El-Deeb et al. Journal of Inequalities and Applications (2022) 2022:120 ® Journal of Inequalities and Applications
https://doi.org/10.1186/513660-022-02854-5 a SpringerOpen Journal

RESEARCH Open Access

Check for
updates

Weighted dynamic Hardy-type inequalities
involving many functions on arbitrary time
scales

Ahmed A. El-Deeb' @, Karim A. Mohamed', Dumitru Baleanu?® and Haytham M. Rezk'

“Correspondence:

ahmedeldeeb@azharedu.eg Abstract

' Department of Mathematics, L . . L -

Faculty of Science, Al-Azhar The objective of this paper is to prove some new dynamic inequalities of Hardy type
University, Nasr City, 11884, Cairo, on time scales which generalize and improve some recent results given in the

Egypt , o literature. Further, we derive some new weighted Hardy dynamic inequalities

Full list of author information is . . . . . .

available at the end of the article involving many functions on time scales. As special cases, we get continuous and

discrete inequalities.
MSC: 26A15; 26A16; 26D10; 26D15; 39A13; 34A40; 34N05

Keywords: Delta derivative; Hardy's inequality; Holder's inequality; Time scales

1 Introduction
In [1], Hardy showed that if @ > 1 and W({) > 0 over the interval (0,00) such that
Jo° W*(£)dg < oo, then

(M wwae) ar<(-) [T vt 1)
[ G vow) () |

where the constant («/(x — 1))* is sharp. In [2], Hardy obtained that if « > 1 and m > 1,
then

o q x o o R | «
[ eomfuls) [ zvms o

In [3], Levinson proved thatif« > 1, ¥(x) > 0, f(x) > 0 is an absolutely continuous function

and
a  flx) 1
a—1+ij)ZE>07 forallx >0,
then
00 1 x o oo
dec) d o “(x) dx.
/0 (xf(x)fof(c)w@) ;) x<p fo W (x) dx ()
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n [4], S. Hussan et al. proved that for any i = 1,2,...,n, n € N, fi(¢) > 0 and integrable
function on (0,00) and W, u;, z; are absolutely continuous functions with z; essentially
bounded and positive, if u; is increasing and

ui(E)W'(¢) 1
(1= 2m)id ()W) — > )»_1 >0, form>—
w@OWE) 1 .
b (1 —2m)u,($)W(Q) =57 0, form<z,
then
n o n 26, 2 oo A
;/0 W(Z)R($)Ri41(8) dt S;(IZWI—H) ./o W(¢)gi(¢)de, @)
where
Ri(¢) = ‘/;fo”z x)dx, m> o,
\/Zf ft( Ydx, m< ;,
: 4-2m[,/ 242
20~ [ul(C)]ZZ(C )[f,(é))] PO s e a0

Also in the same paper [4], the authors proved that foranyi=1,2,...,n,n >k -1,n,k €N,
ifa;>1, 68 =ai/(ka; — 1) and

1+ mE)W(©) > i >0, form>—

(I —kamu(O)WE) ~ A~ Ko
ui(E)W'(¢) 1

A= o) = 5 > orm< g

csn °°A( | i+K—1Raj() g < " kaifBi o OOA( )i () d (5)
[ w0l TR0 | =3 () [ wosod

i=1

Koy { lu j‘ Z (x dx’

1

Ri(©)=1 .,
{/_foo uj x)z )dx,

[ (¢)] i 2=m) [zé(c)]“’*ff“‘ )
20N () [ ()] kit

m> -,
Koy

m< -,
kag

&)=

and ,31 = max (Ai,&).
1<i<nm

The main aim is to establish some dynamic inequalities where the involved functions are
defined on the T domain. These results involve the classical discrete and continuous in-
equalities. For more details, we point the reader to the books [5, 6]. In [7], Rehak found
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the time scale version of Hardy’s inequality. Especially, Rehak derived that if « > 1 and
W(£) > 0 are such that [ W*(¢)A¢ < oo then

/QOO(G(S_Q /;(C)\I/(x)Ax>aA§ < < 0_51)“/:0 W ()AL,

In addition, if 4(¢)/¢ — 0 as ¢ — 00, then the constant (a/(« — 1))* is sharp.
In [8], the authors showed that if f(¢) >0, ¥(¢) > 0 and f2(¢) < 0 on [0,00)T, & > 1 and
there exist constants «, 8 > 0 such that ¢/o(¢) > 1/k and

o« KW ) 1
a-1 @) f7(¢) ~ B

for ¢ € [0, 00)T,

then

©1, e [TV
/0 ge (200" 8¢ = () /0 < 7o) ) A

where

f(C /f(x)‘D(x)Ax, ¢ €[0,00)T.

The purpose of this manuscript is to establish some new Hardy-type inequalities on
time scales T involving many functions which generalize and improve some results in
[4]. The following is the format of the paper: In Sect. 2, we begin with some background

information about the delta derivative on T. Our main findings are obtained in Sect. 3.

2 Basic principles

A time scale T is an arbitrary nonempty closed subset of R. We define the forward jump
operator 0 : T — T by o(¢) = inf{s € T : s > ¢} and define the backward jump operator
p: T — T by p(¢) =sup{s € T :s < ¢}, respectively, where sup ¥} = inf T.

A point ¢ € T is called right-dense if o(¢) = ¢, left-dense if p(¢) = ¢, right-scattered
if 0(¢) > ¢, and left-scattered if p(¢) < ