
Kim Journal of Inequalities and Applications        (2022) 2022:119 
https://doi.org/10.1186/s13660-022-02856-3

R E S E A R C H Open Access

Mixture and interpolation of the
parameterized ordered means
Sejong Kim1*

*Correspondence:
skim@chungbuk.ac.kr
1Department of Mathematics,
Chungbuk National University,
Cheongju 361-763, Korea

Abstract
Loewner partial order plays a very important role in metric topology and operator
inequality on the open convex cone of positive invertible operators. In this paper, we
consider a family G = {Gn}n∈N of the ordered means for positive invertible operators
equipped with homogeneity and properties related to the Loewner partial order such
as the monotonicity, joint concavity, and arithmetic-G-harmonic weighted mean
inequalities. Similar to the resolvent average, we construct a parameterized ordered
mean and compare two types of mixtures of parameterized ordered means in terms
of the Loewner order. We also show a relation between two families of parameterized
ordered means associated with the power mean monotonic interpolating given two
parameterized ordered means.
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1 Introduction
As the proximal average of proper convex lower semicontinuous functions in the context
of convex analysis and optimization, the weighted resolvent mean, which is a parameter-
ized harmonic mean. has been introduced in [3] and extended to monotone operators
in [2]:

Rμ(ω; A) :=

[ n∑
i=1

wi(Ai + μI)–1

]–1

– μI, μ ≥ 0,

where ω = (w1, . . . , wn) is a positive probability vector in R
n, and A = (A1, . . . , An) is an n-

tuple of positive definite Hermitian matrices. As a symmetrized version of the weighted
resolvent mean and a unique minimizer of the weighted sum of Kullback–Leibler di-
vergence, a parameterized weighted arithmetic-geometric-harmonic mean (simply the
weighted A#H mean) has been introduced in [9]:

Lμ(ω; A) :=

[ n∑
i=1

wi(Ai + μI)

]
#

[ n∑
i=1

wi(Ai + μI)–1

]–1

– μI, μ ≥ 0,

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-022-02856-3
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-022-02856-3&domain=pdf
mailto:skim@chungbuk.ac.kr
http://creativecommons.org/licenses/by/4.0/


Kim Journal of Inequalities and Applications        (2022) 2022:119 Page 2 of 16

where A#B is the midpoint of the Riemannian geodesic A#pB = A1/2(A–1/2BA–1/2)pA1/2,
p ∈ [0, 1], of positive definite Hermitian matrices A and B for the Riemannian trace metric
δ(A, B) = ‖ log A–1/2BA–1/2‖2. Interesting results of these means are that they interpolate
the weighted harmonic mean and arithmetic mean, the weighted A#H mean is the limit
of the mean iteration of the two-variable arithmetic mean and resolvent mean, and they
satisfy the monotonicity for parameter μ and the nonexpansiveness for the Thompson
part metric dT (A, B) = ‖ log A–1/2BA–1/2‖, where ‖ ·‖ denotes the operator norm. Recently,
a generalization of the parameterized version of weighted means including the Cartan
mean, which is the unique minimizer of the weighted sum of Riemannian trace distances
to given variables, to contractive barycentric maps of probability measures has been de-
veloped in [14].

On the open convex cone of positive invertible (positive definite) bounded linear oper-
ators as the infinite-dimensional setting, we consider a family G = {Gn} of the n-variable
weighted means equipped with homogeneity and properties related to the Loewner par-
tial order for each n ∈ N: the monotonicity, joint concavity, and arithmetic-G-harmonic
mean inequalities. It includes many multivariate means such as the resolvent mean, power
mean, Karcher mean [12], and we call it the ordered mean. Similar to the weighted resol-
vent mean and the weighted A#H mean, we construct the parameterized ordered mean
from given ordered mean G:

Gμ(ω; A) := Gμ(ω; A1 + μI, . . . , An + μI) – μI, μ ≥ 0,

and Gμ(ω; A) := G–μ(ω; A–1)–1 for μ < 0, where A–1 := (A–1
1 , . . . , A–1

n ). In Sect. 3, we first in-
vestigate properties of the parameterized ordered mean additionally to those in [14] and
then compare two mixed means of parameterized ordered means: for the n-by-k block
matrix A = [Aij] whose block entries are positive definite operators and for a positive prob-
ability vector λ ∈R

k ,

Gν
n
(
ω; Gμ1

k
(
λ;A1), . . . , Gμn

k
(
λ;An)) and G

∑
ωiμi

k
(
λ; Gν

n(ω;A1), . . . , Gν
n(ω;Ak)

)
,

where A
i and Aj denote the tuples of the ith row and jth column of A. They coincide

when the variables Aij commute, but this does not hold in general. We obtain interesting
inequalities associated with the Kantorovich constant.

Furthermore, in Sect. 4, we consider two families of parameterized ordered means

{
GPp(1–t,t;μ,ν)(ω; A)

}
t∈[0,1] and

{
Pp
(
1 – t, t; Gμ(ω; A), Gν(ω; A)

)}
t∈[0,1]

for given parameters μ,ν > 0 and any p ∈ [0, 1]. Note that Pp(ω; A) is the weighted power
mean of positive definite operators, which is the unique positive definite solution X of the
nonlinear equation X =

∑n
i=1 wiX#pAi. The interesting fact of these families is that they

monotonically interpolate two parameterized ordered means Gμ(ω; A) and Gν(ω; A) due
to the monotonicities of parameterized ordered means on parameters and power means
on variables. We show their relation with respect to the Loewner order and provide a gen-
eralization to the multivariate power means, so that we obtain an interesting chain of in-
equalities for positive parameters. Finally, in Sect. 5, we give two open problems about the
interpolation of parameterized ordered means for the generalized means (Hölder means)
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instead of the power means and the contractive barycentric maps of probability measures
with compact support.

2 Ordered means
Let B(H) be the Banach space of all bounded linear operators on a Hilbert spaceH with in-
ner product 〈·, ·〉, and let S(H) ⊂ B(H) be the real vector space of all self-adjoint operators.
We call A ∈ S(H) positive semidefinite (positive definite) if 〈x, Ax〉 ≥ (>)0 for all (nonzero,
respectively) vectors x ∈ H. We denote by P ⊂ S(H) the open convex cone of all positive
definite operators. For self-adjoint operators A, B, we write A ≤ (<)B if B – A is positive
semidefinite (positive definite, respectively). This is known as the Loewner partial order.

Since Kubo and Ando [10] established two-variable means of positive definite matrices
and operators, many different kinds of construction schemes of n-variable means have
been developed. Especially, Ando, Li, and Mathias [1] suggested ten desired properties
for extended geometric means. We consider a family of the weighted means of positive
definite operators with homogeneity and properties only related to the Loewner order
and call it the ordered mean. In the following, �n is the simplex of positive probability
vectors in R

n convexly spanned by the unit coordinate vectors.

Definition 2.1 The ordered mean is a family G = {Gn}n∈N such that for each n, a map Gn :
�n × P

n → P satisfies the following properties: for A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ P
n,

ω = (w1, . . . , wn) ∈ �n, and a positive real number a,
(P1) (homogeneity) Gn(ω; aA) = aGn(ω; A);
(P2) (monotonicity) Gn(ω; B) ≤ Gn(ω; A) whenever Bi ≤ Ai for all 1 ≤ i ≤ n;
(P3) (joint concavity) Gn(ω; (1 – s)A + sB) ≥ (1 – s)Gn(ω; A) + sGn(ω; B) for 0 ≤ s ≤ 1;
(P4) (arithmetic-G-harmonic weighted mean inequalities)

H(ω; A) :=

[ n∑
i=1

wiA–1
i

]–1

≤ Gn(ω; A) ≤
n∑

i=1

wiAi =: A(ω; A).

By the arithmetic-G-harmonic weighted mean inequalities (P4) we can see that the or-
dered mean G is idempotent, that is, Gn(ω; A, . . . , A) = A for all A ∈ P and n ∈N.

Remark 2.2 Many multivariate means of positive definite matrices and operators, includ-
ing the Ando–Li–Mathias mean [1], Bini-Meini–Poloni mean [5], resolvent average [3],
arithmetic-geometric-harmonic mean [9], power mean [15], and Karcher mean [12], fulfill
the definition of ordered means. Moreover, every ordered mean G = {Gn}n∈N is the mul-
tivariate Lie–Trotter mean since it satisfies the arithmetic-G-harmonic weighted mean
inequalities, that is, for each n

lim
s→0

Gn
(
ω;γ1(s), . . . ,γn(s)

)1/s = exp

[ n∑
i=1

wjγ
′
i (0)

]
,

where ω ∈ �n, and γ1, . . . ,γn are differentiable curves on P with γi(0) = I for all i. See [6]
for more detail.

Remark 2.3 By [11, Proposition 2.3] the ordered mean G is nonexpansive for the Thomp-
son metric dT . In other words, let A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ P

n, and ω =
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(w1, . . . , wn) ∈ �n. Then for each n ∈ N,

dT
(
Gn(ω; A), Gn(ω; B)

)≤ max
1≤i≤n

dT (Ai, Bi),

where dT (A, B) = ‖ log A–1/2BA–1/2‖ for A, B ∈ P and the operator norm ‖ ·‖. This provides
a generalization to the contractive barycentric map of probability measures [13, 14] and
the continuity of the ordered mean Gn.

Let

A = [Aij] =

⎛
⎜⎜⎜⎜⎝

A11 A12 · · · A1k

A21 A22 · · · A2k
...

...
. . .

...
An1 An2 · · · Ank

⎞
⎟⎟⎟⎟⎠

be an n-by-k block matrix with block entries Aij ∈ P. We denote byAi := (Ai1, Ai2, . . . , Aik) ∈
P

k and Aj := (A1j, A2j, . . . , Anj) ∈ P
n, respectively, the tuples of the ith row and jth column

of A. Also, we denote by A1 ⊕ A2 ⊕ · · · ⊕ An the n-by-n block diagonal matrix with block
entries Ai ∈ P.

Given ω = (w1, . . . , wn) ∈ �n, let

�(A) =
n∑

i=1

wiAii

for an n-by-n block matrix A = [Aij]. Then it is strictly positive and unital linear map.
Assume that 0 < mI ≤ Ai ≤ MI for all i = 1, . . . , n and some constants M, m > 0. Applying
[4, Proposition 2.7.8] to � with A1 ⊕ A2 ⊕ · · · ⊕ An, we obtain the reverse inequality of
arithmetic-harmonic weighted mean inequality:

n∑
i=1

wiAi ≤ (M + m)2

4Mm

[ n∑
i=1

wiA–1
i

]–1

.

Here the value K = (M+m)2

4Mm is known as the Kantorovich constant. By the G-harmonic
weighted mean inequality in (P4) we have

n∑
i=1

wiAi ≤ (M + m)2

4Mm
Gn(ω; A1, . . . , An). (2.1)

For each n, consider a multivariate geometric mean Gn satisfying the consistency with
scalars, that is,

Gn(ω; A) =
n∏

i=1

Awi
i

when the Ai commute, where A = (A1, . . . , An) ∈ P
n. Then the following holds:

Gn
(
ω; Gk

(
λ;A1), . . . , Gk

(
λ;An)) =

∏
i,j

Awiλj
ij = Gk

(
λ; Gn(ω;A1), . . . , Gn(ω;Ak)

)
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when the Aij commute, where λ = (λ1, . . . ,λk) ∈ �k , and A = [Aij] is the n-by-k block ma-
trix with Aij ∈ P for all i, j. Although it does not hold in general, we have the following
inequality.

Theorem 2.4 Let A = [Aij] be an n-by-k block matrix with Aij ∈ P for all i, j. Assume that
0 < mI ≤ Aij ≤ MI for all i, j, where M, m > 0 are some constants. Then the ordered mean
G = {Gn}n∈N satisfies that for all λ ∈ �k and ω ∈ �n,

Gn
(
ω; Gk

(
λ;A1), . . . , Gk

(
λ;An))≤ KGk

(
λ; Gn(ω;A1), . . . , Gn(ω;Ak)

)
,

where K = (M+m)2

4Mm .

Proof Let ω = (w1, . . . , wn) ∈ �n. Then

Gn
(
ω; Gk

(
λ;A1), . . . , Gk

(
λ;An))≤

n∑
i=1

wiGk
(
λ;Ai)

≤ Gk

(
λ;

n∑
i=1

wiA
i

)
= Gk

(
λ;

n∑
i=1

wiAi1, . . . ,
n∑

i=1

wiAik

)

≤ Gk
(
λ; KGn(ω;A1), . . . , KGn(ω;Ak)

)
= KGk

(
λ; Gn(ω;A1), . . . , Gn(ω;Ak)

)
.

The first inequality follows from the arithmetic-G weighted mean inequality in (P4), the
second from the joint concavity (P3), the third from (2.1) together with the monotonicity
(P2), and the last equality from the homogeneity (P1). �

Theorem 2.5 Let A = [Aij] be the n-by-k block matrix with Aij ∈ P for all i, j. Assume that
0 < mI ≤ Aij ≤ MI for all i, j, where M, m > 0 are some constants. Then

Gn
(
ω; Gk

(
λ;A1), . . . , Gk

(
λ;An))≤ tGk

(
λ; Gn(ω;A1), . . . , Gn(ω;Ak)

)
+ ρM,m(t)I,

where

ρM,m(t) =

⎧⎪⎪⎨
⎪⎪⎩

(1 – t)m, t ≥ M/m,

M + m – 2
√

tMm, m/M ≤ t ≤ M/m,

(1 – t)M, t ≤ m/M.

Proof It has been shown in [7, Theorem 2.2] that


(A) – t

(
A–1)–1 ≤ 
(A) – t

[
–

1
Mm


(A) +
M + m

Mm
I
]–1

for any positive unital linear map 
 and any t > 0, where A ∈ P with 0 < mI ≤ A ≤ MI .
We can easily see that the function f (x) = x – tMm

M+m–x has only one critical point x0 = M +
m –

√
tMm and f ′′(x) < 0 in the closed interval [m, M]. Thus by fundamental calculation

we obtain, as above,

ρM,m(t) = max
x∈[m,M]

f (x)
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and


(A) ≤ t

(
A–1)–1 + ρM,m(t)I

for all t > 0 and any A ∈ P such that 0 < mI ≤ A ≤ MI . Then by the arithmetic-G-harmonic
weighted mean inequalities in (P4) we have

Gn
(
ω; Gk

(
λ;A1), . . . , Gk

(
λ;An)) – tGk

(
λ; Gn(ω;A1), . . . , Gn(ω;Ak)

)
≤
∑

i,j

wiλjAij – t
[∑

i,j

wiλjA–1
ij

]–1

= �(Â) – t�
(
Â

–1)–1 ≤ ρM,m(t)I,

where �(Â) =
∑

i,j wiλjAij for

Â := A11 ⊕ · · · ⊕ A1k ⊕ A21 ⊕ · · · ⊕ A2k ⊕ · · · ⊕ An1 ⊕ · · · ⊕ Ank

is the positive unital linear map for given probability vectors ω = (w1, . . . , wn) and λ =
(λ1, . . . ,λk). �

Remark 2.6 For t = 1 in Theorem 2.5,

Gn
(
ω; Gk

(
λ;A1), . . . , Gk

(
λ;An))≤ Gk

(
λ; Gn(ω;A1), . . . , Gn(ω;Ak)

)
+ (

√
M –

√
m)2I.

3 Parameterized ordered means
For given ordered mean G = {Gn}, we define the parameterized ordered means Gμ : �n ×
P

n → P as

Gμ(ω; A) := G(ω; A + μI) – μI, μ ≥ 0, (3.1)

where I = (I, . . . , I) ∈ P
n with identity operator I , and

Gμ(ω; A) := G–μ
(
ω; A–1)–1, μ < 0. (3.2)

We also denote
G∞(ω; A) = limμ→∞ Gμ(ω; A) and G–∞(ω; A) = limμ→–∞ Gμ(ω; A).

Remark 3.1 We recall the strong (operator) topology on the Banach space B(H) of
bounded linear operators as the topology of pointwise convergence. If a net of positive
semidefinite operators Aα converges strongly to A, then the nonnegative values 〈x, Aαx〉
converge to a nonnegative value 〈x, Ax〉. So the cone {A : A ≥ 0} is strongly closed, and
hence the partial order {(A, B) ∈ S(H) × S(H) : A ≤ B} is also strongly closed. Note from
[18, Theorem 4.28(b)] that any decreasing (increasing) bounded below (above) net of self-
adjoint operators possesses an infimum (supremum, respectively) to which it strongly con-
verges.

Using the arithmetic-G-harmonic weighted mean inequalities in (P4) we have

G∞(ω; A) = A(ω; A)
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under the strong topology. By (3.2) we also have

G–∞(ω; A) = H(ω; A).

Lim [14] has established many remarkable properties of parameterized ordered means
including a stochastic approximation and L1 ergodic theorem for the parameterized Car-
tan (Karcher) mean. From [14, Proposition 5.3] we have the following properties of the
parameterized ordered means Gμ induced from those of ordered means G.

Proposition 3.2 Let A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ P
n and ω = (w1, . . . , wn) ∈ �n. The

parameterized ordered mean Gμ for μ ∈ [–∞,∞] has the following properties:
(1) (homogeneity) For a positive real number a,

⎧⎨
⎩Gμ(ω; aA) = aG

μ
a (ω; A), μ ∈ [0,∞];

Gμ(ω; aA) = aGaμ(ω; A), μ ∈ [–∞, 0);

(2) (monotonicity on variables) If Bi ≤ Ai for all 1 ≤ i ≤ n, then

Gμ(ω; B) ≤ Gμ(ω; A);

(3) (joint concavity) For μ ∈ [0,∞] and 0 ≤ s ≤ 1,

Gμ
(
ω; (1 – s)A + sB

)≥ (1 – s)Gμ(ω; A) + sGμ(ω; B);

(4) (arithmetic-Gμ-harmonic weighted mean inequalities)

[ n∑
i=1

wiA–1
i

]–1

≤ Gμ(ω; A) ≤
n∑

i=1

wiAi;

(5) (monotonicity on parameters) For 0 ≤ ν ≤ μ ≤ ∞,

H = G–∞ ≤ · · · ≤ G–μ ≤ G–ν ≤ · · · ≤ G0 = G ≤ · · · ≤ Gν ≤ Gμ ≤ · · · ≤ G∞ = A;

(6) (nonexpansiveness) Gμ is nonexpansive for the Thompson metric, that is,

dT
(
Gμ(ω; A), Gμ(ω; B)

)≤ max
1≤i≤n

dT (Ai, Bi).

Proof Most of properties have been proved in [14, Proposition 5.3]. Especially, the
arithmetic-Gμ-harmonic weighted mean inequalities (4) is derived from

H(ω; A) ≤Rμ(ω; A) ≤ Gμ(ω; A) ≤A(ω; A),

where Rμ(ω; A) := [
∑n

i=1 wi(Ai + μI)–1]–1 – μI is the resolvent mean [9].
We show the homogeneity (1).
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(1) Let a > 0. For μ ≥ 0, by the homogeneity of ordered means (P1) we have

Gμ(ω; aA) = G(ω; aA1 + μI, . . . , aAn + μI) – μI

= aG
(
ω; A1 + (μ/a)I, . . . , An + (μ/a)I

)
– μI = aG

μ
a (ω; A).

For μ < 0, similarly, by using the above result together with (3.2) we have

Gμ(ω; aA) = G–μ
(
ω; a–1A–1)–1 =

[
a–1G–aμ

(
ω; A–1)]–1 = aGaμ(ω; A). �

Proposition 3.3 Let G = {Gn} be the ordered mean such that for all n and ω = (w1, . . . ,
wn) ∈ �n,

(i) Gn is invariant under permutation, that is, for any permutation σ on n letters,

Gn(ωσ ; Aσ ) = Gn(ω; A),

where ωσ = (wσ (1), . . . , wσ (n)) and Aσ = (Aσ (1), . . . , Aσ (n)),
(ii) Gn is invariant under repetition, that is, for all k ∈ N,

Gnk
(
ω(k); A1, . . . , An︸ ︷︷ ︸, . . . , A1, . . . , An︸ ︷︷ ︸) = Gn(ω; A1, . . . , An),

where ω(k) = 1
k (w1, . . . , wn︸ ︷︷ ︸, . . . , w1, . . . , wn︸ ︷︷ ︸) ∈ �nk ,

(iii) Gn is invariant under congruence transformation, that is, for any invertible operator
S ∈ B(H),

Gn
(
ω; S∗AS

)
= S∗Gn(ω; A)S,

where S∗AS = (S∗A1S, . . . , S∗AnS),
(iv) Gn(ω; A1, . . . , An–1, X) = X if and only if X = Gn–1(ω̂; A1, . . . , An–1), where

ω̂ = 1
1–wn

(w1, . . . , wn–1) ∈ �n–1,
(v) �(Gn(ω; A1, . . . , An)) ≤ Gn(ω;�(A1), . . . ,�(An)) for any positive unital linear

map �.
Then the corresponding parameterized ordered mean Gμ for μ ∈ [–∞,∞] has the same
properties (i), (ii), (iii) for any unitary operator S and (iv). Moreover,

⎧⎨
⎩�(Gμ

n (ω; A1, . . . , An)) ≤ Gμ
n (ω;�(A1), . . . ,�(An)), μ ∈ [0,∞],

�(Gμ
n (ω; A1, . . . , An)) ≥ Gμ

n (ω;�(A–1
1 )–1, . . . ,�(A–1

n )–1), μ ∈ [–∞, 0).

Proof It is obvious from properties (i)–(iv) of the ordered means G that the corresponding
parameterized ordered mean Gμ for μ ∈ [–∞,∞] has the same properties.

For μ ∈ [0,∞], applying (v) with the positive unital linear map �, we have

�
(
Gμ

n (ω; A1, . . . , An)
)≤ Gn

(
ω;�(A1 + μI), . . . ,�(An + μI)

)
– μI

= Gn
(
ω;�(A1) + μI, . . . ,�(An) + μI

)
– μI

= Gμ
n
(
ω;�(A1), . . . ,�(An)

)
.
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Similarly, for μ ∈ [–∞, 0),

�
(
Gμ

n (ω; A1, . . . , An)
)

= �
(
G–μ

n
(
ω; A–1

1 , . . . , A–1
n
)–1)

≥ �
(
G–μ

n
(
ω; A–1

1 , . . . , A–1
n
))–1

≥ G–μ
n
(
ω;�

(
A–1

1
)
, . . . ,�

(
A–1

n
))–1

= Gμ
n
(
ω;�

(
A–1

1
)–1, . . . ,�

(
A–1

n
)–1).

The first equality follows from definition (3.2), the second inequality from Choi’s inequal-
ity in [4, Theorem 2.3.6], the third inequality from (v) and the order reversing of inversion,
and the last equality again follows from definition (3.2). �

Theorem 3.4 Let A = [Aij] be the n-by-k block matrix with Aij ∈ P for all i, j. Let ω =
(w1, . . . , wn) ∈ �n and λ = (λ1, . . . ,λk) ∈ �k . Then for any μ1, . . . ,μn ≥ 0,

n∑
i=1

wiG
μi
k
(
λ;Ai)≤ Gω•μ

k

(
λ;

n∑
i=1

wiA
i

)
,

where ω • μ =
∑n

i=1 wiμi for μ := (μ1, . . . ,μn).

Proof By the joint concavity of ordered means (P3) we have

n∑
i=1

wiG
μi
k
(
λ;Ai) =

n∑
i=1

wiGk
(
λ;Ai + μiI

)
–

n∑
i=1

wiμiI

≤ Gk

(
λ;

n∑
i=1

wi
(
A

i + μiI
))

–
n∑

i=1

wiμiI = Gω•μ

k

(
λ;

n∑
i=1

wiA
i

)
. �

Remark 3.5 For n = 2, taking μ1 = μ2 = ν(≥ 0) and ω = (1 – t, t) for t ∈ [0, 1] in Theorem
3.4 yields the joint concavity in Proposition 3.2(3):

(1 – t)Gν(λ; A) + tGν(λ; B) ≤ Gν
(
λ; (1 – t)A + tB

)
.

So Theorem 3.4 is a multivariate extension of the joint concavity.

Theorem 3.6 Let A = [Aij] be the n-by-k block matrix such that 0 < mI ≤ Aij ≤ MI for
some constants M, m > 0. Let ω = (w1, . . . , wn) ∈ �n and λ = (λ1, . . . ,λk) ∈ �k . Then

(i) for any μ1, . . . ,μn,ν ≥ 0,

Gν
n
(
ω; Gμ1

k
(
λ;A1), . . . , Gμn

k
(
λ;An))≤ KGω•μ

k
(
λ; Gν

n(ω;A1), . . . , Gν
n(ω;Ak)

)
;

(ii) for any μ1, . . . ,μn,ν < 0,

Gν
n
(
ω; Gμ1

k
(
λ;A1), . . . , Gμn

k
(
λ;An))≤ K–1Gω•μ

k
(
λ; Gν

n(ω;A1), . . . , Gν
n(ω;Ak)

)
,

where K = (M+m)2

4Mm .
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Proof Assume that 0 < mI ≤ Aij ≤ MI for some constants M, m > 0, where A = [Aij] is an
n-by-k block matrix.

(i) Since the parameterized ordered mean Gν satisfies the arithmetic-Gν-harmonic
weighted mean inequalities in Proposition 3.2 (4), from (2.1) we have

n∑
i=1

wiAi ≤ KGν
n(ω; A1, . . . , An). (3.3)

Then for μ1, . . . ,μn,ν ≥ 0,

Gν
n
(
ω; Gμ1

k
(
λ;A1), . . . , Gμn

k
(
λ;An))≤

n∑
i=1

wiG
μi
k
(
λ;Ai)

≤ Gω•μ

k

(
λ;

n∑
i=1

wiA
i

)

= Gω•μ

k

(
λ;

n∑
i=1

wiAi1, . . . ,
n∑

i=1

wiAik

)

≤ Gω•μ

k
(
λ; KGν

n(ω;A1), . . . , KGν
n(ω;Ak)

)
= KG

ω•μ
K

k
(
λ; Gν

n(ω;A1), . . . , Gν
n(ω;Ak)

)
≤ KGω•μ

k
(
λ; Gν

n(ω;A1), . . . , Gν
n(ω;Ak)

)
.

The first inequality follows from the arithmetic-Gν weighted mean inequality in
Proposition 3.2(4), the second inequality from Theorem 3.4, the third inequality
from (3.3), the second equality from the homogeneity in Proposition 3.2(1), and the
last inequality from the monotonicity of parameterized ordered means for
parameters in Proposition 3.2(5) since K ≥ 1.

(ii) For μ1, . . . ,μn,ν < 0, we have

Gν
n
(
ω; Gμ1

k
(
λ;A1), . . . , Gμn

k
(
λ;An))

= G–ν
n
(
ω; G–μ1

k
(
λ;
(
A

1)–1), . . . , G–μn
k

(
λ;
(
A

n)–1))–1

≥ K–1Gω•(–μ)
k

(
λ; G–ν

n
(
ω; (A1)–1), G–ν

n
(
ω; (Ak)–1))–1

= K–1G–ω•μ

k
(
λ; Gν

n(ω;A1)–1, Gν
n(ω;Ak)–1)–1

= K–1Gω•μ

k
(
λ; Gν

n(ω;A1), . . . , Gν
n(ω;Ak)

)
.

The first equality follows from (3.2), the inequality from (i), and the order reversing
of inversion, and the second and last equalities again follow from (3.2).

�

4 Interpolation with power means
Let a = (a1, a2, . . . , an) be an n-tuple of given positive real numbers, and let ω = (w1, . . . , wn)
be a positive probability vector. The generalized means, also called the Hölder mean, with
exponent p ∈R are a family of functions

Mp(ω; a) :=

( n∑
i=1

wia
p
i

) 1
p

, p �= 0,
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and

M0(ω; a) := lim
p→0

Mp(ω; a) =
n∏

i=1

awi
i .

Note that

M∞(ω; a) := lim
p→∞Mp(ω; a) = max{a1, . . . , an},

M–∞(ω; a) := lim
p→–∞Mp(ω; a) = min{a1, . . . , an}.

One of the interesting properties for the generalized means is the monotonicity for expo-
nents, that is,

Mp(ω; a) ≤ Mq(ω; a) if p ≤ q. (4.1)

Via the theory of power means of positive definite Hermitian matrices in [15], the power
means of positive invertible operators have been successfully defined and developed in
[12]. The power mean Pp(ω; A) of A = (A1, . . . , An) ∈ P

n for p ∈ (0, 1] is the unique solution
X ∈ P of the nonlinear equation

X =
n∑

i=1

wiX#pAi,

and Pp(ω; A) = P–p(ω; A–1)–1 for p ∈ [–1, 0). Here X#pAi = X1/2(X–1/2AiX–1/2)pX1/2 is
known as the p-weighted geometric mean of X and Ai. It is the operator version of gen-
eralized mean Mp of positive scalars; in other words, Pp(ω; A) = Mp(ω; A) if the Ai com-
mute. The most interesting results shown in [12] are that the power means converge to
the Karcher mean under the strong operator topology, i.e.,

lim
p→0

Pp(ω; A) = (ω; A),

where the Karcher mean (ω; A) is the unique solution X ∈ P of the Karcher equation∑n
i=1 wi log X1/2A–1

i X1/2 = 0, and for 0 < p ≤ q ≤ 1,

H = P–1 ≤ · · · ≤ P–q ≤ P–p ≤ · · · ≤ P0 =  ≤ · · · ≤ Pp ≤ Pq ≤ · · · ≤ P1 = A. (4.2)

For two parameters μ,ν > 0 and t ∈ [0, 1], the generalized means Mp := Mp(1 – t, t;μ,ν)
with exponent p ∈R have the following chain by (4.1):

M–∞ ≤ M–q ≤ M–p ≤ Mp ≤Mq ≤ M∞

for 0 ≤ p ≤ q. Thus Proposition 3.2(5) provides the following chain of parameterized or-
dered means GMp := GMp(1–t,t;μ,ν)(ω; A) for p ∈R:

GM–∞ ≤ GM–q ≤ GM–p ≤ GMp ≤ GMq ≤ GM∞ . (4.3)
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For fixed p ∈ [–1, 1] and μ,ν > 0, we consider the following two families of parameter-
ized ordered means:

{
GPp(1–t,t;μ,ν)(ω; A)

}
t∈[0,1],

{
Pp
(
1 – t, t; Gμ(ω; A), Gν(ω; A)

)}
t∈[0,1],

which are continuous curves in P connecting two parameterized ordered means Gμ(ω; A)
at t = 0 and Gν(ω; A) at t = 1.

Remark 4.1 Two families {GPp(1–t,t;μ,ν)}t∈[0,1] and {Pp(1 – t, t; Gμ, Gν}t∈[0,1] are interpolating
monotonically two parameterized ordered means Gμ(ω; A) and Gν(ω; A) depending on
the size of μ and ν . Indeed, without loss of generality, assume that 0 < μ ≤ ν . Then the
generalized mean with fixed exponent p ∈ [–1, 1]

Pp(1 – t, t;μ,ν) =

⎧⎨
⎩μ[1 – t + txp]

1
p , p �= 0,

μxt , p = 0,

for x = ν
μ

≥ 1 is an increasing function on t ∈ [0, 1]. So the family {GPp(1–t,t;μ,ν)}t∈[0,1] is
increasing on t by the monotonicity of parameterized ordered means on parameters in
Proposition 3.2(5). Moreover, Gμ ≤ Gν again by Proposition 3.2(5), and

Pp
(
1 – t, t; Gμ, Gν

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Gμ# 1
p

[(1 – t)Gμ + tGμ#pGν], p ∈ (0, 1],

Gμ#tGν , p = 0,

Gμ#– 1
p

[(1 – t)(Gμ)–1 + t(Gμ)–1#p(Gν)–1]–1, p ∈ [–1, 0),

by [15, Proposition 3.8]. So the family {Pp(1 – t, t; Gμ, Gν}t∈[0,1] is also increasing on t.

