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Abstract
In this research, we introduce some factorization for Hilbert operators of order n
based on two important classes of Hausdorff operators, Cesàro and gamma. These
factorizations lead us to some new inequalities, one is a generalized version of
Hilbert’s inequality. Moreover, as an application of our factorization, we compute the
norm of Hilbert operators on some matrix domains.
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1 Introduction
Let ω denote the set of all real-valued sequences. Any linear subspace of ω is called a
sequence space. The Banach space �p is the set of all real sequences x = (xk)∞k=0 ∈ ω such
that

‖x‖�p =

( ∞∑
k=0

|xk|p
)1/p

< ∞ (1 ≤ p < ∞).

We consider infinite matrices M = (mj,k), where all the indices j and k are nonnegative.
The matrix domain associated with M is defined as

MS = {x ∈ ω : Mx ∈ S}. (1.1)

In the special case S = �p, we use the notation Mp instead of M�p . It is rather trivial that
Ip = �p, where I is the infinite identity matrix. This concept has inspired many researchers
to seek and define new Banach spaces as the domain of an infinite matrix. See [18, 20, 22]
and the textbook [1].

Let � be a matrix with nonnegative entries, which maps �p into itself and satisfies the
inequality

‖�x‖�p ≤ ρ‖x‖�p ,
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for the constant ρ not depending on x and for every x ∈ �p. The norm of � is the smallest
possible value of ρ . The problem of finding the norm and the lower bound of operators on
the matrix domains has been investigated in some of the references [7, 8, 10–12, 19, 21].

Hilbert matrix For a nonnegative integer n, the Hilbert matrix of order n, Hn, is defined
by

[Hn]j,k =
1

j + k + n + 1
.

Evidently, for n = 0, H0 = H is the well-known Hilbert matrix

H =

⎛
⎜⎜⎜⎜⎝

1 1/2 1/3 · · ·
1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ ,

which was introduced by David Hilbert in 1894. More examples:

H1 =

⎛
⎜⎜⎜⎜⎝

1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·
1/4 1/5 1/6 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ and H2 =

⎛
⎜⎜⎜⎜⎝

1/3 1/4 1/5 · · ·
1/4 1/5 1/6 · · ·
1/5 1/6 1/7 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ .

The Hilbert matrix is a bounded operator on �p ([6], Theorem 323) and

‖H‖�p→�p = �(1/p)�
(
1/p∗) = π csc(π/p),

where p∗ is the conjugate of p i.e. 1
p + 1

p∗ = 1.

Hausdorff matrices The Hausdorff matrix Hμ is one of the most important examples of
summability matrices defined by

[
Hμ

]
j,k =

⎧⎨
⎩

∫ 1
0

( j
k
)
θ k(1 – θ )j–k dμ(θ ) 0 ≤ k ≤ j,

0 otherwise,

where μ is a probability measure on [0, 1]. While obtaining the �p-norm of operators is a
hard endeavor, for Hausdorff matrices, we luckily have Hardy’s formula [5, Theorem 216]
which states that this matrix is a bounded operator on �p if and only if

∫ 1

0
θ

–1
p dμ(θ ) < ∞, 1 ≤ p < ∞.

In fact,

∥∥Hμ

∥∥
�p→�p

=
∫ 1

0
θ

–1
p dμ(θ ). (1.2)

Hausdorff operators have the interesting norm separating property.
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Theorem 1.1 ([3], Theorem 9) Let p ≥ 1 and Hμ, Hϕ , and Hν be Hausdorff matrices such
that Hμ = HϕHν . Then Hμ is bounded on �p if and only if both Hϕ and Hν are bounded on
�p. Moreover, we have

∥∥Hμ

∥∥
�p→�p

=
∥∥Hϕ

∥∥
�p→�p

∥∥Hν

∥∥
�p→�p

.

The Hausdorff matrix contains several famous classes of matrices. For positive integer
n, two of these classes are as follows.

Cesàro matrix The measure dμ(θ ) = n(1 – θ )n–1 dθ gives the Cesàro matrix of order n,
Cn, which is defined by

[Cn]j,k =

⎧⎪⎨
⎪⎩

(n+j–k–1
j–k )

(n+j
j )

0 ≤ k ≤ j,

0 otherwise.

Hence, according to (1.2), Cn has the �p-norm

‖Cn‖�p→�p =
�(n + 1)�(1/p∗)

�(n + 1/p∗)
.

