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Abstract
We use a nontrivial concircular vector field u on the unit sphere Sn+1 in studying
geometry of its hypersurfaces. An orientable hypersurfaceM of the unit sphere Sn+1

naturally inherits a vector field v and a smooth function ρ . We use the condition that
the vector field v is an eigenvector of the de-Rham Laplace operator together with an
inequality satisfied by the integral of the Ricci curvature in the direction of the vector
field v to find a characterization of small spheres in the unit sphere Sn+1. We also use
the condition that the function ρ is a nontrivial solution of the Fischer–Marsden
equation together with an inequality satisfied by the integral of the Ricci curvature in
the direction of the vector field v to find another characterization of small spheres in
the unit sphere Sn+1.
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1 Introduction
The study of the geometry of hypersurfaces in a sphere is a captivating subject in differen-
tial geometry that has been investigated by many researchers (see, e.g., [4, 7, 8, 11, 12, 20–
23, 26, 31, 32, 35]), one of the most interesting problems in this field, still unsolved, being
the famous Chern Conjecture for isoparametric hypersurfaces (see [39, Problem 105] and
also the remarkable review paper [28]). We would like to emphasize that several notable
results have been established in this field over time. For instance, Okumura [24] provided
a criterion for a hypersurface of constant mean curvature in an odd-dimensional sphere
to be totally umbilical. Later, do Carmo and Warner [13], as well as Wang and Xia [34],
investigated the rigidity of hypersurfaces in spheres, while Chen characterized minimal
hypersurfaces in the same ambient space [6]. Some global pinching results concerning
minimal hypersurfaces in spheres were obtained by Shen [30]. Other interesting pinching
theorems were derived in [1, 18, 36–38]. Recent results on the geometry of hypersurfaces
in spheres were obtained in [2, 3, 27, 29, 40].

One of the interesting but challenging problems in submanifold geometry is character-
izing small spheres (non-totally geodesic totally umbilical spheres) in a unit sphere Sn+1

(see [19]). On a Riemannian manifold (M, g), the Ricci operator T is defined using Ricci
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tensor S, namely S(X, Y ) = g(TX, Y ), X ∈ X(M), where X(M) is the Lie algebra of smooth
vector fields on M. Similarly, the rough Laplace operator on the Riemannian manifold
(M, g), � : X(M) →X(M) is defined by

�X =
m∑

i=1

(∇ei∇ei X – ∇∇ei ei X), X ∈X(M),

where ∇ is the Riemannian connection and {e1, . . . , em} is a local orthonormal frame on
M, m = dim M. The rough Laplace operator is used in finding characterizations of spheres
as well as of Euclidean spaces (cf. [15, 17]). Recall that the de-Rham Laplace operator � :
X(M) → X(M) on a Riemannian manifold (M, g) is defined by (cf. [14], p.83)

� = T + � (1)

and is used to characterize a Killing vector field on a compact Riemannian manifold. It is
known that if ξ is a Killing vector field on a Riemannian manifold (M, g) or soliton vec-
tor field of a Ricci soliton (M, g, ξ ,λ), then �ξ = 0 (cf. [10]). Also, Fischer and Marsden
considered in [16] the following differential equation on a Riemannian manifold (M, g):

(�f )g + fS = Hess(f ), (2)

where Hess(f ) is the Hessian of a smooth function f and � is the Laplace operator acting on
smooth functions of M. They conjectured that if a compact Riemannian manifold admits
a nontrivial solution of the differential equation (2), then it must be an Einstein manifold.
Recent investigations on manifolds satisfying the Fischer–Marsden equation were done
in [5, 9, 25, 33].

Consider the sphere Sn+1 as hypersurface of the Euclidean space Rn+2 with unit normal
ξ and shape operator B = –

√
cI , where I denotes the identity operator. For the constant

vector field −→a = ∂

∂x1 on the Euclidean space Rn+2, where x1, . . . , xn+2 are Euclidean coor-
dinates on Rn+2, we denote by u the tangential projection of −→a on the unit sphere Sn+1.
Then we have

−→a = u + f ξ ,

where f = 〈−→a , ξ 〉, 〈, 〉 is the Euclidean metric on Rn+2. Taking covariant derivative in the
above equation with respect to a vector field X on the unit sphere Sn+1 and using Gauss–
Weingarten formulae for hypersurface, we conclude