The following shows the relation between the above families of parameterized ordered
means for p = 1.

Theorem 4.2 Let A = (A1, . . . , An) ∈ P
n and ω = (w1, . . . , wn) ∈ �n. Then for all t ∈ [0, 1],

(i) (1 – t)Gμ(ω; A) + tGν(ω; A) ≤ G(1–t)μ+tν(ω; A) for all μ,ν ≥ 0, and
(ii) (1 – t)Gμ(ω; A) + tGν(ω; A) ≥ G(1–t)μ+tν(ω; A) for all μ,ν < 0.

Proof Taking the n-by-n block matrix

A =

⎛
⎜⎜⎜⎜⎝

A1 A2 · · · An

A1 A2 · · · An
...

...
. . .

...
A1 A2 · · · An

⎞
⎟⎟⎟⎟⎠

in Theorem 3.4 and using the arithmetic-G weighted mean inequality, we obtain (i).
For any μ,ν < 0,

(1 – t)Gμ(ω; A) + tGν(ω; A) = (1 – t)G–μ
(
ω; A–1)–1 + tG–ν

(
ω; A–1)–1

≥ [
(1 – t)G–μ

(
ω; A–1) + tG–ν

(
ω; A–1)]–1

≥ G–(1–t)μ–tν(ω; A–1)–1 = G(1–t)μ+tν(ω; A).
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The first equality follows from (3.2), the first inequality from the convexity of inversion,
and the second inequality from (i) and the order reversing of inversion. �

Theorem 4.3 Let A ∈ P
n, ω ∈ �n, and μ,ν > 0. Then for all t ∈ [0, 1] and p ∈ [–1, 1),

GPp(1–t,t;μ,ν)(ω; A) ≥ Pp
(
1 – t, t; G

μ
K (ω; A), G

ν
K (ω; A)

)
,

where K = (μ+ν)2

4μν
.

Proof For two parameters μ,ν > 0,

GPp(1–t,t;μ,ν)(ω; A) ≥ G
(1–t)μ+tν

K (ω; A) =
1
K

G(1–t)μ+tν(ω; KA)

≥ 1
K
[
(1 – t)Gμ(ω; KA) + tGν(ω; KA)

]
≥ 1

K
Pp
(
1 – t, t; Gμ(ω; KA), Gν(ω; KA)

)
= Pp

(
1 – t, t; G

μ
K (ω; A), G

ν
K (ω; A)

)
.

The first inequality follows from Proposition 3.2(5) with

(1 – t)μ + tν ≤ K
[
(1 – t)μ–1 + tν–1]–1 ≤ KPp(1 – t, t;μ,ν)

for t ∈ [0, 1], the first equality from the homogeneity in Proposition 3.2(1), the second
inequality from Theorem 4.2(i), the third inequality from the arithmetic-power mean in-
equality in (4.2), and the last equality from the homogeneities of power mean and param-
eterized ordered mean, respectively, in [12, Proposition 3.6] and Proposition 3.2(1). �

Remark 4.4 Theorem 4.3 shows the order relation between two families

{
GPp(1–t,t;μ,ν)(ω; A)

}
t∈[0,1] and

{
Pp
(
1 – t, t; G

μ
K (ω; A), G

ν
K (ω; A)

)}
t∈[0,1]

for p ∈ [–1, 1). Note that

Pp
(
1 – t, t; Gμ(ω; A), Gν(ω; A)

)≥ Pp
(
1 – t, t; G

μ
K (ω; A), G

ν
K (ω; A)

)
,

since Gμ ≥ G
μ
K and Gν ≥ G

ν
K by the monotonicity of parameterized ordered means for

parameters in Proposition 3.2(5) and the power mean Pp is monotonic on variables. So
it is open problem to compare {GPp(1–t,t;μ,ν)(ω; A)}t∈[0,1] and {Pp(1 – t, t; Gμ(ω; A), Gν(ω;
A))}t∈[0,1].

Theorem 4.3 can be extended to the multivariable power means, and its proof follows
similarly to that of Theorem 4.3 for the multivariable power means.

Proposition 4.5 Let A ∈ P
n, ω ∈ �n, and λ ∈ �k . Then for all μ1, . . . ,μk > 0 and p ∈

[–1, 1),

GPp(λ;μ1,...,μk )(ω; A) ≥ Pp
(
λ; G

μ1
K (ω; A), . . . , G

μk
K (ω; A)

)
,

where K = (μmax+μmin)2

4μmaxμmin
for μmax = max{μ1, . . . ,μk} and μmin = min{μ1, . . . ,μk}.
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The following theorem shows a relation between two families of parameterized ordered
means associated with power means for parameters p and q with –1 ≤ p ≤ 1 ≤ q.

Theorem 4.6 Let A ∈ P
n, ω ∈ �n, and λ = (λ1, . . . ,λk) ∈ �k . Then for all μ1, . . . ,μk > 0 and

–1 ≤ p ≤ 1 ≤ q,

GPq(λ;μ1,...,μk )(ω; A) ≥ Pp
(
λ; Gμ1 (ω; A), . . . , Gμk (ω; A)

)
.

