth
Banach space setting and defining the associated resolvent operator. Some related prop-
erties are also presented. It is worth mentioning that the main result in [24] concerning
P-η-accretive mappings, the Lipschitz continuity of the resolvent operator associated with
a P-η-accretive operator, is not necessarily true. Actually, it is true under condition that the
underlying space is a real 2-uniformly smooth Banach space. One year later, without point-
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ing out the errors in [24], Peng and Zhu [26] reviewed the class of P-η-accretive mappings
and relevant results given in [24]. They provided correct versions of the corresponding
results in [24] and considered a system of variational inclusions involving P-η-accretive
mapping in a real q-uniformly smooth Banach space setting. They demonstrated the exis-
tence of a unique solution for the system of variational inclusions and constructed a Mann
iterative algorithm for approximating its unique solution. Moreover, they discussed the
convergence of the sequence generated by their proposed iterative algorithm under some
suitable hypotheses.

Around the middle of the 1980s, the concept of graph convergence for operators was ini-
tially introduced by Attouch [38]. It is important to emphasize that the concept of graph
convergence in [38] was restricted to maximal monotone operators. Afterward, in parallel
to the introduction of various classes of generalized monotone operators and generalized
accretive mappings, the development and generalization of the notion of graph conver-
gence for them have been flourishing areas of research in the last two decades and have
led to an extensive literature. Further information along with more details can be found
in [21, 25, 27, 39, 40] and the references therein.

On the other hand, fixed point theory is one of the important thrust areas of research
in nonlinear analysis. Meanwhile, it has played a central role in the problem solving tech-
niques of nonlinear functional analysis. Due to its applicability in different areas of mathe-
matical sciences, fixed point theory has grown tremendously since the last century. There
is a strong connection between the classes of monotone and accretive operators, two
classes of operators which arise naturally in the theory of differential equations and the
class of nonexpansive mappings. Therefore, since the appearance of the notion of nonex-
pansive mapping, the fixed point theory for it has rapidly grown into an important field of
study in both pure and applied mathematics, and it has become one of the most essential
tools in nonlinear functional analysis. For this reason, during the past few decades, many
researchers have shown interest in extending the notion of nonexpansive mapping, and
the fixed point theory for generalized nonexpansive mappings has also attracted increas-
ing attention.

There is no doubt that the class of asymptotically nonexpansive mappings, the history
of its introduction and study of which dates back to a work of Goebel and Kirk [41] in the
early of 1970s, is one of the most important and well-known generalizations appearing in
the literature. After that time, the efforts have been made to unify the existing classes of
generalized nonexpansive mappings, and in one of these attempts, Sahu [42] succeeded
to introduce a class of generalized nonexpansive mappings, the so-called nearly asymp-
totically nonexpansive mappings, which contain properly the class of asymptotically non-
expansive mappings. The reader is referred to [22, 41–48] and the references therein for
more detail and further information. It is well known that the variational inequality (inclu-
sion) problems are deeply related to the fixed point problems. This fact has always been
one of the main incentives of researchers for presenting a unified approach to these two
different problems. For more related details, we refer the readers to [5, 6, 22, 44, 49–55]
and the references therein.

Motivated and inspired by the research going on this field, in this paper, we study a
class of generalized nonexpansive mappings called generalized nearly asymptotically non-
expansive mappings and by a concrete example is illustrate the fact that such a class is
essentially wider than that of nearly asymptotically nonexpansive mappings. The exis-
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tence of a unique solution for a system of generalized nonlinear variational-like inclusions
(SGNVLI) involving P-η-accretive mappings is proved under some appropriate condi-
tions. We investigate the problem of finding a point lying in the intersection of the set of
solutions of the SGNVLI and the set of fixed points of a given generalized nearly asymp-
totically nonexpansive mapping. For finding such a point, we suggest a new iterative al-
gorithm with mixed errors. In the final section, we use the notions of graph convergence
and the resolvent operator associated with a P-η-accretive mapping and establish a new
equivalence relationship between the graph convergence and the resolvent operator con-
vergence of a sequence of P-η-accretive mappings. Finally, as an application of this equiv-
alence, under some suitable assumptions imposed on the parameters, we verify the strong
convergence and stability of the sequence generated by the proposed iterative algorithm
to a common element of the above two sets.

2 P-η-accretive mappings: preliminary results and some notation
Unless otherwise stated, we always assume that E is a real Banach space with norm ‖ · ‖,
E∗ is the topological dual space of E, 〈·, ·〉 is the dual pair between E and E∗, and 2E denotes
the family of all nonempty subsets of E.

For an arbitrary but fixed real number q > 1, the multivalued mapping Jq : E → 2E∗ de-
fined by

Jq(x) :=
{

x∗ ∈ E∗ :
〈
x, x∗〉 = ‖x‖q,

∥∥x∗∥∥ = ‖x‖q–1}, x ∈ E,

is called the generalized duality mapping of E. In particular, J2 is the usual normalized
duality mapping. It is known that, in general, Jq(x) = ‖x‖q–2J2(x) for all x �= 0, and Jq is
single-valued if E∗ is strictly convex. We recall that a Banach space E is said to be strictly
convex if ‖x+y‖

2 < 1 for all x, y ∈ U = {z ∈ E : ‖z‖ = 1} such that x �= y. If E is a Hilbert space,
then J2 becomes the identity mapping on E.

The modulus of smoothness of E is the function ρE : (0,∞) → (0,∞) defined by

ρE(τ ) = sup

{
1
2
(‖x + y‖ + ‖x – y‖) – 1 : x, y ∈ E,‖x‖ ≤ 1,‖y‖ ≤ t

}
.

A Banach space E is called uniformly smooth if limt→0
ρE(t)

t = 0.
For a real constant q > 1, a Banach space E is called q-uniformly smooth if there exists

a constant C > 0 such that ρE(t) ≤ Ctq for all t ∈ [0, +∞). It is well known that (see, e.g.,
[56]) Lq (or lq) is q-uniformly smooth for 1 < q ≤ 2 and is 2-uniformly smooth for q ≥ 2.
Note that Jq is single-valued if E is smooth.

Concerned with the characteristic inequalities in q-uniformly smooth Banach spaces,
Xu [56] proved the following result.

Lemma 2.1 Let E be a real uniformly smooth Banach space. For a real constant q > 1, E is
q-uniformly smooth if and only if there exists a constant cq > 0 such that for all x, y ∈ E,

‖x + y‖q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+ cq‖y‖q.

We now introduce some notation and terminology and present some elementary results,
which be used in later sections.
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Definition 2.2 Let E be a real q-uniformly smooth Banach space, and let P : E → E and
η : E × E → E. Then P is said to be

(i) η-accretive if

〈
P(x) – P(y), Jq

(
η(x, y)

)〉≥ 0 ∀x, y ∈ E;

(ii) strictly η-accretive if P is η-accretive and equality holds if and only if x = y;
(iii) γ -strongly η-accretive (or strongly η-accretive with a constant γ > 0) if there exists

a constant γ > 0 such that

〈
P(x) – P(y), Jq

(
η(x, y)

)〉≥ γ ‖x – y‖q ∀x, y ∈ E;

(iv) ξ -Lipschitz continuous if there exists a constant ξ > 0 such that

∥∥P(x) – P(y)
∥∥≤ ξ‖x – y‖ ∀x, y ∈ E.

Note that if η(x, y) = x – y for all x, y ∈ E, then parts (i)–(iii) of Definition 2.2 reduce to
the definitions of accretivity, strict accretivity, and strong accretivity of the mapping P,
respectively.

Definition 2.3 ([13, 26]) Let E be a real q-uniformly smooth Banach space, let P : E → E
be a single-valued mapping, and let M : E → 2E be a multivalued mapping. Then M is said
to be

(i) accretive if

〈
u – v, Jq(x – y)

〉≥ 0 ∀(x, u), (y, v) ∈ Graph(M),

where Graph(M) = {(x, u) ∈ E × E : u ∈ M(x)};
(ii) m-accretive if M is accretive and (I + λM)(E) = E for every real constant λ > 0,

where I is the identity mapping on E;
(iii) P-accretive if M is accretive and (P + λM)(E) = E for every λ > 0.

The notion of generalized m-accretive (also referred to as m-η-accretive and also η-m-
accretive [11]) mappings was initially introduced by Huang and Fang [36] in 2001 as an
extension of m-accretive mappings as follows.

Definition 2.4 ([11, 36]) Let E be a real q-uniformly smooth Banach space, let η : E ×E →
E be a vector-valued mapping, and let M : E → 2E be a multivalued mapping. Then M is
said to be

(i) η-accretive if

〈
u – v, Jq

(
η(x, y)

)〉≥ 0 ∀(x, u), (y, v) ∈ Graph(M);

(ii) generalized m-accretive if M is η-accretive and (I + λM)(E) = E for every real
constant λ > 0.
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It is very essential to note that M is a generalized m-accretive mapping if and only if
M is η-accretive and there is no other η-accretive mapping whose graph strictly con-
tains Graph(M). The generalized m-accretivity is to be understood in terms of inclusion
of graphs. If M : E → 2E is a generalized m-accretive mapping, then adding anything to its
graph so as to obtain the graph of a new multivalued mapping destroys the η-accretivity.
In fact, the extended mapping is no longer η-accretive. In other words, for every pair
(x, u) ∈ E × E\Graph(M), there exists (y, v) ∈ Graph(M) such that 〈u – v, Jq(η(x, y))〉 < 0.
In the light of the above-mentioned arguments, a necessary and sufficient condition for a
multivalued mapping M : E → 2E to be generalized m-accretive is that the property

〈
u – v, Jq

(
η(x, y)

)〉≥ 0 ∀(y, v) ∈ Graph(M)

is equivalent to (x, u) ∈ Graph(M). The above characterization of generalized m-accretive
mappings provides a useful and manageable way for recognizing that an element u belongs
to M(x).

With the goal of presenting a unifying framework for H-accretive (P-accretive) map-
pings, (H ,η)-monotone operators [16], H-monotone operators [14], generalized m-
accretive mappings, m-accretive mappings, maximal η-monotone operators [36], and
maximal monotone operators, Peng and Zhu [26] and Kazmi and Khan [24] were the
first to introduce and study the notion of P-η-accretive (which is also referred to as (H ,η)-
accretive) mappings as follows.

Definition 2.5 ([24, 26]) Let E be a real q-uniformly smooth Banach space, let P : E →
E and η : E × E → E be single-valued mappings, and let M : E → 2E be a multivalued
mapping. Then M is said to be P-η-accretive if M is η-accretive and (P + λM)(E) = E for
every λ > 0.

Note that for given mappings η : E ×E → E and P : E → E, a P-η-accretive mapping may
be neither P-accretive nor generalized m-accretive. In support of this fact, we present the
following example.

Example 2.6 Let φ : N → (0, +∞) and consider the complex linear space l2
φ , the weighted

l2 space consisting of all infinite complex sequences (zn)∞n=1 such that
∑∞

n=1 |zn|2φ(n) < ∞.
It is well known that

l2
φ =

{

z = {zn}∞n=1 :
∞∑

n=1

|zn|2φ(n) < ∞, zn ∈ F = R or C

}

with respect to the inner product 〈·, ·〉 : l2
φ × l2

φ →C defined by

〈z, w〉 =
∞∑

n=1

znwnφ(n), z = {zn}∞n=1, w = {wn}∞n=1 ∈ l2
φ ,

is a Hilbert space, and so it is a 2-uniformly smooth Banach space. The above inner product
induces the norm

‖z‖l2φ
=
√〈z, z〉 =

( ∞∑

n=1

|zn|2φ(n)

) 1
2

, z = {zn}∞n=1 ∈ l2
φ .
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For any z = {zn}∞n=1 = {xn + iyn}∞n=1 ∈ l2
φ , we have

z = (x1 + iy1, x2 + iy2, . . . , xr + iyr , 0, 0, . . . )

+ (0, 0, . . . , 0, xr+1 + iyr+1, xr+2 + iyr+2, . . . , x2r + iy2r , 0, 0, . . . ) + · · ·
+ (0, 0, . . . , 0, xtr+1 + iytr+1, xtr+2 + iytr+2, . . . , x(t+1)r + iy(t+1)r , 0, 0, . . . ) + · · ·

=
∞∑

t=0

(0, 0, . . . , 0, xtr+1 + iytr+1, xtr+2 + iytr+2, . . . , x(t+1)r + iy(t+1)r , 0, 0, . . . ),

where r ≥ 2 is an arbitrary natural constant. For each t ≥ 0, we obtain

(0, 0, . . . , 0, xtr+1 + iytr+1, xtr+2 + iytr+2, . . . , x(t+1)r + iy(t+1)r , 0, 0, . . . )

= (0, 0, . . . , 0, xtr+1 + iytr+1, 0, 0, . . . , 0, x(t+1)r + iy(t+1)r , 0, 0, . . . )

+ (0, 0, . . . , 0, xtr+2 + iytr+2, 0, 0, . . . , 0, x(t+1)r–1 + iy(t+1)r–1, 0, 0, . . . )

+ · · · + (0, 0, . . . , 0, x (2t+1)r
2

+ iy (2t+1)r
2

, x (2t+1)r
2 +1 + iy (2t+1)r

2 +1, 0, 0, . . . )

=

(2t+1)r
2∑

j=tr+1

(0, 0, . . . , 0, xj + iyj, 0, 0, . . . , 0, x(2t+1)r–j+1 + iy(2t+1)r–j+1, 0, 0, . . . ).

Accordingly, for any z = {zn}∞n=1 = {xn + iyn}∞n=1 ∈ l2
φ ,

z =
∞∑

t=0

(0, 0, . . . , 0, xtr+1 + iytr+1, xtr+2 + iytr+2, . . . , x(t+1)r + iy(t+1)r , 0, 0, . . . )

=
∞∑

t=0

(2t+1)r
2∑

j=tr+1

(0, 0, . . . , 0, xj + iyj, 0, 0, . . . , 0, x(2t+1)r–j+1 + iy(2t+1)r–j+1, 0, 0, . . . )

=
∞∑

t=0

(2t+1)r
2∑

j=tr+1

[
yj + y(2t+1)r–j+1 – i(xj + x(2t+1)r–j+1)

2
uj,(2t+1)r–j+1

+
yj – y(2t+1)r–j+1 – i(xj – x(2t+1)r–j+1)

2
u′

j,(2t+1)r–j+1

]
,

where for all t ∈N∪ {0} and j ∈ {tr + 1, tr + 2, . . . , (2t+1)r
2 },

uj,(2t+1)r–j+1 = (0, 0, . . . , 0, ij, 0, 0, . . . , 0, i(2t+1)r–j+1, 0, 0, . . . )

with i at the jth and ((2t + 1)r – j + 1)th coordinates and all other coordinates zero, and

u′
j,(2t+1)r–j+1 = (0, 0, . . . , 0, ij, 0, 0, . . . , 0, –i(2t+1)r–j+1, 0, 0, . . . )

with i and –i at the jth and ((2t + 1)r – j + 1)th coordinates, respectively, and zeros else-
where. Therefore the set

B =
{

uj,(2t+1)r–j+1, u′
j,(2t+1)r–j+1 : t ∈N∪ {0}; j = tr + 1, tr + 2, . . . ,

(2t + 1)r
2

}
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spans the Banach space l2
φ . We can easily observe that the set B is linearly independent,

and so it is a basis for l2
φ . For all t ∈N∪ {0} and j ∈ {tr + 1, tr + 2, . . . , (2t+1)r

2 }, let us now take

vj,(2t+1)r–j+1

=
(

0, 0, . . . , 0,
1

√
2φ(j)

ij, 0, 0, . . . , 0,
1

√
2φ((2t + 1)r – j + 1)

i(2t+1)r–j+1, 0, 0, . . .
)

and

v′
j,(2t+1)r–j+1

=
(

0, 0, . . . , 0,
1

√
2φ(j)

ij, 0, 0, . . . , 0, –
1

√
2φ((2t + 1)r – j + 1)

i(2t+1)r–j+1, 0, 0, . . .
)

.