Note that C0 = I , where I is the identity matrix, and

C1 = C =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · ·
1/2 1/2 0 · · ·
1/3 1/3 1/3 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠

is the classical Cesàro matrix, which has �p-norm ‖C‖�p→�p = p
p–1 . The matrix domain

associated with Cn is defined by

Cn(p) =

{
x ∈ ω :

∞∑
j=0

∣∣∣∣∣ 1(n+j
j
) j∑

k=0

(
n + j – k – 1

j – k

)
xk

∣∣∣∣∣
p

< ∞
}

,

having the norm

‖x‖Cn(p) =

( ∞∑
j=0

∣∣∣∣∣ 1(n+j
j
) j∑

k=0

(
n + j – k – 1

j – k

)
xk

∣∣∣∣∣
p)1/p

is a Banach space. The author investigated the Cesàro matrix domain in [15, 17].

Gamma matrix The measure dμ(θ ) = nθn–1 dθ gives the gamma matrix of order n, Gn,
for which

[Gn]j,k =

⎧⎪⎨
⎪⎩

(n+k–1
k )

(n+j
j )

0 ≤ k ≤ j,

0 otherwise.
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Hence, by Hardy’s formula, Gn has the �p-norm

‖Gn‖�p→�p =
np

np – 1
.

The sequence space associated with Gn is the set

Gn(p) =

{
x = (xk) ∈ ω :

∞∑
j=0

∣∣∣∣∣ 1(n+j
j
) j∑

k=0

(
n + k – 1

k

)
xk

∣∣∣∣∣
p

< ∞
}

,

which is called the gamma space of order n. The space Gn(p) is a Banach space with the
norm

‖x‖Gn(p) =

( ∞∑
j=0

∣∣∣∣∣ 1(n+j
j
) j∑

k=0

(
n + k – 1

k

)
xk

∣∣∣∣∣
p) 1

p

.

Note that G1 is the classical Cesàro matrix C, and we show the gamma sequence space
G1(p) by the notation C(p). For more information about the gamma matrix domain, the
eager readers can refer to [9, 16].

For finding the norm of a transpose of an operator, we use a helpful theorem also known
as Hellinger–Toeplitz theorem.

Theorem 1.2 ([4], Proposition 7.2) Suppose that 1 < p, q < ∞. A matrix � with nonnega-
tive entries maps �p into �q if and only if the transposed matrix �t maps �q∗ into �p∗ . Then
we have

‖�‖�p→�q =
∥∥�t∥∥

�q∗→�p∗ .

Motivation The infinite Hilbert operator is one of the most complicated operators which
is used in cryptography because of its complexity. Recently the author [13, 14] has intro-
duced some factorizations for the infinite Hilbert operator based on Cesàro and gamma
operators. Through this study, the author not only has generalized its previous results to
the Hilbert operators of any order, but has introduced some factorizations that result in
several new inequalities.

2 Factorization of the Hilbert operator
Bennett in [2] introduced a factorization of the form H = UC, where C is the Cesàro op-
erator and the matrix U is defined by

[U]j,k =
k + 1

(j + k + 1)(j + k + 2)
. (2.1)

The matrix U is a bounded operator on �p and ‖U‖�p→�p = �(1/p)�(1 + 1/p∗), ([2], Propo-
sition 2). In the sequel, we generalize this result for all Hilbert operators, but first we need
the following lemma also known as Schur’s lemma.
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Schur Lemma ([6], Theorem 275) Let p > 1 and � be a matrix with nonnegative entries.
Suppose that S , R are two positive numbers such that

∞∑
j=0

[�]j,k ≤ S ∀k,
∞∑

k=0

[�]j,k ≤R ∀j.

Then

‖�‖�p→�p ≤R1/p∗S1/p.

Theorem 2.1 Let n and m be two nonnegative integers. The Hilbert matrix of order n has
a factorization of the form Hn = Rn,mCm, where the matrix Rn,m has the entries

[Rn,m]j,k =
(k + 1) · · · (k + m)

(j + k + n + 1) · · · (j + k + n + m + 1)

=
(

m + k
k

)
β(j + k + n + 1, m + 1)

and is a bounded operator on �p with

‖Rn,m‖�p→�p =
�(m + 1/p∗)�(1/p)

�(m + 1)
.

In particular,
(a) the Hilbert matrix of order n has a factorization of the form Hn = RnCn, where the

matrix Rn has the entries

[Rn]j,k =
(k + 1) · · · (k + n)

(j + k + n + 1) · · · (j + k + 2n + 1)

=
(

n + k
k

)
β(j + k + n + 1, n + 1)

and is a bounded operator on �p with ‖Rn‖�p→�p = �(n+1/p∗)�(1/p)
�(n+1) .

(b) the Hilbert matrix has a factorization of the form H = BnCn, where the matrix Un

has the entries

[Bn]j,k =
(k + 1) · · · (k + n)

(j + k + 1) · · · (j + k + n + 1)
=

(
n + k

k

)
β(j + k + 1, n + 1)

with �p-norm ‖Bn‖�p→�p = �(n+1/p∗)�(1/p)
�(n+1) .

Proof Let �n be the backward difference matrix of order n. That is a lower triangle matrix
with the entries

[
�n

]
j,k = (–1)(j–k)

(
n

j – k

)
k ≤ j ≤ n + k,

which is invertible. We use the notation �–1
n as its inverse which is defined by

[
�–1

n
]

j,k =
(

n + j – k – 1
j – k

)
j ≥ k.
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Note that for n = 0, the backward difference matrix �0 = I , where I is the identity matrix.
It can be easily seen that the Cesàro matrix of order n can be represented by the backward
difference operator of the form

[Cn]j,k =

(n+j–k–1
j–k

)
(n+j

j
) =

[�–1
n ]j,k(n+j
j
) .

On the other hand,

Hn�0 = Hn =
1

j + k + n + 1
= β(j + k + n + 1, 1)

and

Hn�1 =
1

(j + k + n + 1)(j + k + n + 2)
= β(j + k + n + 1, 2).

By induction, we can prove that

Hn�m = β(j + k + n + 1, m + 1).

Now, by a simple calculation, we deduce that

Rn,mCm =
∞∑
i=k

(
m + i

i

)
β(j + i + n + 1, m + 1)

(m+i–k–1
i–k

)
(m+i

i
)

=
(
Hn�m

)
�–1

m = Hn.

For computing the �p-norm of Rn,m, we show first

‖R0,m‖�p→�p =
�(m + 1/p∗)�(1/p)

�(m + 1)
. (2.2)

For convenience, let R0,m = Rm. We introduce a family of matrices, Rm(s), 0 < s ≤ 1, given
by

[
Rm(s)

]
j,k =

(
j + k

k

)
sj(1 – s)m+k .

Since

∞∑
k=0

[
Rm(s)

]
j,k = sj(1 – s)m

∞∑
k=0

(
j + 1 + k – 1

k

)
(1 – s)k

= sj(1 – s)m[
1 – (1 – s)

]–(j+1)

=
(1 – s)m

s

and

∞∑
j=0

[
Rm(s)

]
j,k = (1 – s)m+k

∞∑
j=0

(
k + 1 + j – 1

j

)
sj = (1 – s)m–1,
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the row sums and the column sums are (1–s)m

s and (1 – s)m–1, respectively. Thus Schur’s
lemma results in

∥∥Rm(s)
∥∥

�p→�p
≤ (1 – s)m–1/ps–1/p∗

.

On the other hand,

∫ 1

0

[
Rm(s)

]
j,k ds =

(
j + k

k

)∫ 1

0
sj(1 – s)m+k ds

=
(

j + k
k

)
β(j + 1, m + k + 1)

=
(

m + k
k

)
β(j + k + 1, m + 1) = Rm.

Now,

‖Rm‖�p→�p =
∥∥∥∥
∫ 1

0
Rm(s) ds

∥∥∥∥
�p→�p

≤
∫ 1

0

∥∥Rm(s)
∥∥

�p→�p
ds

≤
∫ 1

0
(1 – s)m–1/ps–1/p∗

ds = β
(
m + 1/p∗, 1/p

)

=
�(m + 1/p∗)�(1/p)

�(m + 1)
.

The other side of the above inequality will result from the factorization H = R0,mCm =
RmCm. Now, suppose that

‖Rn,m‖�p→�p = f (n, m),

where f is a nonnegative function. As a result of equality (2.2), we conclude that

‖Rn,m‖�p→�p =
�(m + 1/p∗)�(1/p)

�(m + 1)
g(n),

where g(n) is a function of n. Now, let m = 0. Since Rn,0 = Hn is the Hilbert operator of
order n, hence g(n) = 1 and

‖Rn,m‖�p→�p =
�(m + 1/p∗)�(1/p)

�(m + 1)
.