∇Xu = –f X, grad f = u, (3)

where ∇ is the Riemannian connection on the unit sphere Sn+1 with respect to the canon-
ical metric g and grad f is the gradient of the smooth function f on Sn+1. Thus, u is a con-
circular vector field on the unit sphere Sn+1. Now consider the small sphere Sn( 1

c2 ) defined
by

Sn
(

1
c2

)
=

{
(
x1, . . . xn+2) :

n+1∑

i=1

(
xi)2 = c2, xn+2 =

√
1 – c2, 0 < c < 1

}
.
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Then it follows that Sn( 1
c2 ) is a hypersurface of the unit sphere Sn+1 with unit normal vector

field N given by

N =
(

–
√

1 – c2

c
x1, . . . , –

√
1 – c2

c
xn+1, c

)
.

We denote by the same letter g the induced metric on the small sphere Sn( 1
c2 ) and de-

note by ∇ the Riemannian connection with respect to the induced metric g . Then, by a
straightforward computation, we find that

∇XN = –
√

1 – c2

c
X, X ∈X

(
Sn

(
1
c2

))
. (4)

Thus, the shape operator A of the hypersurface Sn( 1
c2 ) is given by

A =
√

1 – c2

c
I = αI, (5)

where α is the mean curvature of the hypersurface Sn( 1
c2 ). It is clear that α is a nonzero

constant as 0 < c < 1. Now, denote by v the tangential projection of the vector field u to
the small sphere Sn( 1

c2 ) and define ρ = g(u, N). Then we have

u = v + ρN . (6)

However, we can easily see using the definitions of u and N that

g(u, N) = –
√

1 – c2

c
f ,

where f is the restriction of f to Sn( 1
c2 ). Thus, ρ = –αf . Taking covariant derivative in

equation (6) and using Gauss–Weingarten formulae for hypersurface, we conclude on us-
ing equations (3) and (5) by equating tangential components that

∇Xv = –
(
1 + α2)fX, gradρ = –αv, (7)

for X ∈X(Sn( 1
c2 )). Also, we have grad f = v. Thus, the rough Laplace operator � acting on

v and the Laplace operator acting on the smooth function ρ are respectively given by

�v = –
(
1 + α2)v, �ρ = –n

(
1 + α2)ρ. (8)

The Ricci operator T of the small sphere Sn( 1
c2 ) is given by

TX = (n – 1)
(
1 + α2)X.

Thus, we observe that the vector field v on the small sphere Sn( 1
c2 ) satisfies

�v = (n – 2)
(
1 + α2)v. (9)
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Also, using equation (8), we see that the Hessian of ρ is given by

Hess(ρ)(X, Y ) = g(∇X gradρ, Y )

= α
(
1 + α2)fg(X, Y )

= –
(
1 + α2)ρg(X, Y )

for X, Y ∈ X(Sn( 1
c2 )), and using the above equation with expression for Ricci tensor and

equation (8), we see that the function ρ on the small sphere Sn( 1
c2 ) satisfies the Fischer–

Marsden equation

(�ρ)g + ρS = Hess(ρ). (10)

Thus, in view of equations (9) and (10), the small sphere Sn( 1
c2 ) admits a vector field v that

is an eigenvector of the de-Rham Laplace operator with eigenvalue (n – 2)(1 + α2), and it
admits a smooth function ρ that is a solution of the Fischer–Marsden differential equa-
tion. These raise two questions: (i) Given a compact hypersurface M of the unit sphere
Sn+1 that admits a vector field v, which is the eigenvector of de-Rham Laplace operator �
corresponding to positive eigenvalue, is this hypersurface necessarily isometric to a small
sphere? (ii) Given a compact hypersurface M admitting a vector field v and a smooth func-
tion ρ with gradient gradρ = –Av a nontrivial solution of the Fischer–Marsden differential
equation, is this hypersurface necessarily isometric to a small sphere? In this paper, we an-
swer these questions (cf. Theorem 3.1 and Theorem 3.2).

2 Preliminaries
Let M be an orientable hypersurface of the unit sphere Sn+1 with unit normal vector field
N and shape operator A. We denote the canonical metric on Sn+1 by g and denote by the
same letter g the induced metric on the hypersurface M. Let ∇ and ∇ be the Riemannian
connections on the unit sphere Sn+1 and on the hypersurface M, respectively. Then we
have the following fundamental equations of the hypersurface:

∇XY = ∇XY + g(AX, Y )N , ∇XN = –AX, X, Y ∈X(M). (11)

The curvature tensor field R, the Ricci tensor S, and the scalar curvature τ of the hyper-
surface M are given by

R(X, Y )Z = g(Y , Z)X – g(X, Z)Y + g(AY , Z)AX – g(AX, Z)AY , (12)

S(X, Y ) = (n – 1)g(X, Y ) + nαg(AX, Y ) – g(AX, AY ), (13)

and

τ = n(n – 1) + n2α2 – ‖A‖2, (14)

where X, Y , Z ∈ X(M) and α = 1
n Tr A is the mean curvature of the hypersurface M and

‖A‖2 = Tr A2. The Codazzi equation of hypersurface gives

(∇A)(X, Y ) = (∇A)(Y , X), X, Y ∈ X(M), (15)
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where

(∇A)(X, Y ) = ∇XAY – A(∇XY ).

Taking a local orthonormal frame {e1, . . . , en} on the hypersurface M, equation (15) yields

n gradα =
n∑

i=1

(∇A)(ei, ei). (16)

Let u be the concircular vector field on the unit sphere Sn+1 considered in the previous
section, which satisfies equation (3), where f is the function defined on Sn+1 by f = 〈−→a , ξ 〉.
We denote the restriction of f to the hypersurface M by f and the tangential projection of
the vector field u on M by v. Then we have

u = v + ρN , ρ = g(u, N). (17)

We call the vector field v the induced vector field on the hypersurface M. We also call the
functions ρ and f the support function and the associated function, respectively, of the
hypersurface M. Note that grad f is the tangential component of grad f , i.e.,

grad f = [grad f ]T ,

while the normal component of grad f is

[grad f ]⊥ = g(grad f , N)N

= g(u, N)N

= ρN ,

that is, on using equations (3) and (17), we have

grad f = v. (18)

Taking covariant derivative in equation (17) and using equations (3) and (11), we get on
equating tangential and normal components

∇Xv = –fX + ρAX, gradρ = –Av, X ∈X(M). (19)

Lemma 2.1 Let M be a compact hypersurface of the unit sphere Sn+1 with induced vector
field v, support function ρ , and associated function f . Then

∫

M
‖v‖2 = n

∫

M

(
f 2 – f ρα

)
.

Proof Using equation (19), we have

div v = n(–f + ρα),
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and using equation (18), we get

div(f v) = ‖v‖2 + nf (–f + ρα).

Integrating the above equation, we get the result. �

Lemma 2.2 Let M be a compact hypersurface of the unit sphere Sn+1 with induced vector
field v, support function ρ , and associated function f . Then

∫

M
ρv(α) =

∫

M

[
αg(Av, v) + nf ρα – nρ2α2].

Proof Note that we have

div
(
α(ρv)

)
= ρv(α) + α div(ρv)

= ρv(α) + α
[
v(ρ) + nρ(–f + ρα

]
.

Integrating this equation and using the second equation in (19), we get the result. �

3 Characterizations of small spheres
Let u be the concircular vector field on the unit sphere Sn+1 and M be its orientable non-
totally geodesic hypersurface with mean curvature α and induced vector field v, potential
function ρ , and associated function f . In this section we find different characterizations
of the small spheres in Sn+1.

Theorem 3.1 Let M be an orientable non-totally geodesic compact and connected hyper-
surface of the unit sphere Sn+1, n ≥ 2, with induced vector field v, nonzero potential function
ρ , and associated function f . Then �v = λv for a constant λ, and the inequality

∫

M
S(v, v) ≤ n

∫

M
(f – ρα)

[
(λ + 1)f – ρα

]

holds if and only if α is a constant and M is isometric to the small sphere Sm(1 + α2).

Proof Suppose that v satisfies

�v = λv, (20)

where λ is a constant. Using equation (13), we have

T(v) = (n – 1)v + nαAv – A2v. (21)

Now, using equation (18), we get

∇X∇Xv – ∇∇X Xv = –X(f )X + X(ρ)AX + ρ(∇A)(X, Z),

which gives the rough Laplace operator acting on the vector field v as

�v = – grad f + A(gradρ) + nρ gradα,
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where we have used equation (16). The above equation in view of equations (18) and (19)
becomes

�v = –v – A2v + nρ gradα. (22)

Thus, equations (20), (21), and (22) imply

(n – 2 – λ)v – 2A2v + nαAv + nρ gradα = 0.