Obviously, the set

{
vj,(2t+1)r–j+1, v′

j,(2t+1)r–j+1 : t ∈N∪ {0}; j = tr + 1, tr + 2, . . . ,
(2t + 1)r

2

}

is linearly independent and orthonormal. Let the mappings M : l2
φ → 2l2φ , η : l2

φ × l2
φ → l2

φ

and P : l2
φ → l2

φ be defined as

M(z) =

⎧
⎨

⎩
	, z = vk,(2s+1)r–k+1,

–z + {
√

(n+3)!
2×3!n!3nφ(n) + i

√
(n+3)!

2×3!n!3nφ(n) }∞n=1, z �= vk,(2s+1)r–k+1,

η(z, w) =

⎧
⎨

⎩
α(w – z), z, w �= vk,(2s+1)r–k+1,

0 otherwise,

and P(z) = βz + γ {
√

(n+3)!
2×3!n!3nφ(n) + i

√
(n+3)!

2×3!n!3nφ(n) }∞n=1 for z, w ∈ l2
φ , where

	 =
{

vj,(2t+1)r–j+1 – vk,(2s+1)r–k+1, v′
j,(2t+1)r–j+1 – vk,(2s+1)r–k+1 :

t ∈N∪ {0}; j = tr + 1, tr + 2, . . . ,
(2t + 1)r

2

}
,

α,β ,γ ∈ R are arbitrary constants such that β < 0 < α and s ∈ N ∪ {0}, k ∈ {tr + 1, tr +
2, . . . , (2t+1)r

2 } are chosen arbitrarily but fixed, and 0 is the zero vector of the space l2
φ . Since

∑∞
n=1

(n+3)!
3!n!3n is convergent, it follows that {

√
(n+3)!

2×3!n!3nφ(n) + i
√

(n+3)!
2×3!n!3nφ(n) }∞n=1 ∈ l2

φ . Then, for all
z, w ∈ l2

φ , z �= w �= vk,(2s+1)r–k+1, we have

〈
M(z) – M(w), J2(z – w)

〉

=
〈
M(z) – M(w), z – w

〉

=
〈
–z +

{√
(n + 3)!

2 × 3!n!3nφ(n)
+ i

√
(n + 3)!

2 × 3!n!3nφ(n)

}∞

n=1
+ w

–
{√

(n + 3)!
2 × 3!n!3nφ(n)

+ i

√
(n + 3)!

2 × 3!n!3nφ(n)

}∞

n=1
, z – w

〉
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= 〈w – z, z – w〉
= –‖z – w‖2

l2φ

= –
∞∑

n=1

|zn – wn|2φ(n) < 0,

which means that M is not accretive, and so it is not a P-accretive mapping. For any given
z, w ∈ l2

φ , z �= w �= vk,(2s+1)r–k+1, we have

〈
M(z) – M(w), J2

(
η(z, w)

)〉

=
〈
M(z) – M(w),η(z, w)

〉

=
〈
–z +

{√
(n + 3)!

2 × 3!n!3nφ(n)
+ i

√
(n + 3)!

2 × 3!n!3nφ(n)

}∞

n=1

+ w –
{√

(n + 3)!
2 × 3!n!3nφ(n)

+ i

√
(n + 3)!

2 × 3!n!3nφ(n)

}∞

n=1
,α(w – z)

〉

= α〈w – z, w – z〉
= α‖w – z‖2

l2φ

= α

∞∑

n=1

|zn – wn|2φ(n) > 0.

For each of the cases where z �= w = vk,(2s+1)r–k+1, w �= z = vk,(2s+1)r–k+1, and z = w =
vk,(2s+1)r–k+1, since η(z, w) = 0, we conclude that

〈
u – v, J2

(
η(z, w)

)〉
=
〈
u – v,η(z, w)

〉
= 0 ∀u ∈ M(z), v ∈ M(w).

Hence M is an η-accretive mapping. Taking into account that for any z ∈ l2
φ , z �=

vk,(2s+1)r–k+1,

∥∥(I + M)(z)
∥∥2

l2φ
=
∥∥∥∥

{√
(n + 3)!

2 × 3!n!3nφ(n)
+ i

√
(n + 3)!

2 × 3!n!3nφ(n)

}∞

n=1

∥∥∥∥

2

l2φ

=
∞∑

n=1

(n + 3)!
3!n!3n > 0

and

(I + M)(vk,(2s+1)r–k+1) =
{

vj,(2t+1)r–j+1, v′
j,(2t+1)r–j+1 :

t ∈N∪ {0}; j = tr + 1, tr + 2, . . . ,
(2t + 1)r

2

}
,

where I is the identity mapping on E = l2
φ , it follows that 0 /∈ (I + M)(l2

φ). Thus I + M is not
surjective, and, consequently, M is not a generalized m-accretive mapping. For any λ > 0
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and z ∈ l2
φ , taking w = 1

β–λ
z + γ +λ

λ–β
{
√

(n+3)!
2×3!n!3nφ(n) + i

√
(n+3)!

2×3!n!3nφ(n) }∞n=1 (λ �= β , because β < 0),
we obtain

(P + λM)(w)

= (P + λM)
(

1
β – λ

z +
γ + λ

λ – β

{√
(n + 3)!

2 × 3!n!3nφ(n)
+ i

√
(n + 3)!

2 × 3!n!3nφ(n)

}∞

n=1

)

= z.

Accordingly, for any real constant λ > 0, the mapping P + λM is surjective, and so M is a
P-η-accretive mapping.

The following example illustrates that for given mappings η : E × E → E and P : E → E,
a generalized m-accretive mapping need not be P-η-accretive.

Example 2.7 Let H2(C) be the set of all Hermitian matrices with complex entries. Recall
that a square matrix A is said to be Hermitian (or self-adjoint) if it is equal to its own
Hermitian conjugate, i.e., A∗ = At = A. In view of the definition of a Hermitian 2×2 matrix,
the condition A∗ = A implies that the 2 × 2 matrix A =

( a b
c d

)
is Hermitian if and only if

a, d ∈R and b = c̄. Thus

H2(C) =

{(
z x – iy

x + iy w

)∣∣∣∣x, y, z, w ∈R

}

,

and it is a subspace of M2(C), the space of all 2 × 2 matrices with complex entries, with
respect to the operations of addition and scalar multiplication defined on M2(C) when
M2(C) is considered as a real vector space. Considering the scalar product on H2(C) as
〈A, B〉 := 1

2 tr(AB) for A, B ∈ H2(C), we can easily check that 〈·, ·〉 is an inner product, that
is, (H2(C), 〈·, ·〉) is an inner product space. The inner product defined above induces the
norm on H2(C):

‖A‖ =
√〈A, A〉 =

√
1
2

tr(AA)

=

{
1
2

tr

((
x2 + y2 + z2 (z + w)(x – iy)

(z + w)(x + iy) x2 + y2 + w2

))} 1
2

=
√

x2 + y2 +
1
2
(
z2 + w2

)
, A ∈ H2(C).

Since every finite-dimensional normed space is a Banach space, it follows that (H2(C),‖ ·
‖) is a Hilbert space, and so it is a 2-uniformly smooth Banach space. Assume that the
mappings P, M : H2(C) → H2(C) and η : H2(C)×H2(C) → H2(C) are defined, respectively,
as

P(A) = P

((
z x – iy

x + iy w

))

=

(
2 sin2 z x2 – iy2

x2 + iy2 –4 cos2 w

)

,

M(A) = M

((
z x – iy

x + iy w

))

=

(
–4 cos2 z x – iy

x + iy 2 sin2 w

)

,
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and

η(A, B) = η

((
z x – iy

x + iy w

)

,

(
ẑ x̂ – îy

x̂ + îy ŵ

))

=

(
–4(cos2 z – cos2 ẑ) x – x̂ – i(y – ŷ)

x – x̂ + i(y – ŷ) 2(sin2 w – sin2 ŵ)

)

for

A =

(
z x – iy

x + iy w

)

, B =

(
ẑ x̂ – îy

x̂ + îy ŵ

)

∈ H2(C).

Then, for any

A =

(
z x – iy

x + iy w

)

, B =

(
ẑ x̂ – îy

x̂ + îy ŵ

)

∈ H2(C),

we get

〈
M(A) – M(B), J2

(
η(A, B)

)〉

=
〈
M(A) – M(B),η(A, B)

〉

=

〈(
–4(cos2 z – cos2 ẑ) x – x̂ – i(y – ŷ)

x – x̂ + i(y – ŷ) 2(sin2 w – sin2 ŵ)

)

,

(
–4(cos2 z – cos2 ẑ) x – x̂ – i(y – ŷ)

x – x̂ + i(y – ŷ) 2(sin2 w – sin2 ŵ)

)〉

=
1
2

tr

((
�11(x, x̂, y, ŷ, z, ẑ) �12(x, x̂, y, ŷ, z, ẑ)
�21(x, x̂, y, ŷ, z, ẑ) �22(x, x̂, y, ŷ, z, ẑ)

))

= 8
(
cos2 z – cos2 ẑ

)2 + 2
(
sin2 w – sin2 ŵ

)2 + (x – x̂)2 + (y – ŷ)2

≥ 0,

(2.1)

where

�11(x, x̂, y, ŷ, z, ẑ) = 16
(
cos2 z – cos2 ẑ

)2 + (x – x̂)2 + (y – ŷ)2,

�12(x, x̂, y, ŷ, z, ẑ) =
(
x – x̂ – i(y – ŷ)

)(
–4
(
cos2 z – cos2 ẑ

)
+ 2

(
sin2 w – sin2 ŵ

))
,

�21(x, x̂, y, ŷ, z, ẑ) =
(
x – x̂ + i(y – ŷ)

)(
–4
(
cos2 z – cos2 ẑ

)
+ 2

(
sin2 w – sin2 ŵ

))
,

�22(x, x̂, y, ŷ, z, ẑ) = (x – x̂)2 + (y – ŷ)2 + 4
(
sin2 w – sin2 ŵ

)2.

By (2.1) we infer that M is an η-accretive mapping. Let us define the functions f , g : R →R

as f (t) := 2 sin2 t – 4 cos2 t and g(t) := t2 + t for t ∈ R. Then, for any A =
( z x–iy

x+iy w
) ∈ H2(C),

we have

(P + M)(A) = (P + M)

((
z x – iy

x + iy w

))
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=

(
2 sin2 z – 4 cos2 z x2 + x – i(y2 + y)
x2 + x + i(y2 + y) 2 sin2 w – 4 cos2 w

)

=

(
f (z) g(x) – ig(y)

g(x) + ig(y) f (w)

)

.

Since

f (t) = 2 sin2 t – 4 cos2 t = 2 sin2 t – 4
(
1 – sin2 t

)
= 6 sin2 t – 4 ∀t ∈R,

it follows that –4 ≤ f (t) ≤ 2 for all t ∈ R. At the same time, for all t ∈ R, we have g(t) =
t2 + t = (t + 1

2 )2 – 1
4 ≥ – 1

4 . Hence f (R) = [–4, 2] �= R and g(R) = [– 1
4 , +∞) �= R. These facts

ensure that (P + M)(H2(C)) �= H2(C), i.e., P + M is not surjective, and, consequently, M is
not P-η-accretive. Now let λ be an arbitrary positive real constant, and let the functions
f̃ , g̃, h̃ : R → R be defined as f̃ (t) := t – 4λ cos2 t, g̃(t) := t + 2λ sin2 t, and h̃(t) := (1 + λ)t for
t ∈R. Then, for any A =

( z x–iy
x+iy w

) ∈ H2(C), we have

(I + λM)(A) = (I + λM)

((
z x – iy

x + iy w

))

=

(
z – 4λ cos2 z (1 + λ)x – i(1 + λ)y

(1 + λ)x + i(1 + λ)y w + 2λ sin2 w

)

=

(
f̃ (z) h̃(x) – ĩh(y)

h̃(x) + ĩh(y) g̃(w)

)

,

where I is the identity mapping on H2(C). Since f̃ (R) = g̃(R) = h̃(R) = R, we deduce that
(I + λM)(H2(C)) = H2(C), that is, I + λM is a surjective mapping. Taking into account the
arbitrariness of λ > 0, it follows that M is a generalized m-accretive mapping.

Example 2.8 Let m, n ∈ N be arbitrary but fixed, and let Mm×n(F) be the vector space of
all m × n matrices with real or complex entries. Then

Mm×n(F) =
{

A = (alj)|alj ∈ F, i = 1, 2, . . . , m; j = 1, 2, . . . , n,F = R or C
}

is a Hilbert space with respect to the Hilbert–Schmidt norm

‖A‖ =

( m∑

i=1

n∑

j=1

|aij|2
) 1

2

, A ∈ Mm×n(F),

induced by the Hilbert–Schmidt inner product

〈A, B〉 = tr
(
A∗B

)
=

m∑

i=1

n∑

j=1

aijbij, A, B ∈ Mm×n(F),

where tr denotes the trace, that is, the sum of diagonal entries, and A∗ denotes the Her-
mitian conjugate (or adjoint) of a matrix A, that is, A∗ = At , the complex conjugate of the
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transpose A, the bar denotes complex conjugation, and the superscript denotes the trans-
pose of the entries. Denote by Dn(R) the space of all diagonal n × n matrices with real
entries, that is, the (i, j)-entry is an arbitrary real number if i = j and is zero if i �= j. Then

Dn(R) =
{

A = (aij)|aij ∈R, aij = 0 if i �= j; i, j = 1, 2, . . . , n
}

is a subspace of Mn×n(R) = Mn(R) with respect to addition and scalar multiplication
on Mn(R). Furthermore, the Hilbert–Schmidt inner product on Dn(R) and the Hilbert–
Schmidt norm induced by it become

〈A, B〉 = tr
(
A∗B

)
= tr(AB)

and

‖A‖ =
√〈A, A〉 =

√
tr(AA) =

( n∑

i=1

a2
ii

) 1
2

,

respectively. Define the mappings P1, P2, M : Dn(R) → Dn(R) and η : Dn(R) × Dn(R) →
Dn(R) by P1(A) = P1((aij)) = (a′

ij), P2(A) = P2((aij)) = (a′′
ij), M(A) = M((aij)) = (a′′′

ij ), and
η(A, B) = η((aij), (bij)) = (cij) for A = (aij), B = (bij) ∈ Dn(R), where for all i, j ∈ {1, 2, . . . , n},

a′
ij =

⎧
⎨

⎩
sin2l aii + cos2l aii – γ k√aii, i = j,

0, i �= j,

a′′
ij =

⎧
⎨

⎩
αaq

ii, i = j,

0, i �= j,

a′′′
ij =

⎧
⎨

⎩
γ k√aii, i = j,

0, i �= j,

and

cij =

⎧
⎨

⎩

β( p√aii– p√bii)
1+a2

ii+b2
ii

, i = j,

0, i �= j,

where β , γ are arbitrary positive real constants, α is an arbitrary real constant, k, p, and q
are arbitrary but fixed odd natural numbers, and l ∈N\{1} is an arbitrary but fixed natural
number. Then, for any A = (aij), B = (bij) ∈ Dn(R), we have

〈
M(A) – M(B), J2

(
η(A, B)

)〉
=
〈
M(A) – M(B),η(A, B)

〉

= tr
((

a′′′
ij – b′′′

ij
)
(cij)

)

= βγ

n∑

i=1

( k√aii – k√bii)( p√aii – p√bii)
1 + a2

ii + b2
ii

.