Proof Let μ = (μ1, . . . ,μk) ∈ R
k with positive components. Note that Pq(λ;μ1, . . . ,μk) =

Mq(λ;μ1, . . . ,μk) for any q ≥ 1. Then

GPq(λ;μ)(ω; A) ≥ Gλ•μ(ω; A) ≥
k∑

i=1

λiGμi (ω; A) ≥ Pp
(
λ; Gμ1 (ω; A), . . . , Gμk (ω; A)

)
,

where λ •μ denotes the Euclidean inner product of λ and μ or, alternatively, the weighted
arithmetic mean of μ with probability vector λ. The first inequality follows from the mono-
tonicity on parameters in Proposition 3.2(5) with (4.1), the second from Theorem 3.4, and
the third from the monotonicity of power means in (4.2). �

Remark 4.7 By (4.2), Theorem 4.6, and (4.3) we obtain a new chain of inequalities


(
λ; Gμ1 , . . . , Gμk

)≤ P 1
q

(
λ; Gμ1 , . . . , Gμk

)≤ P 1
p

(
λ; Gμ1 , . . . , Gμk

)≤ GPp(λ;μ) ≤ GPq(λ;μ)

for 1 ≤ p ≤ q, where Gν := Gν(ω; A) for ν ≥ 0. For negative parameters, the reverse in-
equalities in the above chain hold, but it remains to show that

P– 1
p

(
λ; Gμ1 , . . . , Gμk

)≥ GP–p(λ;μ)

for p ≥ 1.

5 Final remarks and open problems
The generalized mean Mp of positive real numbers can be naturally defined for positive
definite operators A1, . . . , An as

Mp(ω; A) :=

( n∑
i=1

wiA
p
i

) 1
p

, p �= 0.

There are many properties analogous to those for positive real numbers, but there are
some different ones. For instance, from [8] we have

M0(ω; A) := lim
p→0

Mp(ω; A) = exp

( n∑
i=1

wi log Ai

)
,

where the right-hand side is known as the log-Euclidean mean, and

M–q ≤ M–p ≤ M–1 = H ≤ M1 = A≤ Mp ≤ Mq
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for 1 ≤ p ≤ q. We can find more information from [8] by taking the finitely supported
measure

∑n
i=1 wiδAi , where δA is the point measure at A ∈ P.

Similarly to Sect. 4, we can consider the following two families of parameterized ordered
means:

{
GMp(1–t,t;μ,ν)(ω; A)

}
,
{
Mp

(
1 – t, t; Gμ(ω; A), Gν(ω; A)

)}
for fixed p ∈R and μ,ν > 0. By Theorem 4.2(i) and Theorem 4.3 with p = –1 we obtain

GA(1–t,t;μ,ν)(ω; A) ≥A
(
1 – t, t; Gμ(ω; A), Gν(ω; A)

)
,

GH(1–t,t;μ,ν)(ω; A) ≥H
(
1 – t, t; G

μ
K (ω; A), G

ν
K (ω; A)

)
.

Note that this may not hold for p ∈ (–1, 1), since the monotonicity of generalized means
including the log-Euclidean mean does not hold. So it is an interesting question to compare
two families for general p ∈R.

At last, we explain the background to extending a multivariate mean to a barycenter of
probability measures and give some open problems from the results in this paper. Let B(X)
be the algebra of Borel sets on a metric space (X, d). Let P(X) be the set of all probability
measures on (X, B(X)) with separable support, and let Pp(X) ⊂ P(X) for p ≥ 1 be the set
of all probability measures with finite p-moment: for some y ∈ X,

∫
X

dp(x, y) dμ(x) < ∞.

We denote by P∞(X) the set of probability measures on (X, B(X)) with compact support.
For p ≥ 1, the p-Wasserstein distance on Pp(X) is defined by

dW
p (ρ,σ ) :=

[
inf

π∈�(ρ,σ )

∫
X×X

dp(x, y) dπ (x, y)
]1/p

,

where �(ρ,σ ) denotes the set of all couplings for ρ,σ ∈ Pp(X). Moreover, the ∞-
Wasserstein distance on P∞(X) is given by

dW
∞ (ρ,σ ) = lim

p→∞ dW
p (ρ,σ ) = inf

π∈�(ρ,σ )
sup

{
d(x, y) : (x, y) ∈ supp(π )

}
.

For more details and information, see [16, 17].
For each natural number n, in general, a mean Gn on a set X is a map Gn : Xn → X sat-

isfying the idempotency. An intrinsic mean Gn is the mean with invariance under permu-
tation and repetition. By [13, Proposition 2.7] a nonexpansive intrinsic mean G = {Gn}n∈N
on a complete metric space X uniquely extends to a dW∞ -contractive barycentric map
βG : P∞(X) → X, where βG is dW∞ -contractive if and only if

d
(
βG(ρ),βG(σ )

)≤ dW
∞ (ρ,σ )

for all ρ,σ ∈P∞(X). Thus the parameterized ordered mean Gμ = {Gμ
n } with invariance un-

der permutation and repetition can be extended to a dW∞ -contractive barycentric map βGμ

by Proposition 3.2 (6). It is also an interesting problem to generalize results in Sect. 3 and
Sect. 4 to the dW∞ -contractive barycentric map βGμ .
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