Taking the inner product in the above equation with v, we get

(n – 2 – λ)‖v‖2 – 2‖Av‖2 + nαg(Av, v) + nρv(α) = 0.

By integrating the above equation and using Lemma 2.2, we conclude

∫

M

[
(n – 2 – λ)‖v‖2 – 2‖Av‖2 + 2nαg(Av, v) + n2f ρα – n2ρ2α2] = 0.

Now, using equation (13) in the above equation, we arrive at

∫

M

[
–(n + λ)‖v‖2 + 2S(v, v) + n2f ρα – n2ρ2α2] = 0,

which in view of Lemma 2.1 gives

∫

M
S(v, v) =

∫

M

[
n2(–f + ρα)2 – nf 2 – ρ2‖A‖2 + 2nf ρα

]
.

Therefore, we derive

∫

M

[
–n(n + λ)f 2 + n(2n + λ)f ρα – n2ρ2α2 + 2S(v, v)

]
= 0. (23)

Note that equation (18) implies

S(v, v) = S(grad f , grad f )

and Bochner’s formula gives

∫

M
S(v, v) =

∫

M

[
(�f )2 – Hess(f )2]. (24)

Using equation (18), we have

�f = n(–f + ρα)

and

Hess(f )(X, Y ) = g(∇X grad f , Y )
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= –fg(X, Y ) + ρg(AX, Y ).

Hence we derive

Hess(f )2 = nf 2 + ρ2‖A‖2 – 2nf ρα.

Thus, from equation (24), we have

∫

M
S(v, v) =

∫

M

[
n2(–f + ρα)2 – nf 2 – ρ2‖A‖2 + 2nf ρα

]
,

that is,

∫

M
S(v, v) =

∫

M

[
n(n – 1)f 2 + n2ρ2α2 – ρ2‖A‖2 – 2n(n – 1)f ρα

]
. (25)

Combining equations (23) and (25) (retaining out of 2S(v, v) one term in (24)), we get

∫

M
ρ2(‖A‖2 – nα2) =

∫

M

[
–n

[
(λ + 1)f 2 – (λ + 2)f ρα + ρ2α2] + S(v, v)

]
.

The above equation gives immediately

∫

M
ρ2(‖A‖2 – nα2) =

∫

M

[
S(v, v) – n(f – ρα)

(
(λ + 1)f – ρα

)]
.

Using the condition in the statement in the above equation, we get

ρ2(‖A‖2 – nα2) = 0.

However, as the support function ρ �= 0, we get ‖A‖2 = nα2, and this equality in view of
Schwartz’s inequality holds if and only if

A = αI. (26)

Using a local orthonormal frame {e1, . . . , en} in the above equation, we get

n∑

i=1

(∇A)(ei, ei) = gradα,

and combining the above equation with equation (16), we get

(n – 1) gradα = 0.

As n ≥ 2, we conclude that the mean curvature α is a constant, and by equation (26) we
see that M is totally umbilical hypersurface. Hence, by equation (12), we see that M is
isometric to the small sphere Sn(1 + α2).
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Conversely, if (M, g) is isometric to the sphere Sm(1 + α2), then choosing positive con-
stant c such that

c2 =
1

1 + α2 ,

it is clear that 0 < c < 1. We know by equation (9) that potential function ρ on the small
sphere Sn( 1

c2 ) satisfies

�v = λv, λ = (n – 2)
(
1 + α2), (27)

where λ is obviously a constant. Also, we have the Ricci curvature

S(v, v) = (n – 1)
(
1 + α2)‖v‖2,

and, in view of Lemma 2.1 and ρ = –αf for the small sphere, we deduce
∫

M
S(v, v) = n(n – 1)

(
1 + α2)

∫

M
f 2. (28)

Also, on using

ρ = –αf , λ = (n – 2)
(
1 + α2),

we have

n
∫

M
(f – ρα)

[
(λ + 1)f – ρα

]
= n(n – 1)

(
1 + α2)

∫

M
f 2. (29)

Thus, equations (27), (28), and (29) imply that the conditions in the statement of Theorem
hold. Finally, observe that if ρ = 0 on the small sphere Sm(1 + α2) with constant α �= 0, we
get f = 0, and consequently v = 0. Then, by equation (6), we get u = 0, and equation (3)
implies f = 0. Thus, with assumption ρ = 0, we reach −→a = 0, hence a contradiction to
the fact that −→a is a constant unit vector field on the Euclidean space Rn+2. Hence all the
requirements in the statement are met. �

Recall that if an n-dimensional Riemannian manifold (M, g) admits a nontrivial solution
of the Fischer–Marsden differential equation (2), n > 2, then the scalar curvature τ is a
constant (cf. [16]) and the nontrivial solution f satisfies

�f = –
τ

n – 1
f . (30)

Theorem 3.2 Let M be an orientable non-totally geodesic compact and connected hyper-
surface of the unit sphere Sn+1, n > 2, with induced vector field v, nonzero potential function
ρ , and associated function f . Then the potential function ρ is a nontrivial solution of the
Fischer–Marsden equation (2) and the inequality

∫

M
S(v, v) ≥ n – 1

n

∫

M
(div v)2

holds if and only if α is a constant and M is isometric to the small sphere Sm(1 + α2).
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Proof Let M be an orientable non-totally geodesic compact and connected hypersurface
of the unit sphere Sn+1, n > 2, with induced vector field v, nonzero potential function ρ , and
associated function f . Suppose that ρ is the nontrivial solution of the Fischer–Marsden
equation (2). Then, by equation (30), we have

�ρ = –
τ

n – 1
ρ. (31)

Using equations (16) and (19), we find

div Av = –nf α + ρ‖A‖2 + nv(α),

and consequently, equation (19) implies

�ρ = nf α – ρ‖A‖2 – nv(α). (32)

Using equation (31) with the above equation, we get

ρ2(‖A‖2 – nα2) = nf ρα +
τ

n – 1
ρ2 – nρv(α) – nρ2α2.

Integrating the above equation and using Lemma 2.2, we get

∫

M
ρ2(‖A‖2 – nα2) =

∫

M

[
–n(n – 1)f ρα + n(n – 1)ρ2α2 +

τ

n – 1
ρ2 – nαg(Av, v)

]
. (33)

Note that τ is a constant and equations (19) and (31) imply
∫

M
‖Av‖2 =

∫

M
‖gradρ‖2 =

τ

n – 1

∫

M
ρ2. (34)

Also, equation (13) gives
∫

M

[‖Av‖2 – nαg(Av, v
]

=
∫

M

[
(n – 1)‖v‖2 – S(v, v)

]
,

which in view of equation (34) and Lemma 2.1 implies

∫

M

[
τ

n – 1
ρ2 – nαg(Av, v)

]
=

∫

M

[
n(n – 1)

(
f 2 – f ρα

)
– S(v, v)

]
.

Combining the above equation with equation (33), we arrive at
∫

M
ρ2(‖A‖2 – nα2) =

∫

M

[
n(n – 1)(–f + ρα)2 – S(v, v)

]
.

Now, using

div v = n(–f + ρα)

in the above equation, we get

∫

M
ρ2(‖A‖2 – nα2) =

∫

M

[
(n – 1)

n
(div v)2 – S(v, v)

]
. (35)
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Using now the hypothesis

∫

M
S(v, v) ≥ n – 1

n

∫

M
(div v)2

in equation (35), we conclude

ρ2(‖A‖2 – nα2) = 0.

However, as the function ρ �= 0 on connected M, we have ‖A‖2 = nα2. But, in view of
Schwartz’s inequality, this equality holds if and only if A = αI . Hence, M being non-totally
geodesic hypersurface and n > 2, M is isometric to the small sphere Sn(1 + α2).

Conversely, as we have seen in the introduction, on the small sphere Sn(1 + α2), the
function ρ is a solution of Fischer–Marsden equation (cf. equation (10)). Now, the Ricci
curvature

S(v, v) = (n – 1)
(
1 + α2)‖v‖2

together with Lemma 2.1 and ρ = –f α implies

∫

M
S(v, v) = n(n – 1)

(
1 + α2)

∫

M
f 2. (36)

Also, we have

div v = n(–f + ρα)

= n
(
1 + α2)(–f ),

and we derive

n – 1
n

∫

M
(div v)2 = n(n – 1)

(
1 + α2)

∫

M
f 2. (37)

As seen in the proof of Theorem 3.1, we have that the function ρ �= 0. Thus, by equations
(36) and (37), we can see immediately that all the requirements are met in the statement
for the small sphere Sn(1 + α2). �
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