(2.2)
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If aii = bii = 0, then ( k√aii – k√bii)( p√aii – p√bii) = 0. In the case where aii �= 0 = bii,

(
k√aii – k

√
bii
)(

p√aii – p
√

bii
)

= k√aii
p√aii = kp

√
ak+p

ii .

At the same time, if aii = 0 �= bii, then

(
k√aii – k

√
bii
)(

p√aii – p
√

bii
)

= k
√

bii
p
√

bii = kp
√

bk+p
ii .

Since k and p are odd natural numbers, in the last both cases, we deduce that

(
k√aii – k

√
bii
)(

p√aii – p
√

bii
)

> 0.

If aii, bii �= 0, then we infer that

k√aii – k
√

bii =
aii – bii

∑k
r=1

k
√

ak–r
ii br–1

ii

and

p√aii – p
√

bii =
aii – bii

∑p
t=1

p
√

ap–t
ii bt–1

ii

.

Since k and p are odd natural numbers, it follows that
∑k

r=1
k
√

ak–r
ii br–1

ii > 0 and
∑p

t=1
p
√

ap–t
ii bt–1

ii > 0, which imply that

(
k√aii – k

√
bii
)(

p√aii – p
√

bii
)

=
(aii – bii)2

(
∑k

r=1
k
√

ak–r
ii br–1

ii )(
∑p

t=1
p
√

ap–t
ii bt–1

ii )
> 0.

Since β ,γ > 0, in the light of the arguments mentioned above and making use of (3.2), it
follows that

〈
M(A) – M(B), J2

(
η(A, B)

)〉≥ 0 ∀A, B ∈ Dn(R),

which ensures that M is an η-accretive mapping. Assume that the function f : R → R is
defined by f (x) := sin2l x + cos2l x for x ∈R. Then, for any A = (aij) ∈ Dn(R), we obtain

(P1 + M)(A) = (P1 + M)
(
(aij)

)
=
(
a′

ij + a′′′
ij
)

= (̃aij),

where for each i, j ∈ {1, 2, . . . , n},

ãij =

⎧
⎨

⎩
sin2l aii + cos2l aii, i = j,

0, i �= j,
=

⎧
⎨

⎩
f (aii), i = j,

0, i �= j.

The fact that f (R) = [21–l, 1] implies that (P1 + M)(Dn(R)) �= Dn(R), which means that P1 +
M is not surjective, and so M is not a P1-η-accretive mapping. Now suppose that λ > 0 is
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an arbitrary real constant and let the function g : R→ R be defined by g(x) := αxq + λγ k√x
for x ∈R. Then, for any A = (aij) ∈ Dn(R), we get

(P2 + λM)(A) = (P2 + λM)
(
(aij)

)
=
(
a′′

ij + λa′′′
ij
)

= (̂aij),

where for each i, j ∈ {1, 2, . . . , n},

âij =

⎧
⎨

⎩
αaq

ii + λγ k√aii, i = j,

0, i �= j,
=

⎧
⎨

⎩
g(aii), i = j,

0, i �= j.

Since the natural numbers q and k are odd, we deduce that g(R) = R, which implies that
(P2 + λM)(Dn(R)) = Dn(R). Thereby P2 + λM is a surjective mapping. Since λ > 0 was ar-
bitrary, it follows that M is a P2-η-accretive mapping.

Note, in particular, that if P ≡ I , the identity mapping on E, then the definition of a P-η-
accretive mapping is that of a generalized m-accretive mapping. In fact, there is a close
relation between the two classes of P-η-accretive mappings and generalized m-accretive
mappings in the framework of Banach spaces. On the other hand, in the light of Exam-
ple 2.6, for given mappings P : E → E and η : E ×E → E, a P-η-accretive mapping need not
be generalized m-accretive. The following lemma tells that under the sufficient conditions,
a P-η-accretive mapping M is generalized m-accretive.

Lemma 2.9 ([26, Theorem 3.1(a)]) Let E be a real q-uniformly smooth Banach space, let
η : E × E → E be a vector-valued mapping, let P : E → E be a strictly η-accretive mapping,
let M : E → 2E be a P-η-accretive mapping, and let x, u ∈ E. If 〈u – v, Jq(η(x, y))〉 ≥ 0 for all
(y, v) ∈ Graph(M), then (x, u) ∈ Graph(M).

Invoking Example 2.7, for given mappings P : E → E and η : E ×E → E, a generalized m-
accretive mapping may not be P-η-accretive. In the following assertion, we state sufficient
conditions for a generalized m-accretive mapping to be P-η-accretive. Before turning to
it, we need to recall the following notions.

Definition 2.10 Let E be a real q-uniformly smooth Banach space. A mapping P : E → E
is said to be coercive if

lim‖x‖→+∞
〈P(x), Jq(x)〉

‖x‖ = +∞.

Definition 2.11 Let E be a real q-uniformly smooth Banach space, and let P : E → E be a
single-valued mapping. P is said to be

(i) bounded if P(A) is a bounded subset of E for every bounded subset A of E,
(ii) hemicontinuous if for any fixed points x, y, z ∈ E, the function t �−→ 〈P(x + ty), Jq(z)〉

is continuous at 0+.

Theorem 2.12 Let E be a real q-uniformly smooth Banach space, let η : E × E → E be
a single-valued mapping, and let P : E → E be a bounded, coercive, hemicontinuous, and
η-accretive mapping. If M : E → 2E is a generalized m-accretive mapping, then M is P-η-
accretive.
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Proof Since the mapping P is bounded, coercive, hemicontinuous, and η-accretive, from
Theorem 3.1 of Guo [57, p. 401] it follows that P + λM is surjective for every λ > 0, i.e.,
Range(P + λM)(E) = E for every λ > 0, where Range(P + λM) is the range of P + λM. Hence
M is a P-η-accretive mapping. The proof is finished. �

Theorem 2.13 Suppose that E is a real q-uniformly smooth Banach space, η : E×E → E is
a vector-valued mapping, P : E → E is a strictly η-accretive mapping, and M : E → 2E is an
η-accretive mapping. Then the mapping (P + λM)–1 : Range(P + λM) → E is single-valued
for every constant λ > 0.

Proof Assume that constant λ > 0 and point u ∈ Range(P + λM) are chosen arbitrarily but
fixed. Then for any x, y ∈ (P +λM)–1(u), we have u = (P +λM)(x) = (P +λM)(y), from which
we deduce that

λ–1(u – P(x)
) ∈ M(x) and λ–1(u – P(y)

) ∈ M(y).

Taking into account that M is η-accretive, we infer that

0 ≤ 〈
λ–1(u – P(x)

)
– λ–1(u – P(y)

)
, Jq
(
η(x, y)

)〉

= λ–1〈P(x) – P(y), Jq
(
η(x, y)

)〉
.

Since P is a strictly η-accretive mapping, from the last inequality we conclude that x = y,
which ensures that the mapping (P + λM)–1 from Range(P + λM) into E is single-valued.
This gives the desired result. �

The following statement due to Kazmi and Khan [24] is an immediate consequence of
Theorem 2.13.

Lemma 2.14 ([26, Theorem 3.1(b)]) Let E be a real q-uniformly smooth Banach space, let
η : E × E → E be a vector-valued mapping, let P : E → E be a strictly η-accretive mapping,
and let M : E → 2E be a P-η-accretive mapping. Then the mapping (P + λM)–1 : E → E is
single-valued for every real constant λ > 0.

The resolvent operator RP,η
M,λ associated with the mappings P, η, M and constant λ > 0 is

defined based on Lemma 2.14 as follows.

Definition 2.15 ([24, 26]) Let E be a real q-uniformly smooth Banach space, let η : E ×
E → E be a vector-valued mapping, let P : E → E be a strictly η-accretive mapping, let
M : E → 2E be a P-η-accretive mapping, and let λ > 0 be an arbitrary real constant. The
resolvent operator RP,η

M,λ : E → E associated with P, η, M, and λ is defined by

RP,η
M,λ(u) = (P + λM)–1(u), u ∈ E.

Definition 2.16 A mapping η : E × E → E is said to be τ -Lipschitz continuous if there
exists a constant τ > 0 such that ‖η(x, y)‖ ≤ τ‖x – y‖ for all x, y ∈ E.
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Under some suitable conditions, Peng and Zhu [26] proved the Lipschitz continuity of
the resolvent operator RP,η

M,λ and calculated an approximation of its Lipschitz constant as
follows.

Lemma 2.17 ([26, Lemma 2.4]) Let E be a real q-uniformly smooth Banach space, let η :
E × E → E be a τ -Lipschitz continuous mapping, let P : E → E be a γ -strongly η-accretive
mapping, let M : E → 2E be a P-η-accretive mapping, and let λ > 0 be an arbitrary real
constant. Then the resolvent operator RP,η

M,λ : E → E is Lipschitz continuous with constant
τq–1

γ
, i.e.,

∥∥RP,η
M,λ(u) – RP,η

M,λ(v)
∥∥≤ τ q–1

γ
‖u – v‖ ∀u, v ∈ E.

3 System of variational inclusions: existence and uniqueness of solution and
iterative algorithm

Let for i ∈ {1, 2}, Ei be a real qi-uniformly smooth Banach space with norm ‖ ·‖i and qi > 1.
Suppose that for i ∈ {1, 2} and j ∈ {1, 2}\{i}, Pi, fi, gi, hi : Ei → Ei, ηi : Ei × Ei → Ei, Fi : E1 ×
E2 → Ei, and Ti : Ej ×Ei → Ei are single-valued nonlinear mappings, and Mi : Ei ×Ej → 2Ei

are any multivalued nonlinear mappings such that for all xj ∈ Ej, Mi(·, xj) : Ei → 2Ei is a
Pi-ηi-accretive mapping with hi(Ei)∩dom Mi(·, xj) �= ∅. We consider the problem of finding
(x, y) ∈ E1 × E2 such that

⎧
⎨

⎩
0 ∈ F1(x, y – f2(y)) + T1(y, x – g1(x)) + M1(h1(x), y),

0 ∈ F2(x – f1(x), y) + T2(x, y – g2(y)) + M2(h2(y), x),
(3.1)

which we call the system of generalized nonlinear variational-like inclusions (SGNVLI)
with P-η-accretive mappings.

If for i = 1, 2, hi ≡ Ii, the identity mapping on Ei, fi = gi = Ti ≡ 0, F1 = F , F2 = G, and M1 =
M : E1 → 2E1 and M2 = N : E2 → 2E2 are two univariate multivalued nonlinear mappings,
then SGNVLI (3.1) reduces to the problem of finding (x, y) ∈ E1 × E2 such that

⎧
⎨

⎩
0 ∈ F(x, y) + M(x),

0 ∈ G(x, y) + N(y),

which was introduced and studied by Peng and Zhu [26].
Remark that for appropriate and suitable choices of the mappings Pi, ηi, fi, gi, hi, Fi,

Ti, Mi and the underlying spaces Ei (i = 1, 2), SGNVLI (3.1) reduces to various classes of
variational inclusions and variational inequalities; see, for example, [15, 18, 23, 37, 58, 59]
and the references therein.

The following statement, which tells that the SGNVLI (3.1) is equivalent to a fixed point
problem, provides us a characterization of the solution of SGNVLI (3.1).

Lemma 3.1 Let Ei, Pi, ηi, Fi, Ti, Mi, fi, gi, hi (i = 1, 2) be as in SGNVLI (3.1) and such
that for each i ∈ {1, 2}, Pi is a strictly ηi-accretive mapping with dom(Pi) ∩ hi(Ei) �= ∅. Then
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(x, y) ∈ E1 × E2 is a solution of SGNVLI (3.1) if and only if

⎧
⎨

⎩
h1(x) = RP1,η1

M1(·,y),λ[P1(h1(x)) – λ(F1(x, y – f2(y)) + T1(y, x – g1(x)))],

h2(y) = RP2,η2
M2(·,x),ρ[P2(h2(y)) – ρ(F2(x – f1(x), y) + T2(x, y – g2(y)))],

where RP1,η1
M1(·,y),λ = (P1 + λM(·, y))–1 and RP2,η2

M2(·,x),ρ = (P2 + ρM2(·, x))–1, and λ,ρ > 0 are two
constants.

Proof The conclusions follow directly from Definition 2.15 and some simple argu-
ments. �

Before dealing with the main result of this section, let us present some definitions.

Definition 3.2 Let E be a real q-uniformly smooth Banach space. A mapping T : E → E
is said to be (ξ ,ς )-relaxed cocoercive if there exist two constants ξ ,ς > 0 such that

〈
T(x) – T(y), Jq(x – y)

〉≥ –ξ
∥∥T(x) – T(y)

∥∥q + ς‖x – y‖q ∀x, y ∈ E.

Definition 3.3 Let E be a real q-uniformly smooth Banach space, let F : E × E → E and
T : E → E be two nonlinear mappings, and let (a, b) ∈ E × E. Then the mapping

(i) F(a, ·) is said to be k-strongly accretive with respect to T (or T-strongly accretive
with constant k) if there exists a constant k > 0 such that

〈
F(a, x) – F(a, y), Jq

(
T(x) – T(y)

)〉 ≥ k‖x – y‖q ∀x, y ∈ E;

(ii) F(·, b) is said to be r-strongly accretive with respect to T (or T-strongly accretive
with constant r) if there exists a constant r > 0 such that

〈
F(x, b) – F(y, b), Jq

(
T(x) – T(y)

)〉 ≥ r‖x – y‖q ∀x, y ∈ E;

(iii) F(a, ·) is said to be γ -Lipschitz continuous if there exists a constant γ > 0 such that

∥∥F(a, x) – F(a, y)
∥∥ ≤ γ ‖x – y‖ ∀x, y ∈ E;

(iv) F(·, b) is said to be μ-Lipschitz continuous if there exists a constant μ > 0 such that

∥∥F(x, b) – F(y, b)
∥∥ ≤ μ‖x – y‖ ∀x, y ∈ E;

(v) F(·, ·) is said to be (�, ξ )-mixed Lipschitz continuous in the first and second
arguments if there exist two constants �, ξ > 0 such that

∥∥F(x, y) – F
(
x′, y′)∥∥ ≤ �

∥∥x – x′∥∥ + ξ
∥∥y – y′∥∥ ∀x, x′, y, y′ ∈ E.

Theorem 3.4 Let for each i ∈ {1, 2}, Ei be a real qi-uniformly smooth Banach space with
norm ‖ · ‖i and qi > 1. For each i ∈ {1, 2}, suppose that the mapping ηi : Ei × Ei → Ei is τi-
Lipschitz continuous, the mapping Pi : Ei → Ei is γi-strongly ηi-accretive and δi-Lipschitz
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continuous, the mapping fi : Ei → Ei is (σi,ςi)-relaxed cocoercive and πi-Lipschitz contin-
uous, the mapping gi : Ei → Ei is (ζi,νi)-relaxed cocoercive and �i-Lipschitz continuous,
and the mapping hi : Ei → Ei is (�i, θi)-relaxed cocoercive and ιi-Lipschitz continuous such
that dom(Pi) ∩ hi(Ei) �= ∅. Let for i = 1, 2, Fi : E1 × E2 → Ei be two nonlinear mappings
such that for any given point (a, b) ∈ E1 × E2, F1(·, b) is r1-strongly accretive with respect to
P1 ◦h1 and s1-Lipschitz continuous, F1(a, ·) is ξ1-Lipschitz continuous, F2(a, ·) is r2-strongly
accretive with respect to P2 ◦ h2 and s2-Lipschitz continuous, and F2(·, b) is ξ2-Lipschitz
continuous. For i ∈ {1, 2} and j ∈ {1, 2}\{i}, let Ti : Ej × Ei → Ei be (εi,μi)-mixed Lipschitz
continuous in the first and second arguments, and let Mi : Ei × Ej → 2Ei be multivalued
nonlinear mappings such that for all xj ∈ Ej, Mi(·, xj) : Ej → 2Ei is a Pi-ηi-accretive map-
ping with hi(Ei)∩dom Mi(·, xj) �= ∅. Suppose further that there exist constants oi > 0 (i = 1, 2)
such that

∥∥RP1,η1
M1(·,u),λ(w) – RP1,η1

M1(·,v),λ(w)
∥∥≤ o1‖u – v‖1 ∀u, v, w ∈ E1, (3.2)

∥∥RP2,η2
M2(·,u),ρ(w) – RP2,η2

M2(·,v),ρ(w)
∥∥≤ o2‖u – v‖2 ∀u, v, w ∈ E2. (3.3)

Suppose that there exist two constants λ,ρ > 0 such that

o2 + q1
√

1 – q1θ1 + (cq1 + q1�1)ιq1
1

+
τ

q1–1
1
γ1

( q1
√

δ
q1
1 ι

q1
1 – q1λr1 + λq1 cq1 sq1

1

+ λμ1
q1
√

1 – q1ν1 + (cq1 + q1ζ1)�q1
1
)

+
ρτ

q2–1
2
γ2

(
ξ2

q1
√

1 – q1ς1 + (cq1 + q1σ1)πq1
1 + ε2

)
< 1

(3.4)

and

o1 + q2
√

1 – q2θ2 + (cq2 + q2�2)ιq2
2

+
τ

q2–1
2
γ2

( q2
√

δ
q2
2 ι

q2
2 – q2ρr2 + ρq2 cq2 sq2

2

+ ρμ2
q2
√

1 – q2ν2 + (cq2 + q2ζ2)�q2
2
)

+
λτ

q1–1
1
γ1

(
ξ1

q2
√

1 – q2ς2 + (cq2 + q2σ2)πq2
2 + ε1

)
< 1,

(3.5)

where cq1 and cq2 are constants guaranteed by Lemma 2.1, and for the case where q1 and
q2 are even natural numbers, in addition to (3.4) and (3.5), the following conditions hold:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

qiθi < 1 + (cqi + qi�i)ι
qi
i (i = 1, 2),

qiνi < 1 + (cqi + qiζi)�
qi
i (i = 1, 2),

qiςi < 1 + (cqi + qiσi)π
qi
i (i = 1, 2),

q1λr1 < δ
q1
1 ι

q1
1 + λq1 cq1 sq1

1 ,

q2ρr2 < δ
q2
2 ι

q2
2 + ρq2 cq2 sq2

2 .

(3.6)

Then SGNVLI (3.1) admits a unique solution.
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Proof For any given λ,ρ > 0, define the mappings Gλ : E1 ×E2 → E1 and Qρ : E1 ×E2 → E2

by

Gλ(x, y) = x – h1(x)

+ RP1,η1
M1(·,y),λ

[
P1
(
h1(x)

)
– λ

(
F1
(
x, y – f2(y)

)
+ T1

(
y, x – g1(x)

))]
(3.7)

and

Qρ(x, y) = y – h2(y)

+ RP2,η2
M2(·,x),ρ

[
P2
(
h2(y)

)
– ρ

(
F2
(
x – f1(x), y

)
+ T2

(
x, y – g2(y)

))]
(3.8)

for (x, y) ∈ E1 × E2.
Using Lemma 2.17 and (3.2), for all (x, y), (x′, y′) ∈ E1 × E2, we have

∥∥Gλ(x, y) – Gλ

(
x′, y′)∥∥

1

=
∥∥x – h1(x) + RP1,η1

M1(·,y),λ
[
P1
(
h1(x)

)
– λ

(
F1
(
x, y – f2(y)

)
+ T1

(
y, x – g1(x)

))]

–
(
x′ – h1

(
x′) + RP1,η1

M1(·,y′),λ
[
P1
(
h1
(
x′)) – λ

(
F1
(
x′, y′ – f2

(
y′))

+ T1
(
y′, x′ – g1

(
x′)))])∥∥

1

≤ ∥∥x – x′ –
(
h1(x) – h1

(
x′))∥∥

1

+
∥∥RP1,η1

M1(·,y),λ
[
P1
(
h1(x)

)
– λ

(
F1
(
x, y – f2(y)

)
+ T1

(
y, x – g1(x)

))]

– RP1,η1
M1(·,y′),λ

[
P1
(
h1(x)

)
– λ

(
F1
(
x, y – f2(y)

)
+ T1

(
y, x – g1(x)

))]∥∥
1

+
∥∥RP1,η1

M1(·,y′),λ
[
P1
(
h1(x)

)
– λ

(
F1
(
x, y – f2(y)

)
+ T1

(
y, x – g1(x)

))]

– RP1,η1
M1(·,y′),λ

[
P1
(
h1
(
x′)) – λ

(
F1
(
x′, y′ – f2

(
y′)) + T1

(
y′, x′ – g1

(
x′)))]∥∥

1

(3.9)

≤ ∥∥x – x′ –
(
h1(x) – h1

(
x′))∥∥

1 + o1
∥∥y – y′∥∥

2

+
τ

q1–1
1
γ1

(∥∥P1
(
h1(x)

)
– P1

(
h1
(
x′)) – λ

(
F1
(
x, y – f2(y)

)
– F1

(
x′, y′ – f2

(
y′)))∥∥

1

+ λ
∥∥T1

(
y, x – g1(x)

)
– T1

(
y′, x′ – g1

(
x′))∥∥

1

)

≤ ∥∥x – x′ –
(
h1(x) – h1

(
x′))∥∥

1 + o1
∥∥y – y′∥∥

2

+
τ

q1–1
1
γ1

(∥∥P1
(
h1(x)

)
– P1

(
h1
(
x′)) – λ

(
F1
(
x, y – f2(y)

)
– F1

(
x′, y – f2(y)

))∥∥
1

+ λ
∥∥F1

(
x′, y – f2(y)

)
– F1

(
x′, y′ – f2

(
y′))∥∥

1

+ λ
∥∥T1

(
y, x – g1(x)

)
– T1

(
y′, x′ – g1

(
x′))∥∥

1

)
.

By Lemma 2.1 there exists a constant cq1 > 0 such that

∥∥x – x′ –
(
h1(x) – h1

(
x′))∥∥q1

1 ≤ ∥∥x – x′∥∥q1
1 – q1

〈
h1(x) – h1

(
x′), Jq1

(
x – x′)〉

+ cq1

∥∥h1(x) – h1
(
x′)∥∥q1

1 .
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From the (�1, θ1)-relaxed cocoercivity and ι1-Lipschitz continuity of h1 it follows that

∥∥x – x′ –
(
h1(x) – h1

(
x′))∥∥q1

1

≤ ∥∥x – x′∥∥q1
1 – q1θ1

∥∥x – x′∥∥q1
1 + (cq1 + q1�1)ιq1

1
∥∥x – x′∥∥q1

1

=
(
1 – q1θ1 + (cq1 + q1�1)ιq1

1
)∥∥x – x′∥∥q1

1 ,

which implies that

∥∥x – x′ –
(
h1(x) – h1

(
x′))∥∥

1 ≤ q1
√

1 – q1θ1 + (cq1 + q1�1)ιq1
1
∥∥x – x′∥∥

1. (3.10)

Using Lemma 2.1 and taking into account that the mappings P1 and h1 are δ1-Lipschitz
continuous and ι1-Lipschitz continuous, respectively, the mapping F1(·, b) is r1-strongly
accretive with respect to P1 ◦ h1 and s1-Lipschitz continuous, and the mapping F1(a, ·) is
ξ1-Lipschitz continuous for any (a, b) ∈ E1 × E2, we obtain

∥∥P1
(
h1(x)

)
– P1

(
h1
(
x′)) – λ

(
F1
(
x, y – f2(y)

)
– F1

(
x′, y – f2(y)

))∥∥q1
1

≤ ∥∥P1
(
h1(x)

)
– P1

(
h1
(
x′))∥∥q1

1 – q1λ
〈
F1
(
x, y – f2(y)

)
– F1

(
x′, y – f2(y)

)
,

Jq1

(
P1
(
h1(x)

)
– P1

(
h1
(
x′)))〉 + λq1 cq1

∥∥F1
(
x, y – f2(y)

)
– F1

(
x′, y – f2(y)

)∥∥q1
1 (3.11)

≤ δ
q1
1
∥∥h1(x) – h1

(
x′)∥∥q1

1 – q1λr1
∥∥x – x′∥∥q1

1 + λq1 cq1 sq1
1
∥∥x – x′∥∥q1

1

≤ (
δ

q1
1 ι

q1
1 – q1λr1 + λq1 cq1 sq1

1
)∥∥x – x′∥∥q1

1

and

∥∥F1
(
x′, y – f2(y)

)
– F1

(
x′, y′ – f2

(
y′))∥∥

1 ≤ ξ1
∥∥y – y′ –

(
f2(y) – f2

(
y′))∥∥

2. (3.12)

The previous inequality (3.11) implies that

∥∥P1
(
h1(x)

)
– P1

(
h1
(
x′)) – λ

(
F1
(
x, y – f2(y)

)
– F1

(
x′, y – f2(y)

))∥∥
1

≤ q1
√

δ
q1
1 ι

q1
1 – q1λr1 + λq1 cq1 sq1

1
∥∥x – x′∥∥

1.
(3.13)

Since f2 is (σ2,ς2)-relaxed cocoercive and π2-Lipschitz continuous, in a similar way to that
of proof of (3.10), using Lemma 2.1, we can deduce that

∥∥y – y′ –
(
f2(y) – f2

(
y′))∥∥

2 ≤ q2
√

1 – q2ς2 + (cq2 + q2σ2)πq2
2
∥∥y – y′∥∥

2. (3.14)

Since T1 is (ε1,μ1)-mixed Lipschitz continuous in the first and second arguments, we ob-
tain

∥∥T1
(
y, x – g1(x)

)
– T1

(
y′, x′ – g1

(
x′))∥∥

1

≤ ε1
∥∥y – y′∥∥

2 + μ1
∥∥x – x′ –

(
g1(x) – g1

(
x′))∥∥

1.
(3.15)
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By an argument analogous to the previous inequality (3.10), from the (ζ1,ν1)-relaxed co-
coercivity and �1-Lipschitz continuity of g1 it follows that

∥∥x – x′ –
(
g1(x) – g1

(
x′))∥∥

1 ≤ q1
√

1 – q1ν1 + (cq1 + q1ζ1)�q1
1
∥∥x – x′∥∥

1. (3.16)

Combining (3.9)–(3.16), we obtain

∥∥Gλ(x, y) – Gλ

(
x′, y′)∥∥

1

≤ q1
√

1 – q1θ1 + (cq1 + q1�1)ιq1
1
∥∥x – x′∥∥

1 + o1
∥∥y – y′∥∥

2

+
τ

q1–1
1
γ1

( q1
√

δ
q1
1 ι

q1
1 – q1λr1 + λq1 cq1 sq1

1
∥∥x – x′∥∥

1

+ λξ1
q2
√

1 – q2ς2 + (cq2 + q2σ2)πq2
2
∥∥y – y′∥∥

2

+ λε1
∥∥y – y′∥∥

2 + λμ1
q1
√

1 – q1ν1 + (cq1 + q1ζ1)�q1
1
∥∥x – x′∥∥

1

)

= ϑ1
∥∥x – x′∥∥

1 + φ1
∥∥y – y′∥∥

2,

(3.17)

where

ϑ1 = q1
√

1 – q1θ1 + (cq1 + q1�1)ιq1
1

+
τ

q1–1
1
γ1

( q1
√

δ
q1
1 ι

q1
1 – q1λr1 + λq1 cq1 sq1

1

+ λμ1
q1
√

1 – q1ν1 + (cq1 + q1ζ1)�q1
1
)

and

φ1 = o1 +
λτ

q1–1
1
γ1

(
ξ1

q2
√

1 – q2ς2 + (cq2 + q2σ2)πq2
2 + ε1

)
.

By Lemma 2.1, Lemma 2.17, and (3.3), and by following a similar argument as in the proof
of (3.17) with suitable changes, we can prove that

∥∥Qρ(x, y) – Qρ

(
x′, y′)∥∥

2 ≤ ϑ2
∥∥x – x′∥∥

1 + φ2
∥∥y – y′∥∥

2, (3.18)

where

φ2 = q2
√

1 – q2θ2 + (cq2 + q2�2)ιq2
2

+
τ

q2–1
2
γ2

q2
√

δ
q2
2 ι

q2
2 – q2ρr2 + ρq2 cq2 sq2

2

+ ρμ2
q2
√

1 – q2ν2 + (cq2 + q2ζ2)�q2
2 )

and

ϑ2 = o2 +
ρτ

q2–1
2
γ2

(
ξ2

q1
√

1 – q1ς1 + (cq1 + q1σ1)πq1
1 + ε2

)
.
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For any λ,ρ > 0, define the mapping �λ,ρ : E1 × E2 → E1 × E2 by

�λ,ρ(x, y) =
(
Gλ(x, y), Qρ(x, y)

)
, (x, y) ∈ E1 × E2. (3.19)

Let us define the norm ‖ · ‖∗ on E1 × E2 by

∥∥(x, y)
∥∥∗ = ‖x‖1 + ‖y‖2, (x, y) ∈ E1 × E2. (3.20)

We can easily see that (E1 × E2,‖ · ‖∗) is a Banach space. Then by (3.17) and (3.18) we get

∥∥Gλ(x, y) – Gλ

(
x′, y′)∥∥

1 +
∥∥Qρ(x, y) – Qρ

(
x′, y′)∥∥

2

≤ (ϑ1 + ϑ2)
∥∥x – x′∥∥

1 + (φ1 + φ2)
∥∥y – y′∥∥

2

≤ k
∥∥(x, y) –

(
x′, y′)∥∥∗,

(3.21)

where k = max{ϑ1 +ϑ2,φ1 +φ2}. Evidently, (3.4)–(3.6) imply that k ∈ (0, 1), and using (3.21),
we conclude that �λ,ρ is a contraction mapping. According to the Banach fixed point the-
orem, there exists a unique point (x∗, y∗) ∈ E1 × E2 such that �λ,ρ(x∗, y∗) = (x∗, y∗). From
(3.7), (3.8), and (3.19) it follows that

⎧
⎨

⎩
h1(x∗) = RP1,η1

M1(·,y∗),λ[P1(h1(x∗)) – λ(F1(x∗, y∗ – f2(y∗)) + T1(y∗, x∗ – g1(x∗)))],

h2(y∗) = RP2,η2
M2(·,x∗),ρ[P2(h2(y∗)) – ρ(F2(x∗ – f1(x∗), y∗) + T2(x∗, y∗ – g2(y∗)))].

Now Lemma 3.1 ensures that (x∗, y∗) is the unique solution of SGNVLI (3.1). This com-
pletes the proof. �

For a given real normed space E with norm ‖ · ‖, we recall that a nonlinear mapping
T : E → E is said to be nonexpansive if ‖T(x) – T(y)‖ ≤ ‖x – y‖ for all x, y ∈ E. In fact, non-
expansive mappings are those that have Lipschitz’s constant equal to 1. Owing to the fact
that nonexpansive mapping theory has many diverse applications in the theory of fixed
points, during the last five decades, a lot of attention has been paid to present several in-
teresting generalizations of it in the framework of different spaces. Some important classes
of generalized nonexpansive mappings are recalled in the following:

Definition 3.5 A nonlinear mapping T : E → E is said to be
(i) L-Lipschitzian if there exists a constant L > 0 such that

∥∥T(x) – T(y)
∥∥≤ L‖x – y‖ ∀x, y ∈ E;

(ii) uniformly L-Lipschitzian if there exists a constant L > 0 such that for each n ∈N,

∥∥Tn(x) – Tn(y)
∥∥≤ L‖x – y‖ ∀x, y ∈ E;

(iii) asymptotically nonexpansive [41] if there exists a sequence {an} ⊂ (0, +∞) with
limn→∞ an = 0 such that for each n ∈N,

∥∥Tn(x) – Tn(y)
∥∥≤ (1 + an)‖x – y‖ ∀x, y ∈ E.
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Equivalently, we say that the mapping T is asymptotically nonexpansive if there
exists a sequence {kn} ⊂ [1, +∞) with limn→∞ kn = 1 such that for each n ∈N,

∥∥Tn(x) – Tn(y)
∥∥≤ kn‖x – y‖ ∀x, y ∈ E;

(iv) nearly nonexpansive [42] if there exists a nonnegative real sequence {an} with
an → 0 as n → ∞ such that for each n ∈N,

∥∥Tn(x) – Tn(y)
∥∥≤ ‖x – y‖ + an ∀x, y ∈ E;

(v) nearly uniformly L-Lipschitzian [42] if there exist a real constant L > 0 and a
nonnegative real sequence {an} with an → 0 as n → ∞ such that for each n ∈N,

∥∥Tn(x) – Tn(y)
∥∥≤ L

(‖x – y‖ + an
) ∀x, y ∈ E;

(vi) nearly asymptotically nonexpansive (or ({an}, {bn})-nearly asymptotically
nonexpansive) [42] if there exist nonnegative real sequences {an} and {bn} with
an, bn → 0 as n → ∞ such that for each n ∈ N,

∥∥Tn(x) – Tn(y)
∥∥≤ ‖x – y‖ + an‖x – y‖ + bn ∀x, y ∈ E.

Equivalently, the mapping T is called nearly asymptotically nonexpansive if there
exist real sequences {kn} ⊂ [1, +∞) and {σn} ⊂ [0, +∞) with kn → 1 and σn → 0 as
n → ∞ such that for each n ∈N,

∥∥Tn(x) – Tn(y)
∥∥≤ kn

(‖x – y‖ + σn
) ∀x, y ∈ E.

It is very essential to note that every uniformly L-Lipschitzian mapping is L-Lipschitzian
but the converse may be not true. In other words, the class of L-Lipschitzian mappings is
more general than that of uniformly L-Lipschitzian mappings. We illustrate this fact by
the following example.

Example 3.6 Assume that β > 0 is an arbitrary constant and consider E = (–∞,β] with
the Euclidean norm ‖ · ‖ = | · | defined on R. Suppose further that the self-mapping T of E
is defined by

T(x) =

⎧
⎪⎪⎨

⎪⎪⎩

αx if x ∈ (–∞, 0],

x if x ∈ [0,β),

β if x ∈ [β , +∞),

where α > 1 is an arbitrary constant. From the facts that
(i) for all x, y ∈ (–∞, 0],

∣∣T(x) – T(y)
∣∣ = |αx – αy| ≤ α|x – y|,
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(ii) for all x, y ∈ [0,β),

∣∣T(x) – T(yx)
∣∣ = |x – y| < α|x – y|,

(iii) for all x, y ∈ [β , +∞),

∣∣T(x) – T(y)
∣∣ = 0 < α|x – y|,

(iv) for all x ∈ (–∞, 0] and y ∈ [0,β),

∣∣T(x) – T(y)
∣∣ = |αx – y| < |αx – αy| = α|x – y|,

(v) for all x ∈ [0,β) and y ∈ [β , +∞),

|Tx – Ty| = |x – β| < |x – y| < α|x – y|,

(vi) for all (–∞, 0] and y ∈ [β , +∞),

∣∣T(x) – T(y)
∣∣ = |αx – β| < |αx – αβ| = α|x – β| < α|x – y|,

it follows that T is an α-Lipschitzian mapping. However, taking into account that α > 1,
we infer that for all n ∈N\{1},

∣∣Tn(x) – Tn(y)
∣∣ = αn|x – y| > α|x – y| ∀x, y ∈ (–∞, 0],

which implies that T is not a uniformly α-Lipschitzian mapping.

It is also remarkable that for a given nonnegative real sequence {an}, every nearly non-
expansive mapping with respect to the sequence {an} is a nearly uniformly L-Lipschitzian
mapping with L = 1, but the converse is not necessarily true. Moreover, a nearly uni-
formly L-Lipschitzian mapping with respect to the sequence {an} may be not uniformly
L-Lipschitzian. In fact, for a given nonnegative real sequence {an}, the class of nearly
uniformly L-Lipschitzian mappings with respect to the sequence {an} contains prop-
erly the class of nearly nonexpansive mappings with respect to the sequence {an} and
the class of uniformly L-Lipschitzian mappings. The following example supports these
facts.

Example 3.7 Consider E = (–∞,α] with the Euclidean norm ‖ · ‖ = | · | defined on R and
let the self-mapping T of E be defined as follows:

T(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
l if x ∈ (–∞, k) ∪ {l},
l if x = k,

0 if x ∈ (k, l) ∪ (l,α),

where k > 0 and k+
√

k2+4
2 < l < α are arbitrary real constants such that kl > 1. It is well known

that every asymptotically nonexpansive mapping is Lipschitzian and every Lipschitzian
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mapping is continuous. Since the mapping T is discontinuous at the points x = k, l,α, it
follows that T is not Lipschitzian, and so it is not an asymptotically nonexpansive mapping.
Taking into account that l > k+

√
k2+4
2 , we deduce that l – 1

l > k. Let us now take an = k
βn for

each n ∈ N, where β ∈ (max{1, k
α–k }, +∞) is an arbitrary constant, x = k, and y = k

β
. Then

we have T(x) = l, T(y) = 1
l , and

∣∣T(x) – T(y)
∣∣ = l –

1
l

> k =
(β – 1)k

β
+

k
β

= |x – y| + a1,

that is, T is not a nearly nonexpansive mapping with respect to the sequence {an} = { k
βn }.

Moreover, picking x = k and y ∈ (k, (β+1)k
β

), we have T(x) = l, T(y) = 0, and 0 < |x – y| <
k
β

, and so |T(x) – T(y)| > βl
k |x – y|. Thus T is not a uniformly βl

k -Lipschitzian mapping.
However, for all x, y ∈ E,

∣∣T(x) – T(y)
∣∣≤ l ≤ βl

k

(
|x – y| +

k
β

)
=

βl
k
(|x – y| + a1

)
, (3.22)

and for all n ≥ 2, because of Tn(z) = 1
l for all z ∈ E, we get

∣∣Tn(x) – Tn(y)
∣∣ <

βl
k

(
|x – y| +

k
βn

)
=

βl
k
(|x – y| + an

)
. (3.23)

Thereby (3.22) and (3.23) imply that T is a nearly uniformly βl
k -Lipschitzian mapping with

respect to the sequence {an} = { k
βn }.

We now focus our attention on another class of generalized nonexpansive mappings,
which unifies the mappings appearing in parts (i)–(iv) of Definition 3.5.

Definition 3.8 A nonlinear mapping T : E → E is called generalized (L, {an}, {bn})-nearly
asymptotically nonexpansive if there exist a constant L > 0 and nonnegative real sequences
{an} and {bn} with an, bn → 0 as n → ∞ such that for each n ∈N,

∥∥Tn(x) – Tn(y)
∥∥≤ L

(‖x – y‖ + an‖x – y‖ + bn
) ∀x, y ∈ E.

It should be also pointed out that every nearly asymptotically nonexpansive mapping is
a generalized (L, {an}, {bn})-nearly asymptotically nonexpansive mapping with L = 1, but
the converse is not true in general. The following example shows that the class of nearly
asymptotically nonexpansive mappings is strictly contained within the class of generalized
(L, {an}, {bn})-nearly asymptotically nonexpansive mappings.

Example 3.9 Consider E = R with the Euclidean norm ‖ · ‖ = | · | and let the self-mapping
T of E be defined as follows:

T(x) =

⎧
⎪⎪⎨

⎪⎪⎩

p if x ∈ (–∞, p),

q if x ∈ (p, 1
q ) ∪ ( 1

q , k),
1
q if x ∈ {p, 1

q } ∪ [k, +∞),
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where 0 ≤ p < k and q > k+
√

k2+4
2 are arbitrary real constants such that pq < 1 < kq. Evi-

dently, the mapping T is discontinuous at the points x = p, k, 1
q . This fact ensures that T

is not Lipschitzian, and so it is not an asymptotically nonexpansive mapping. Let us now
take an = α

n and bn = k
γ n for n ∈ N, where q and γ are arbitrary real constants such that

γ ∈ (1, kq) ∪ (kq, +∞) if p = 0 and γ ∈ (1, k
p )\{kq} if p > 0, and let α ∈ (0, γ (q2–kq–1)

kq(γ –1) ). The

fact that q > k+
√

k2+4
2 ensures that q2 – kq – 1 > 0. Picking x = k and y = k

γ
, we have T(x) = 1

q

and T(y) = q, and since 0 < α < γ (q2–kq–1)
kq(γ –1) , we deduce that

∣∣T(x) – T(y)
∣∣ = q –

1
q

>
(γ – 1)k

γ
+

α(γ – 1)k
γ

+
k
γ

= |x – y| + a1|x – y| + b1,

which guarantees that T is not an ({an}, {bn}) = ({ α
n }, { k

γ n })-nearly asymptotically nonex-
pansive mapping. However, for all x, y ∈ E, we obtain

∣∣T(x) – T(y)
∣∣≤ q ≤ γ q

k

(
|x – y| + α|x – y| +

k
γ

)

=
γ q
k
(|x – y| + a1|x – y| + b1

)
,

(3.24)

and for all n ≥ 2, since Tn(z) = 1
q for all z ∈ E, we have

∣∣Tn(x) – Tn(y)
∣∣ <

γ q
k

(
|x – y| +

α

n
|x – y| +

k
γ n

)

=
γ q
k
(|x – y| + an|x – y| + bn

)
.

(3.25)

Now by (3.24) and (3.25) it follows that T is a generalized ( γ q
k , { α

n }, { k
γ n })-nearly asymptot-

ically nonexpansive mapping.

Lemma 3.10 Let for each i ∈ {1, 2}, Ei be a real Banach space with a norm ‖ · ‖i, and
let Si : Ei → Ei be a generalized (Li, {an,i}∞n=1, {bn,i}∞n=1)-nearly asymptotically nonexpansive
mapping. Suppose further that Q is a self-mapping of E1 × E2 defined by

Q(x1, x2) = (S1x1, S2x2), (x1, x2) ∈ E1 × E2. (3.26)

Then Q is a generalized (max{L1, L2}, {an,1 + an,2}∞n=1, {bn,1 + bn,2}∞n=1)-nearly asymptotically
nonexpansive mapping.

Proof Relying on the fact that for each i ∈ {1, 2}, Si is a generalized (Li, {an,i}∞n=1, {bn,i}∞n=1)-
nearly asymptotically nonexpansive mapping, for all (x1, x2), (y1, y2) ∈ E1 × E2 and n ∈ N,
we have

∥∥Qn(x1, x2) – Qn(y1, y2)
∥∥∗

=
∥∥(Sn

1 x1, Sn
2 x2

)
–
(
Sn

1y1, Sn
2y2

)∥∥∗
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=
∥∥(Sn

1 x1 – Sn
1 y1, Sn

2x2 – Sn
2y2

)∥∥∗

=
∥∥Sn

1x1 – Sn
1y1

∥∥
1 +

∥∥Sn
2 x2 – Sn

2y2
∥∥

2

≤ L1
(‖x1 – y1‖1 + an,1‖x1 – y1‖1 + bn,1

)

+ L2
(‖x2 – y2‖2 + an,2‖x2 – y2‖2 + bn,2

)

≤ max{L1, L2}
(‖x1 – y1‖1 + ‖x2 – y2‖2

+ (an,1 + an,2)
(‖x1 – y1‖1 + ‖x2 – y2‖2

)
+ bn,1 + bn,2

)
,

where ‖·‖∗ is the norm on X1 ×X2 defined by (3.20). From the preceding relation it follows
that Q is a generalized (max{L1, L2}, {an,1 + an,2}∞n=1, {bn,1 + bn,2}∞n=1)-nearly asymptotically
nonexpansive mapping. The proof is completed. �

Let for i ∈ {1, 2}, Ei be a real qi-uniformly smooth Banach space with norm ‖ · ‖i and
qi > 1, and let Si : Ei → Ei be a generalized (Li, {an,i}∞n=1, {bn,i}∞n=1)-nearly asymptotically
nonexpansive mapping. Furthermore, let Q be a self-mapping of E1 × E2 defined by
(3.26). Denote the sets of all the fixed points of Si (i = 1, 2) and Q by Fix(Si) (i = 1, 2)
and Fix(Q), respectively. At the same time, denote by �SGNVLI the set of all the solutions of
SGNVLI (3.1), where for each i ∈ {1, 2}, Pi is a nonlinear strictly ηi-accretive mapping with
dom(Pi) ∩ hi(Ei) �= ∅. Using (3.26), it follows that for any (x1, x2) ∈ E1 × E2, (x1, x2) ∈ Fix(Q)
if and only if xi ∈ Fix(Si) for each i ∈ {1, 2}, i.e., Fix(Q) = Fix(S1, S2) = Fix(S1) × Fix(S2).
If (x∗, y∗) ∈ Fix(Q) ∩ �SGNVLI, then using Lemma 3.1, we can easily observe that for each
n ∈N,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗ = Sn
1x∗ = x∗ – h1(x∗) + RP1,η1

M1(·,y∗),λ[P1(h1(x∗))

– λ(F1(x∗, y∗ – f2(y∗)) + T1(y∗, x∗ – g1(x∗)))]

= Sn
1(x∗ – h1(x∗) + RP1,η1

M1(·,y∗),λ[P1(h1(x∗))

– λ(F1(x∗, y∗ – f2(y∗)) + T1(y∗, x∗ – g1(x∗)))]),

y∗ = Sn
2 y∗ = y∗ – h2(y∗) + RP2,η2

M2(·,x∗),ρ[P2(h2(y∗))

– ρ(F2(x∗ – f1(x∗), y∗) + T2(x∗, y – g2(y∗)))]

= Sn
2 (y∗ – h2(y∗) + RP2,η2

M2(·,x∗),ρ[P2(h2(y∗))

– ρ(F2(x∗ – f1(x∗), y∗) + T2(x∗, y – g2(y∗)))]).

(3.27)

The fixed point formulation (3.27) allows us to construct an iterative algorithm for find-
ing a common element of the two sets of Fix(Q) = Fix(S1, S2) and �SGNVLI as follows.

Algorithm 3.11 Let Ei, fi, gi, hi, Fi, and Ti (i = 1, 2) be as in SGNVLI (3.1). Suppose that
for all n ≥ 0 and i ∈ {1, 2}, ηn,i : Ei × Ei → Ei and Pn,i : Ei → Ei are single-valued non-
linear mappings such that for all n ≥ 0 and i ∈ {1, 2}, Pn,i is strictly ηn,i-accretive with
dom(Pn,i)∩hi(Ei) �= ∅. Assume that for i ∈ {1, 2}, j ∈ {1, 2}\{i}, and n ≥ 0, Mn,i : Ei ×Ej → 2Ei

is a multivalued nonlinear mapping such that for all xj ∈ Ej and n ≥ 0, Mn,i(·, xj) : Ei → 2Ei

is a Pn,i-ηn,i-accretive mapping with hi(Ei) ∩ dom Mn,i(·, xj) �= ∅. Suppose further that for
i ∈ {1, 2}, Si : Ei → Ei is a generalized (Li, {an,i}∞n=0, {bn,i}∞n=0)-nearly asymptotically nonex-
pansive mapping. For any given (x0, y0) ∈ E1 ×E2, define the iterative sequence {(xn, yn)}∞n=0
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in E1 × E2 in the following way:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 = αn,1xn + (1 – αn,1 – βn,1)Sn
1{zn,1 – h1(zn,1)

+ RPn,1,ηn,1
Mn,1(·,tn,1),λn

(	(zn,1, tn,1))} + αn,1en,1 + βn,1kn,1 + ln,1,

yn+1 = αn,1yn + (1 – αn,1 – βn,1)Sn
2{tn,1 – h2(tn,1)

+ RPn,2,ηn,2
Mn,2(·,zn,1),ρn

(�(zn,1, tn,1))} + αn,1ên,1 + βn,1k̂n,1 + l̂n,1,

zn,i = αn,i+1xn + (1 – αn,i+1 – βn,i+1)Sn
1{zn,i+1 – h1(zn,i+1)

+ RPn,1,ηn,1
Mn,1(·,tn,i+1),λn

(	(zn,i+1, tn,i+1))}
+ αn,i+1en,i+1 + βn,i+1kn,i+1 + ln,i+1,

tn,i = αn,i+1yn + (1 – αn,i+1 – βn,i+1)Sn
2{tn,i+1 – h2(tn,i+1)

+ RPn,2,ηn,2
Mn,2(·,zn,i+1),ρn

(�(zn,i+1, tn,i+1))}
+ αn,i+1ên,i+1 + βn,i+1k̂n,i+1 + l̂n,i+1,

. . .

zn,p–1 = αn,pxn + (1 – αn,p – βn,p)Sn
1{xn – h1(xn)

+ RPn,1,ηn,1
Mn,1(·,yn),λn

(	(xn, yn))} + αn,pen,p + βn,pkn,p + ln,p,

tn,p–1 = αn,pyn + (1 – αn,p – βn,p)Sn
2{yn – h2(yn)

+ RPn,2,ηn,2
Mn,2(·,xn),ρn

(�(xn, yn))} + αn,pên,p + βn,pk̂n,p + l̂n,p,

(3.28)

for i = 1, 2, . . . , p – 2; for all n ∈ N∪ {0} and i = 1, 2, . . . , p – 1,

	(zn,i, tn,i) = P1
(
h1(zn,i)

)
– λn

(
F1
(
zn,i, tn,i – f2(tn,i)

)
+ T1

(
tn,i, zn,i – g1(zn,i)

))
,

�(zn,i, tn,i) = P2
(
h2(tn,i)

)
– ρn

(
F2
(
zn,i – f1(zn,i), tn,i

)
+ T2

(
zn,i, tn,i – g2(tn,i)

))
,

	(xn, yn) = P1
(
h1(xn)

)
– λn

(
F1
(
xn, yn – f2(yn)

)
+ T1

(
yn, xn – g1(xn)

))
,

�(xn, yn) = P2
(
h2(yn)

)
– ρn

(
F2
(
xn – f1(xn), yn

)
+ T2

(
xn, yn – g2(yn)

))
,

λn,ρn > 0 (n = 0, 1, 2, . . . ) are constants, {αn,i}∞n=0, {βn,i}∞n=0 (i = 1, 2, . . . , p) are 2p sequences
in (0, 1) such that

∑∞
n=0

∏p
i=1(1 – αn,i) = ∞,

∑∞
n=0 βn,i < ∞ for all n ≥ 0, αn,i + βn,i ∈ (0, 1] for

all n ≥ 0 and i = 1, 2, . . . , p, and {en,i}∞n=0, {ên,i}∞n=0, {kn,i}∞n=0, {k̂n,i}∞n=0, {ln,i}∞n=0, and {l̂n,i}∞n=0

(i = 1, 2, . . . , p) are 6p sequences to take into account a possible inexact computation
of the resolvent operator point satisfying the following conditions: For i = 1, 2, . . . , p,
{kn,i}∞n=0 are p bounded sequences in E1, {k̂n,i}∞n=0 are p bounded sequences in E2, and
{(en,i, ên,i)}∞n=0 and {(ln,i, l̂n,i)}∞n=0 are 2p sequences in E1 × E2 such that for all n ∈ N ∪ {0}
and i = 1, 2, . . . , p,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

en,i = e′
n,i + e′′

n,i, ên,i = ê′
n,i + ê′′

n,i,

limn→∞ ‖(e′
n,i, ê′

n,i)‖∗ = 0,
∑∞

n=0 ‖(e′′
n,i, ê′′

n,i)‖∗ < ∞,
∑∞

n=0 ‖(ln,i, l̂n,i)‖∗ < ∞.

(3.29)



Balooee et al. Journal of Inequalities and Applications        (2022) 2022:124 Page 30 of 42

Let {(un, vn)}∞n=0 be any sequence in E1 × E2 and define {εn}∞n=0 by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εn = ‖(un+1, vn+1) – (Ln, Dn)‖∗,

Ln = αn,1un + (1 – αn,1 – βn,1)Sn
1{νn,1 – h1(νn,1)

+ RPn,1,ηn,1
Mn,1(·,ωn,1),λn

(	(νn,1,ωn,1))} + αn,1en,1 + βn,1kn,1 + ln,1,

Dn = αn,1vn + (1 – αn,1 – βn,1)Sn
2{ωn,1 – h2(ωn,1)

+ RPn,2,ηn,2
Mn,2(·,νn,1),ρn

(�(νn,1,ωn,1))} + αn,1ên,1 + βn,1k̂n,1 + l̂n,1,

νn,1 = αn,2un + (1 – αn,2 – βn,2)Sn
1{νn,2 – h1(νn,2)

+ RPn,1,ηn,1
Mn,1(·,ωn,2),λn

(	(νn,2,ωn,2))} + αn,2en,2 + βn,2kn,2 + ln,2,

ωn,1 = αn,2vn + (1 – αn,2 – βn,2)Sn
2{ωn,2 – h2(ωn,2)

+ RPn,2,ηn,2
Mn,2(·,νn,2),ρn

(�(νn,2,ωn,2))} + αn,2ên,2 + βn,2k̂n,2 + l̂n,2,

. . .

νn,p–2 = αn,p–1un + (1 – αn,p–1 – βn,p–1)Sn
1{νn,p–1 – h1(νn,p–1)

+ RPn,1,ηn,1
Mn,1(·,ωn,p–1),λn

(	(νn,p–1,ωn,p–1))}
+ αn,p–1en,p–1 + βn,p–1kn,p–1 + ln,p–1,

ωn,p–2 = αn,p–1vn + (1 – αn,p–1 – βn,p–1)Sn
2{ωn,p–1 – h2(ωn,p–1)

+ RPn,2,ηn,2
Mn,2(·,νn,p–1),ρn

(�(νn,p–1,ωn,p–1))}
+ αn,p–1ên,p–1 + βn,p–1k̂n,p–1 + l̂n,p–1,

νn,p–1 = αn,pun + (1 – αn,p – βn,p)Sn
1{un – h1(un)

+ RPn,1,ηn,1
Mn,1(·,vn),λn

(	(un, vn))} + αn,pen,p + βn,pkn,p + ln,p,

ωn,p–1 = αn,pvn + (1 – αn,p – βn,p)Sn
2{vn – h2(vn)

+ RPn,2,ηn,2
Mn,2(·,un),ρn

(�(un, vn))} + αn,pên,p + βn,pk̂n,p + l̂n,p,

(3.30)

where for all n ∈N∪ {0} and i = 1, 2, . . . , p – 1,

	(νn,i,ωn,i) = P1
(
h1(νn,i)

)
– λn

(
F1
(
νn,i,ωn,i – f2(ωn,i)

)
+ T1

(
ωn,i,νn,i – g1(νn,i)

))
,

�(νn,i,ωn,i) = P2
(
h2(ωn,i)

)
– ρn

(
F2
(
νn,i – f1(νn,i),ωn,i

)
+ T2

(
νn,i,ωn,i – g2(ωn,i)

))
,

	(un, vn) = P1
(
h1(un)

)
– λn

(
F1
(
un, vn – f2(vn)

))
+ T1

(
vn, un – g1(un)

)
),

�(un, vn) = P2
(
h2(vn)

)
– ρn

(
F2
(
un – f1(un), vn

)
+ T2

(
un, vn – g2(vn)

))
.

4 Graph convergence and an application
Definition 4.1 Given multivalued mappings Mn, M : E → 2E (n ≥ 0), the sequence

{Mn}∞n=0 is said to be graph-convergent to M, denoted by Mn
G−→ M, if for every point

(x, u) ∈ Graph(M), there exists a sequence of points (xn, un) ∈ Graph(Mn) such that xn → x
and un → u as n → ∞.

In the next theorem, a new equivalence relationship between the graph convergence of
a sequence of P-η-accretive mappings and the associated resolvent operators to a given
P-η-accretive mapping and the associated resolvent operator is established.
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Theorem 4.2 Suppose that E is a real q-uniformly smooth Banach space, η : E × E → E
is a vector-valued mapping, P : E → E is a strictly η-accretive mapping, and M : E → 2E is
a P-η-accretive mapping. Let for each n ≥ 0, ηn : E × E → E be a τn-Lipschitz continuous
mapping, Pn : E → E be a γn-strongly ηn-accretive and δn-Lipschitz continuous mapping,
and Mn : E → 2E be a Pn-ηn-accretive mapping. Let limn→∞ Pn(x) = P(x) for all x ∈ E, and
let { 1

γn
}∞n=0, {τn}∞n=0, and {δn}∞n=0 be bounded sequences. Assume further that {λn}∞n=0 is a

sequence of positive real constants convergent to a positive real constant λ. Then Mn
G−→ M

if and only if RPn ,ηn
Mn ,λn (z) → RP,η

M,λ(z) for all z ∈ E as n → ∞, where for each n ≥ 0, RPn ,ηn
Mn ,λn =

(Pn + λnMn)–1 and RP,η
M,λ = (P + ρM)–1.

Proof Suppose first that for all z ∈ E, we have limn→∞ RPn ,ηn
Mn ,λn (z) = RP,η

M,λ(z). Then, for any
u ∈ M(x), we have x = RP,η

M,λ[P(x) + λu], and so RPn ,ηn
Mn ,λn [P(x) + λu] → x as n → ∞. Taking

xn = RPn ,ηn
Mn ,λn [P(x) + λu] for each n ≥ 0, it follows that P(x) + λu ∈ (Pn + λnMn)(xn). Hence,

for each n ≥ 0, we can choose un ∈ Mn(xn) such that P(x) + λu = Pn(xn) + λnun. Then, for
each n ≥ 0, we obtain

‖λnun – λu‖ =
∥∥Pn(xn) – P(x)

∥∥

≤ ∥∥Pn(xn) – Pn(x)
∥∥ +

∥∥Pn(x) – P(x)
∥∥

≤ δn‖xn – x‖ +
∥∥Pn(x) – P(x)

∥∥.

Since the sequence {δn}∞n=0 is bounded and xn → x and Pn(x) → P(x) as n → ∞, we con-
clude that λnun → λu as n → ∞. Moreover, for each n ≥ 0, we get

λ‖un – u‖ = ‖λun – λu‖
≤ ‖λnun – λun‖ + ‖λnun – λu‖
= |λn – λ|‖un‖ + ‖λnun – λu‖.

Taking into account that λn → λ and λnun → λu as n → ∞, it follows that the right-hand
side of the above inequality approaches zero as n → ∞. Thus un → u as n → ∞. Now, in

view of Definition 4.1, Mn
G−→ M.

Conversely, assume that Mn
G−→ M, and let z ∈ E be chosen arbitrarily but fixed. Since

the mapping M is P-η-accretive, it follows that (P + λM)(E) = E, and so there exists a
point (x, u) ∈ Graph(M) such that z = P(x) + λu. By Definition 4.1 there exists a sequence
{(xn, un)}∞n=0 ⊂ Graph(Mn) such that xn → x and un → u as n → ∞. Since (x, u) ∈ Graph(M)
and (xn, un) ∈ Graph(Mn) for all n ≥ 0, we have

x = RP,η
M,λ

[
P(x) + λu

]
and xn = RPn ,ηn

Mn ,λn

[
Pn(xn) + λnun

] ∀n ≥ 0. (4.1)

Picking zn = Pn(xn) + λnun for each n ≥ 0, by Lemma 2.17, (4.1), and the assumptions, for
each n ≥ 0, we obtain

∥∥RPn ,ηn
Mn ,λn (z) – RP,η

M,λ(z)
∥∥

≤ ∥∥RPn ,ηn
Mn ,λn (z) – RPn ,ηn

Mn ,λn (zn)
∥∥ +

∥∥RPn ,ηn
Mn ,λn (zn) – RP,η

M,λ(z)
∥∥



Balooee et al. Journal of Inequalities and Applications        (2022) 2022:124 Page 32 of 42

≤ τ
q–1
n

γn
‖zn – z‖ +

∥∥RPn ,ηn
Mn ,λn

[
Pn(xn) + λnun

]
– RP,η

M,λ
[
P(x) + λu

]∥∥

≤ τ
q–1
n

γn
‖zn – z‖ + ‖xn – x‖

=
τ

q–1
n

γn

∥∥Pn(xn) + λnun – P(x) – λu
∥∥ + ‖xn – x‖

≤ τ
q–1
n

δn

(∥∥Pn(xn) – P(x)
∥∥ + ‖λnun – λu‖) + ‖xn – x‖

≤ τ
q–1
n

γn

(∥∥Pn(xn) – Pn(x)
∥∥ +

∥∥Pn(x) – P(x)
∥∥

+ ‖λnun – λnu‖ + ‖λnu – λu‖) + ‖xn – x‖

≤
(

1 +
δnτ

q–1
n

γn

)
‖xn – x‖ +

τ
q–1
n

γn

∥∥Pn(x) – P(x)
∥∥

+
λnτ

q–1
n

γn
‖un – u‖ +

|λn – λ|τ q–1
n

γn
‖u‖.