So we have the desired result. �

Corollary 2.2 The Hilbert operator of order n admits a factorization of the form Hn =
UnC, where C is the classical Cesàro matrix and Un is defined by

[Un]j,k =
k + 1

(j + k + n + 1)(j + k + n + 2)
,

and has the �p-norm

‖Un‖�p→�p = �(1/p)�
(
1 + 1/p∗) = π/p∗ csc(π/p).
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In particular, Hilbert operator has the factorization H = UC, where ‖U‖�p→�p = �(1/p) ×
�(1 + 1/p∗).

Corollary 2.3 The following inequalities hold:

‖Hnx‖�p ≤ �(m + 1/p∗)�(1/p)
�(m + 1)

‖Cmx‖�p .

In particular,

‖Hx‖�p ≤ �(n + 1/p∗)�(1/p)
�(n + 1)

‖Cnx‖�p

and

‖Hnx‖�p ≤ �(1/p)�
(
1 + 1/p∗)‖Cx‖�p .

More explicitly,

∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + n + 1

∣∣∣∣∣
p

≤
[

�(m + 1/p∗)�(1/p)
�(m + 1)

]p ∞∑
j=0

∣∣∣∣∣
j∑

k=0

(m+j–k–1
j–k

)
xk(m+j

j
)

∣∣∣∣∣
p

,

∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + 1

∣∣∣∣∣
p

≤
[

�(n + 1/p∗)�(1/p)
�(n + 1)

]p ∞∑
j=0

∣∣∣∣∣
j∑

k=0

(n+j–k–1
j–k

)
xk(n+j

j
)

∣∣∣∣∣
p

,

and

∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + n + 1

∣∣∣∣∣
p

≤
[

π

p∗ csc(π/p)
]p ∞∑

j=0

∣∣∣∣∣
n∑

k=0

xk

j + 1

∣∣∣∣∣
p

.

Corollary 2.4 The Hilbert operator of order n, Hn, is a bounded operator from Cm(p) into
�p and

‖Hn‖Cm(p)→�p =
�(m + 1/p∗)�(1/p)

�(m + 1)
.

In particular, the Hilbert operator H is a bounded operator from C(p) into �p and
‖H‖C(p)→�p = π

p∗ csc(π/p).

Proof Since the map Cm(p) → �p, x → Cmx is an isomorphism between these two spaces,
according to Theorem 2.1, we have

‖Hn‖Cm(p)→�p = sup
x∈Cm(p)

‖Hnx‖�p

‖x‖Cm(p)
= sup

Cmx∈�p

‖Hnx‖�p

‖Cmx‖�p

= sup
Cmx∈�p

‖Rn,mCmx‖�p

‖Cmx‖�p
= sup

y∈�p

‖Rn,my‖�p

‖y‖�p

= ‖Rn,m‖�p→�p =
�(m + 1/p∗)�(1/p)

�(m + 1)
. �
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Theorem 2.5 The Hilbert operator has a factorization of the form H = U ′Ct , where U ′ is
a bounded operator that has the �p-norm

∥∥U ′∥∥
�p→�p

= �(1 + 1/p)�
(
1/p∗).

Proof By a simple calculation, U ′ is an operator with the matrix representation

U ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · ·
1/2 1/6 1/12 · · ·
1/3 1/6 1/10 · · ·
1/4 3/20 1/10 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

or U ′ =
( e1

Ut
)
, where e1 = (1, 0, 0, . . .) and Ut is the transpose of the matrix U defined in

relation (2.1). Obviously, U ′ has the �p-norm same as Ut . Hence

∥∥U ′∥∥
�p→�p

=
∥∥Ut∥∥

�p→�p
= ‖U‖�p∗→�p∗ = �(1 + 1/p)�

(
1/p∗). �

As a result of the above theorem, we have the following inequality.

Corollary 2.6 The following statement holds:

‖Hx‖�p ≤ π

p
csc(π/p)

∥∥Ctx
∥∥

�p
.

More explicitly,

∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + 1

∣∣∣∣∣
p

≤
[

π

p
csc(π/p)

]p ∞∑
j=0

∣∣∣∣∣
∞∑
k=j

xk

k + 1

∣∣∣∣∣
p

.

Theorem 2.7 For n ∈N0 and m ∈N, a Hilbert operator of order n, Hn, has a factorization
of the form Hn = Sn,mGm, where Sn,m is defined by

[Sn,m]j,k =
(1 – 1/m)(j + n + 1) + (k + 1)
(j + k + n + 1)(j + k + n + 2)

and is a bounded operator on �p with

‖Sn,m‖�p→�p = (1 – 1/mp)�(1/p)�
(
1/p∗).

Proof At first we prove the factorization. Let α = (k + 1)(k + 2) . . . (k + m – 1), we have

Sn,mGm =
∞∑
i=k

[(1 – 1/m)(j + n + 1) + (i + 1)]
(j + i + n + 1)(j + i + n + 2)

(m+k–1
k

)
(m+i

i
)

=
(

m + k – 1
k

) ∞∑
i=k

[(m – 1)(j + n + 1) + m(i + 1)]
(j + i + n + 1)(j + i + n + 2)

i!(m – 1)!
(m + i)!
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= α

∞∑
i=k

(m – 1)(j + n + 1) + m(i + 1)
(i + 1) · · · (i + m)(j + i + n + 1)(j + i + n + 2)

= α

∞∑
i=k

(i + m)(j + i + n + 2) – (i + 1)(j + i + n + 1)
(i + 1) · · · (i + m)(j + i + n + 1)(j + i + n + 2)

= α

∞∑
i=k

{
1

(i + 1) · · · (i + m – 1)(j + i + n + 1)
–

1
(i + 2) · · · (i + m)(j + i + n + 2)

}

=
1

j + k + n + 1
= Hn.

For obtaining the norm of Sn,m, consider that Sn,m = (1 – 1/m)Ut
n + Un, where the matrix

Un defined in the Corollary 2.2. Hence by applying the Hellinger–Toeplitz theorem

‖Sn,m‖�p→�p ≤ (1 – 1/m)‖Ut
n‖�p→�p + ‖Un‖�p→�p

= (1 – 1/m)�
(
1/p∗)�(1 + 1/p) + �(1/p)�

(
1 + 1/p∗)

= (1 – 1/mp)�(1/p)�
(
1/p∗),

which completes the proof. �

Corollary 2.8 The Hilbert matrix has a factorization of the form H = SnGn, where the
matrix Sn has the entries

[Sn]j,k =
(1 – 1/n)(j + 1) + (k + 1)

(j + k + 1)(j + k + 2)

and

‖Sn‖�p→�p = (1 – 1/np)�(1/p)�
(
1/p∗).

In particular, the Hilbert matrix has Bennett’s factorization H = UC, where the matrix U
is a bounded operator and ‖U‖�p→�p = �(1/p)�(1 + 1/p∗).

Corollary 2.9 The following inequalities hold:

‖Hnx‖�p ≤ (1 – 1/mp)�(1/p)�
(
1/p∗)‖Gmx‖�p .

In particular,

‖Hx‖�p ≤ (1 – 1/np)�(1/p)�
(
1/p∗)‖Gnx‖�p

and

‖Hnx‖�p ≤ �(1/p)�
(
1 + 1/p∗)‖Cx‖�p .

More explicitly,

∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + n + 1

∣∣∣∣∣
p

≤ [
(1 – 1/mp)�(1/p)�

(
1/p∗)]p

∞∑
j=0

∣∣∣∣∣
j∑

k=0

(m+k–1
k

)
xk(m+j

j
)

∣∣∣∣∣
p

,
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∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + 1

∣∣∣∣∣
p

≤ [
(1 – 1/np)�(1/p)�

(
1/p∗)]p

∞∑
j=0

∣∣∣∣∣
j∑

k=0

(n+k–1
k

)
xk(n+j

j
)

∣∣∣∣∣
p

,

and

∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + n + 1

∣∣∣∣∣
p

≤ [
�(1/p)�

(
1 + 1/p∗)]p

∞∑
j=0

∣∣∣∣∣
n∑

k=0

xk

j + 1

∣∣∣∣∣
p

.

Corollary 2.10 The Hilbert operator of order n, Hn, is a bounded operator from Gm(p) into
�p and

‖Hn‖Gm(p)→�p = (1 – 1/mp)�(1/p)�
(
1/p∗).

In particular, the Hilbert operator H is a bounded operator from C(p) into �p and
‖H‖C(p)→�p = �(1/p)�(1 + 1/p∗).

Proof The map Gm(p) → �p, x → Gmx is an isomorphism between these two spaces, hence
according to Theorem 2.7 we have

‖Hn‖Gm(p)→�p = sup
x∈Gm(p)

‖Hnx‖�p

‖x‖Gm(p)
= sup

Gmx∈�p

‖Hnx‖�p

‖Gmx‖�p

= sup
Gmx∈�p

‖Sn,mGmx‖�p

‖Gmx‖�p
= sup

y∈�p

‖Sn,my‖�p

‖y‖�p

= ‖Sn,m‖�p→�p = (1 – 1/mp)�(1/p)�
(
1/p∗). �
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