Since limn→∞ λn = λ and the sequences { 1
γn

}∞n=0 and {τn}∞n=0 are bounded, we deduce that

the sequence { λnτ
q–1
n

γn
}∞n=0 is also bounded. Taking into account the assumptions, we infer

that the right-hand side of the preceding inequality tends to zero as n → ∞, which guar-
antees that RPn ,ηn

Mn ,λn (z) → RP,η
M,λ(z) as n → ∞. The proof is finished. �

Definition 4.3 For i = 1, 2, let Ei be real Banach spaces, and let T be a self-mapping
of E1 × E2. Suppose that (x0, y0) ∈ E1 × E2 and (xn+1, yn+1) = f (T , xn, yn) defines the it-
erative procedure, which yields a sequence of points {(xn, yn)}∞n=0 in E1 × E2. Assume
that Fix(T) = {(x, y) ∈ E1 × E2 : (x, y) = T(x, y)} �= ∅ and {(xn, yn)}∞n=0 converges to some
(x∗, y∗) ∈ Fix(T). Furthermore, let {(zn, wn)}∞n=0 be an arbitrary sequence in E1 × E2, and
denote εn = ‖(zn+1, wn+1) – f (T , zn, wn)‖ for n ∈ N ∪ {0}. If limn→∞ εn = 0 implies that
limn→∞(zn, wn) = (x∗, y∗), then the iterative procedure defined by (xn+1, yn+1) = f (T , xn, yn)
is said to be T-stable or stable with respect to T .

Remark 4.4 It is significant to mention that in the last decades a lot of studies related
to the of iteration procedures for variational inequalities and variational inclusions has
been done by researchers; see, for example, [21–23, 25, 40, 49, 60–64] and the references
therein.

We now prove, as an application of the notion of graph convergence for P-η-accretive
mappings, the strong convergence of the iterative sequence generated by Algorithm 3.11 to
a common element of the two sets �SGNVLI and Fix(Q), where Q is a self-mapping of E1 ×
E2 defined by (3.26). At the same time, we establish the stability of the iterative sequence
generated by Algorithm 3.11. Before presenting the most important result of this paper,
we need to recall the following lemma, which will be used in our proof.
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Lemma 4.5 Let {an}, {bn}, and {cn} be three nonnegative real sequences satisfying the fol-
lowing conditions: there exists a natural number n0 such that

an+1 ≤ (1 – tn)an + bntn + cn ∀n ≥ n0,

where tn ∈ [0, 1],
∑∞

n=0 tn = ∞, limn→∞ bn = 0, and
∑∞

n=0 cn < ∞.
Then limn→∞ an = 0.

Proof The proof follows directly from Lemma 2 in [65]. �

Theorem 4.6 Let Ei, ηi, Pi, fi, gi, hi, Fi, Ti, Mi (i = 1, 2) be as in Theorem 3.4, and let all
the conditions of Theorem 3.4 hold. Assume that ηn,i, Pn,i, Mn,i (n ≥ 0 and i = 1, 2) are as in
Algorithm 3.11. Let for each i ∈ {1, 2}, Si : Ei → Ei be a generalized (Li, {an,i}∞n=0, {bn,i}∞n=0)-
nearly asymptotically nonexpansive mapping such that Li(k + 1) < 2, where k is as in (3.20),
and let Q be a self-mapping of E1 × E2 defined by (3.26) such that Fix(Q) ∩ �SGNVLI �= ∅.
Suppose that for all n ≥ 0 and i ∈ {1, 2}, ηn,i is τn,i-Lipschitz continuous, and Pn,i is γn,i-
strongly ηn,i-accretive and δn,i-Lipschitz continuous such that limn→∞ Pn,i(xi) = Pi(xi) for

all xi ∈ Ei. For all i ∈ {1, 2} and j ∈ {1, 2}\{i}, let Mn,i(·, xj)
G−→ Mi(·, xj) for all xj ∈ Ej, and

let γn,i → γi, τn,i → τi, and δn,i → δi as n → ∞. Let there exist constants on,i such that for
all n ≥ 0,

∥∥RPn,1,ηn,1
Mn,1(·,u),λn

(w) – RPn,1,ηn,1
Mn,1(·,v),λn

(w)
∥∥≤ on,1‖u – v‖1 ∀u, v, w ∈ E1, (4.2)

∥∥RPn,2,ηn,2
Mn,2(·,u),ρn

(w) – RPn,2,ηn,2
Mn,2(·,v),ρn

(w)
∥∥≤ on,2‖u – v‖2 ∀u, v, w ∈ E2. (4.3)

Further, let there exist constants oi > 0 (i = 1, 2) and λ,ρ > 0 such that (3.2)–(3.5) hold,
λn → λ, ρn → ρ , on,i → oi as n → ∞ for each i ∈ {1, 2}, and for the cases where q1 and q2

are even natural numbers, in addition to (3.4) and (3.5), let (3.6) hold. Then
(i) the iterative sequence {(xn, yn)}∞n=0 generated by Algorithm 3.11 converges strongly to

the only element (x∗, y∗) of Fix(Q) ∩ �SGNVLI;
(ii) if, in addition, there exists a constant α > 0 such that α + αn ≤ 1 for each n ≥ 0, then

limn→∞(un, vn) = (x∗, y∗) if and only if limn→∞ εn = 0, where {(un, vn)}∞n=0 is any
sequence in E1 × E2 satisfying (3.30).

Proof Since all the conditions of Theorem 3.4 hold, the existence of a unique solution
(x∗, y∗) ∈ E1 ×E2 for SGNVLI (3.1) is guaranteed by Theorem 3.4. Then Lemma 3.1 implies
that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x∗ = x∗ – h1(x∗) + RP1,η1
M1(·,y∗),λ[P1(h1(x∗))

– λ(F1(x∗, y∗ – f2(y∗)) + T1(y∗, x∗ – g1(x∗)))],

y∗ = y∗ – h2(y∗) + RP2,η2
M2(·,x∗),ρ[P2(h2(y∗))

– ρ(F2(x∗ – f1(x∗), y∗) + T2(x∗, y∗ – g2(y∗)))].

(4.4)
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Since �SGNVLI is a singleton set and Fix(Q) ∩�SGNVLI �= ∅, we deduce that x∗ ∈ Fix(S1) and
y∗ ∈ Fix(S2). Therefore, using (4.4), for each n ≥ 0, we can write

⎧
⎨

⎩
x∗ = αn,1x∗ + (1 – αn,1 – βn,1)Sn

1(x∗ – h1(x∗) + RP1,η1
M1(·,y∗),λ(	(x∗, y∗))) + βn,1x∗,

y∗ = αn,1y∗ + (1 – αn,1 – βn,1)Sn
2 (y∗ – h2(y∗) + RP2,η2

M2(·,x∗),ρ(�(x∗, y∗))) + βn,1y∗,
(4.5)

where

	
(
x∗, y∗) = P1

(
h1
(
x∗)) – λ

(
F1
(
x∗, y∗ – f2

(
y∗)) + T1

(
y∗, x∗ – g1

(
x∗))),

�
(
x∗, y∗) = P2

(
h2
(
y∗)) – ρ

(
F2
(
x∗ – f1

(
x∗), y∗) + T2

(
x∗, y∗ – g2

(
y∗))).

Letting

N = max
{

sup
n≥0

∥∥kn,i – x∗∥∥
1, sup

n≥0

∥∥k̂n,i – y∗∥∥
2 : i = 1, 2, . . . , p

}

and using (3.28), (4.2), (4.5), Lemma 2.17, and the assumptions, we can obtain that

∥∥xn+1 – x∗∥∥
1 =

∥∥αn,1xn + (1 – αn,1 – βn,1)Sn
1
{

zn,1 – h1(zn,1)

+ RPn,1,ηn,1
Mn,1(·,tn,1),λn

(
	(zn,1, tn,1)

)}
+ αn,1en,1 + βn,1kn,1 + ln,1

–
(
αn,1x∗ + (1 – αn,1 – βn,1)Sn

1
{

x∗ – h1
(
x∗)

+ RP1,η1
M1(·,y∗),λ

(
	
(
x∗, y∗))} + βn,1x∗)∥∥

1 (4.6)

≤ αn,1
∥∥xn – x∗∥∥

1 + (1 – αn,1 – βn,1)L1
(
(1 + an,1)

(
ϑ1(n)

∥∥zn,1 – x∗∥∥
1

+ φ1(n)
∥∥tn,1 – y∗∥∥

2 + �1(n) +
∥∥�1(n)

∥∥
1

)
+ bn,1

)

+ αn,1
∥∥e′

n,1
∥∥

1 +
∥∥e′′

n,1
∥∥

1 + ‖ln,1‖1 + βn,1N ,

where for each n ≥ 0,

ϑ1(n) = q1
√

1 – q1θ1 + (cq1 + q1�1)ιq1
1 +

τ
q1–1
n,1

γn,1

( q1
√

δ
q1
n,1ι

q1
1 – q1λnr1 + λ

q1
n cq1 sq1

1

+ λnμ1
q1
√

1 – q1v1 + (cq1 + q1ζ1)�q1
1
)
,

φ1(n) = on,1 +
λnτ

q1–1
n,1

γn,1

(
ξ1

q2
√

1 – q2ς2 + (cq2 + q2σ2)πq2
2 + ε1

)
,

�1(n) =
τ

q1–1
n,1

γn,1

(∥∥Pn,1
(
h1
(
x∗)) – P1

(
h1
(
x∗))∥∥

1 + |λn – λ|(∥∥F1
(
x∗, y∗ – f2

(
y∗))∥∥

1

+
∥∥T1

(
y∗, x∗ – g1

(
x∗))∥∥

1

))
,

�1(n) = RPn,1,ηn,1
Mn,1(·,y∗),λn

(
	
(
x∗, y∗)) – RP1,η1

M1(·,y∗),λ
(
	
(
x∗, y∗)).

In a similar way, using (3.28), (4.3), (4.5), Lemma 2.17, and the assumptions, for each n ≥ 0,
we have

∥∥yn+1 – y∗∥∥
2 ≤ αn,1

∥∥yn – y∗∥∥
2 + (1 – αn,1 – βn,1)L2

(
(1 + an,2)

(
ϑ2(n)

∥∥zn,1 – x∗∥∥
1
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+ φ2(n)
∥∥tn,1 – y∗∥∥

2 + �2(n) +
∥∥�2(n)

∥∥
2

)
+ bn,2

)
(4.7)

+ αn,1
∥∥ê′

n,1
∥∥

2 +
∥∥ê′′

n,1
∥∥

2 + ‖l̂n,1‖2 + βn,1N ,

where for each n ≥ 0,

φ2(n) = q2
√

1 – q2θ2 + (cq2 + q2�2)ιq2
2 +

τ
q2–1
n,2

γn,2

( q2
√

δ
q2
n,2ι

q2
2 – q2ρnr2 + ρ

q2
n cq2 sq2

2

+ ρnμ2
q2
√

1 – q2ν2 + (cq2 + q2ζ2)�q2
2
)
,

ϑ2(n) = on,2 +
ρnτ

q2–1
n,2

γn,2

(
ξ2

q1
√

1 – q1ς1 + (cq1 + q1σ1)πq1
1 + ε2

)
,

�2(n) =
τ

q2–1
n,2

γn,2

(∥∥Pn,2
(
h2
(
y∗)) – P2

(
h2
(
y∗))∥∥

2 + |ρn – ρ|(∥∥F2
(
x∗ – f1

(
x∗), y∗)∥∥

2

+
∥∥T2

(
x∗, y∗ – g2

(
y∗))∥∥

2

))
,

�2(n) = RPn,2,ηn,2
Mn,2(·,x∗),ρn

(
�
(
x∗, y∗)) – RP2,η2

M2(·,x∗),ρ
(
�
(
x∗, y∗)).

Letting L = max{L1, L2}, from (4.6) and (4.7) it follows that

∥∥(xn+1, yn+1) –
(
x∗, y∗)∥∥∗ =

∥∥xn+1 – x∗∥∥
1 +

∥∥yn+1 – y∗∥∥
2

≤ αn,1
(∥∥xn – x∗∥∥

1 +
∥∥yn – y∗∥∥

2

)

+ (1 – αn,1 – βn,1)L(
(
ϑ1(n) + ϑ2(n)

)∥∥zn,1 – x∗∥∥
1

+
(
φ1(n) + φ2(n)

)∥∥tn,1 – y∗∥∥
2

+ �1(n) + �2(n) +
∥∥�1(n)

∥∥
1 +

∥∥�2(n)
∥∥

2

+ (an,1 + an,2)
((

ϑ1(n) + ϑ2(n)
)∥∥zn,1 – x∗∥∥

1

+
(
φ1(n) + φ2(n)

)∥∥tn,1 – y∗∥∥
2 + �1(n) + �2(n)

+
∥∥�1(n)

∥∥
1 +

∥∥�2(n)
∥∥

2

)
+ bn,1 + bn,2)

+ αn,1
(∥∥e′

n,1
∥∥

1 +
∥∥ê′

n,1
∥∥

2

)
+
∥∥e′′

n,1
∥∥

1

+
∥∥ê′′

n,1
∥∥

2 + ‖ln,1‖1 + ‖l̂n,1‖2 + 2βn,1N

≤ αn,1
∥∥(xn, yn) –

(
x∗, y∗)∥∥∗

(4.8)

+ (1 – αn,1 – βn,1)L
(
k(n)

∥∥(zn,1, tn,1) –
(
x∗, y∗)∥∥∗

+ �1(n) + �2(n) +
∥∥(�1(n),�2(n)

)∥∥∗

+ (an,1 + an,2)
(
k(n)

∥∥(zn,1, tn,1) –
(
x∗, y∗)∥∥∗

+ �1(n) + �2(n) +
∥∥(�1(n),�2(n)

)∥∥∗
)

+ bn,1 + bn,2
)

+ αn,1
∥∥(e′

n,1, ê′
n,1
)∥∥∗ +

∥∥(e′′
n,1, ê′′

n,1
)∥∥∗ +

∥∥(ln,1, l̂n,1)
∥∥∗

= αn,1
∥∥(xn, yn) –

(
x∗, y∗)∥∥∗

+ (1 – αn,1 – βn,1)Lk(n)
∥∥(zn,1, tn,1) –

(
x∗, y∗)∥∥∗

+ ϒ1(n) + αn,1
∥∥(e′

n,1, ê′
n,1
)∥∥∗ +

∥∥(e′′
n,1, ê′′

n,1
)∥∥∗
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+
∥∥(ln,1, l̂n,1)

∥∥∗ + 2βn,1N ,

where for each n ≥ 0,

k(n) = max
{
ϑ1(n) + ϑ2(n),φ1(n) + φ2(n)

}

and

ϒ1(n) = (1 – αn,1 – βn,1)L
(
�1(n) + �2(n) +

∥∥(�1(n),�2(n)
)∥∥∗

+ (an,1 + an,2)
(
k(n)

∥∥(zn,1, tn,1) –
(
x∗, y∗)∥∥∗ + �1(n)

+ �2(n) +
∥∥(�1(n),�2(n)

)∥∥∗
)

+ bn,1 + bn,2
)
.

Similarly to the proofs of (4.6)–(4.8), we can prove that for i = 1, 2, . . . , p – 2,

∥∥(zn,i, tn,i) –
(
x∗, y∗)∥∥∗

≤ αn,i+1
∥∥(xn, yn) –

(
x∗, y∗)∥∥∗

+ (1 – αn,i+1 – βn,i+1)Lk(n)
∥∥(zn,i+1, tn,i+1) –

(
x∗, y∗)∥∥∗ (4.9)

+ ϒi+1(n) + αn,i+1
∥∥(e′

n,i+1, ê′
n,i+1

)∥∥∗ +
∥∥(e′′

n,i+1, ê′′
n,i+1

)∥∥∗

+
∥∥(ln,i+1, l̂n,i+1)

∥∥∗ + 2βn,i+1N

and

∥∥(zn,p–1, tn,p–1) –
(
x∗, y∗)∥∥∗

≤ αn,p
∥∥(xn, yn) –

(
x∗, y∗)∥∥∗

+ (1 – αn,p – βn,p)Lk(n)
∥∥(xn, yn) –

(
x∗, y∗)∥∥∗ (4.10)

+ ϒp(n) + αn,p
∥∥(e′

n,p, ê′
n,p
)∥∥∗ +

∥∥(e′′
n,p, ê′′

n,p
)∥∥∗

+
∥∥(ln,p, l̂n,p)

∥∥∗ + 2βn,pN ,

where for i = 1, 2, . . . , p – 2,

ϒi+1(n) = (1 – αn,i+1 – βn,i+1)L
(
�1(n) + �2(n) +

∥∥(�1(n),�2(n)
)∥∥∗

+ (an,1 + an,2)
(
k(n)

∥∥(zn,i+1, tn,i+1) –
(
x∗, y∗)∥∥∗ + �1(n)

+ �2(n) +
∥∥(�1(n),�2(n)

)∥∥∗
)

+ bn,1 + bn,2
)

and

ϒp(n) = (1 – αn,p – βn,p)L
(
�1(n) + �2(n) +

∥∥(�1(n),�2(n)
)∥∥∗

+ (an,1 + an,2)
(
k(n)

∥∥(xn, yn) –
(
x∗, y∗)∥∥∗ + �1(n)

+ �2(n) +
∥∥(�1(n),�2(n)

)∥∥∗
)

+ bn,1 + bn,2
)
.



Balooee et al. Journal of Inequalities and Applications        (2022) 2022:124 Page 37 of 42

Obviously, k(n) → k = max{ϑ1 +ϑ2,φ1 +φ2} as n → ∞, where ϑ1, ϑ2, φ1, φ2 are as in (3.17)
and (3.18). Then for k̂ = 1

2 (k +1) ∈ (k, 1), there exists n0 ∈N such that k(n) < k̂ for all n ≥ n0.
Employing (4.9) and (4.10), we can show that for all n ≥ n0,

∥∥(zn,1, tn,1) –
(
x∗, y∗)∥∥∗

≤ αn,2
∥∥(xn, yn) –

(
x∗, y∗)∥∥∗ + (1 – αn,2 – βn,2)Lk̂

∥∥(zn,2, tn,2) –
(
x∗, y∗)∥∥∗

+ ϒ2(n) + αn,2
∥∥(e′

n,2, ê′
n,2
)∥∥∗ +

∥∥(e′′
n,2, ê′′

n,2
)∥∥∗ +

∥∥(ln,2, l̂n,2)
∥∥∗ + 2βn,2N

≤
(

αn,2 + (1 – αn,2 – βn,2)αn,3Lk̂ + (1 – αn,2 – βn,2)(1 – αn,3 – βn,3)αn,4L2k̂2

+ · · · +
p–1∏

i=2

(1 – αn,i – βn,i)αn,pLp–2k̂p–2

+
p∏

i=2

(1 – αn,i – βn,i)Lp–1k̂p–1

)
∥∥(xn, yn) –

(
x∗, y∗)∥∥∗

+
p–1∏

i=2

(1 – αn,i – βn,i)Lp–2k̂p–2ϒp(n) +
p–2∏

i=2

(1 – αn,i – βn,i)Lp–3k̂p–3ϒp–1(n)

+ · · · + (1 – αn,2 – βn,2)(1 – αn,3 – βn,3)L2k̂2ϒ4(n)

+ (1 – αn,2 – βn,2)Lk̂ϒ3(n) + ϒ2(n)

+
p–1∏

i=2

(1 – αn,i – βn,i)αn,pLp–2k̂p–2∥∥(e′
n,p, ê′

n,p
)∥∥∗

+
p–2∏

i=2

(1 – αn,i – βn,i)αn,p–1Lp–3k̂p–3∥∥(e′
n,p–1, ê′

n,p–1
)∥∥∗ + · · ·

+ (1 – αn,2 – βn,2)(1 – αn,3 – βn,3)αn,4L2k̂2∥∥(e′
n,4, ê′

n,4
)∥∥∗

+ (1 – αn,2 – βn,2)αn,3Lk̂
∥∥(e′

n,3, ê′
n,3
)∥∥∗ + αn,2

∥∥(e′
n,2, ê′

n,2
)∥∥∗ (4.11)

+
p–1∏

i=2

(1 – αn,i – βn,i)Lp–2k̂p–2∥∥(e′′
n,p, ê′′

n,p
)∥∥∗

+
p–2∏

i=2

(1 – αn,i – βn,i)Lp–3k̂p–3∥∥(e′′
n,p–1, ê′′

n,p–1
)∥∥∗ + · · ·

+ (1 – αn,2 – βn,2)(1 – αn,3 – βn,3)L2k̂2∥∥(e′′
n,4, ê′′

n,4
)∥∥∗

+ (1 – αn,2 – βn,2)Lk̂
∥∥(e′′

n,3, ê′′
n,3
)∥∥∗ +

∥∥(e′′
n,2, ê′′

n,2
)∥∥∗

+
p–1∏

i=2

(1 – αn,i – βn,i)Lp–2k̂p–2∥∥(ln,p, l̂n,p)
∥∥∗

+
p–2∏

i=2

(1 – αn,i – βn,i)Lp–3k̂p–3∥∥(ln,p–1, l̂n,p–1)
∥∥∗ + · · ·

+ (1 – αn,2 – βn,2)(1 – αn,3 – βn,3)L2k̂2∥∥(ln,4, l̂n,4)
∥∥∗

+ (1 – αn,2 – βn,2)Lk̂
∥∥(ln,3, l̂n,3)

∥∥∗ +
∥∥(ln,2, l̂n,2)

∥∥∗
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+ 2

(p–1∏

i=2

(1 – αn,i – βn,i)βn,pLp–2k̂p–2

+
p–2∏

i=2

(1 – αn,i – βn,i)βn,p–1Lp–3k̂p–3 + · · ·

+ (1 – αn,2 – βn,2)(1 – αn,3 – βn,3)βn,4L2k̂2

+ (1 – αn,2 – βn,2)βn,3Lk̂ + βn,2

)

N .

By (4.8), (4.11), and the fact that 0 < α ≤∏p
i=1(1 – αn,i) for all n ≥ n0, we can prove that

∥∥(xn+1, yn+1) –
(
x∗, y∗)∥∥∗

≤ αn,1
∥∥(xn, yn) –

(
x∗, y∗)∥∥∗

+ (1 – αn,1 – βn,1)Lk̂
∥∥(zn,1, tn,1) –

(
x∗, y∗)∥∥∗

+ ϒ1(n) + αn,1
∥∥(e′

n,1, ê′
n,1
)∥∥∗ +

∥∥(e′′
n,1, ê′′

n,1
)∥∥∗

+
∥∥(ln,1, l̂n,1)

∥∥∗ + 2βn,1N

≤
(

1 – Lp–1k̂p–1(1 – Lk̂)
p∏

i=1

(1 – αn,i)

)
∥∥(xn, yn) –

(
x∗, y∗)∥∥∗

(4.12)

+ Lp–1k̂p–1(1 – Lk̂)
p∏

i=1

(1 – αn,i)
χ (n)

Lp–1k̂p–1(1 – Lk̂)α

+
p–1∑

i=1

i∏

j=1

(1 – αn,j – βn,j)Lik̂i∥∥(e′′
n,i+1, ê′′

n,i+1
)∥∥∗ +

∥∥(e′′
n,1, ê′′

n,1
)∥∥∗

+
p–1∑

i=1

i∏

j=1

(1 – αn,j – βn,j)Lik̂i∥∥(ln,i+1, l̂n,i+1)
∥∥∗ +

∥∥(ln,1, l̂n,1)
∥∥∗

+ 2

( p–1∑

i=1

i∏

j=1

(1 – αn,j – βn,j)βn,i+1Lik̂i

)

N ,

where for each n ≥ 0,

χ (n) = ϒ1(n) +
p–1∑

i=1

i∏

j=1

(1 – αn,j – βn,j)Lik̂iϒi+1(n)

+
p–1∑

i=1

i∏

j=1

(1 – αn,j – βn,j)αn,i+1Lik̂i∥∥(e′
n,i+1, ê′

n,i+1
)∥∥∗ + αn,1

∥∥(e′
n,1, ê′

n,1
)∥∥∗.

The fact that Li(k +1) < 2 for each i ∈ {1, 2}, where k is as in (3.20), ensures that Lk̂ < 1. From
Theorem 4.2 it follows that ‖(�1(n),�2(n))‖∗ → 0 as n → ∞. Since Pn,i(xi) → Pi(xi) for all
xi ∈ Ei and i ∈ {1, 2}, and λn → λ and ρn → ρ as n → ∞, we deduce that �1(n),�2(n) → 0
as n → ∞. Taking into account that for each i ∈ {1, 2}, an,i → 0 as n → ∞, we infer that
ϒi(n) → 0 as n → ∞ for each i ∈ {1, 2, . . . , p}. Since

∑∞
n=0 βn,i < ∞ for each i ∈ {1, 2, . . . , p},
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with the help of (3.29), we observe that all the conditions of Lemma 4.5 are satisfied, and
so Lemma 4.5 and (4.12) guarantee that (xn, yn) → (x∗, y∗) as n → ∞, that is, the iterative
sequence {(xn, yn)}∞n=0 generated by Algorithm 3.11 converges strongly to the only element
(x∗, y∗) of Fix(Q) ∩ �SGNVLI.

Now we prove conclusion (ii). Using (3.30) yields

∥∥(un+1, vn+1) –
(
x∗, y∗)∥∥∗

≤ ∥∥(un+1, vn+1) – (Ln, Dn)
∥∥∗ +

∥∥(Ln, Dn) –
(
x∗, y∗)∥∥∗ (4.13)

= εn +
∥∥Ln – x∗∥∥

1 +
∥∥Dn – y∗∥∥

2.

By the same arguments as in the proof of (4.6) and (4.7) we can establish that

∥∥Ln – x∗∥∥
1 ≤ αn,1

∥∥un – x∗∥∥
1 + (1 – αn,1 – βn,1)L1

(
(1 + an,1)

(
ϑ1(n)

∥∥νn,1 – x∗∥∥
1

+ φ1(n)
∥∥ωn,1 – y∗∥∥

2 + �1(n) +
∥∥�1(n)

∥∥
1

)
+ bn,1

)
(4.14)

+ αn,1
∥∥e′

n,1
∥∥

1 +
∥∥e′′

n,1
∥∥

1 + ‖ln,1‖1 + βn,1N

and

∥∥Dn – y∗∥∥
1 ≤ αn,1

∥∥vn – y∗∥∥
2 + (1 – αn,1 – βn,1)L2

(
(1 + an,2)

(
ϑ2(n)

∥∥νn,1 – x∗∥∥
1

+ φ2(n)
∥∥ωn,1 – y∗∥∥

2 + �2(n) +
∥∥�2(n)

∥∥
2

)
+ bn,2

)
(4.15)

+ αn,1
∥∥e′

n,1
∥∥

2 +
∥∥e′′

n,1
∥∥

2 + ‖l̂n,1‖2 + βn,1N ,

where for all n ≥ 0, ϑ1(n), φ1(n) are as in (4.6), and ϑ2(n), φ2(n) are as in (4.7). Since 0 <
α ≤∏p

i=1(1 – αn,i) for all n ≥ n0, using (4.13)–(4.15), as in the proof of (4.12), we obtain

∥∥(un+1, vn+1) –
(
x∗, y∗)∥∥∗

≤
(

1 – Lp–1k̂p–1(1 – Lk̂)
p∏

i=1

(1 – αn,i)

)
∥∥(un, vn) –

(
x∗, y∗)∥∥∗

+ Lp–1k̂p–1(1 – Lk̂)
p∏

i=1

(1 – αn,i)
χ ′(n)

Lp–1k̂p–1(1 – Lk̂)α

+
p–1∑

i=1

i∏

j=1

(1 – αn,j – βn,j)Lik̂i∥∥(e′′
n,i+1, ê′′

n,i+1
)∥∥∗ +

∥∥(e′′
n,1, ê′′

n,1
)∥∥∗

(4.16)

+
p–1∑

i=1

i∏

j=1

(1 – αn,j – βn,j)Lik̂i∥∥(ln,i+1, l̂n,i+1)
∥∥∗ +

∥∥(ln,1, l̂n,1)
∥∥∗

+ 2

( p–1∑

i=1

i∏

j=1

(1 – αn,j – βn,j)βn,i+1Lik̂i

)

N ,

where for each n ≥ 0,

χ ′(n) = ϒ1(n) +
p–1∑

i=1

i∏

j=1

(1 – αn,j – βn,j)Lik̂iϒi+1(n)
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+
p–1∑

i=1

i∏

j=1

(1 – αn,j – βn,j)αn,i+1Lik̂i∥∥(e′
n,i+1, ê′

n,i+1
)∥∥∗

+ αn,1
∥∥(e′

n,1, ê′
n,1
)∥∥∗ + εn.

If limn→∞ εn = 0, then from (3.29), (4.16), and Lemma 4.5 it follows that limn→∞(un, vn) =
(x∗, y∗).

Conversely, suppose that limn→∞(un, vn) = (x∗, y∗). Employing (4.14) and (4.15), we have

εn =
∥∥(un+1, vn+1) – (Ln, Dn)

∥∥∗

≤ ∥∥(un+1, vn+1) –
(
x∗, y∗)∥∥∗ +

∥∥(Ln, Dn) –
(
x∗, y∗)∥∥∗

≤ ∥∥(un+1, vn+1) –
(
x∗, y∗)∥∥∗

+

(

1 – Lp–1k̂p–1(1 – Lk̂)
p∏

i=1

(1 – αn,i)

)
∥∥(un, vn) –

(
x∗, y∗)∥∥∗

+ Lp–1k̂p–1(1 – Lk̂)
p∏

i=1

(1 – αn,i)
χ (n)

Lp–1k̂p–1(1 – Lk̂)α

(4.17)

+
p–1∑

i=1

i∏

j=1

(1 – αn,j – βn,j)Lik̂i∥∥(e′′
n,i+1, ê′′

n,i+1
)∥∥∗ +

∥∥(e′′
n,1, ê′′

n,1
)∥∥∗

+
p–1∑

i=1

i∏

j=1

(1 – αn,j – βn,j)Lik̂i∥∥(ln,i+1, l̂n,i+1)
∥∥∗ +

∥∥(ln,1, l̂n,1)
∥∥∗

+ 2

( p–1∑

i=1

i∏

j=1

(1 – αn,j – βn,j)βn,i+1Lik̂i

)

N .

Obviously, (3.29) implies that limn→∞ ‖(e′′
n,i, ê′′

n,i)‖∗ = limn→∞ ‖(ln,i, l̂n,i)‖∗ = 0 for each i ∈
{1, 2, . . . , p}. In view of the facts that Lk̂ < 1, limn→∞ ϒi(n) = 0, limn→∞ ‖(e′

n,i, ê′
n,i)‖∗ = 0,

and
∑∞

n=0 βn,i < ∞ for each i ∈ {1, 2, . . . , p}, we conclude that the right-hand side of (4.17)
tends to zero as n → ∞. This completes the proof. �
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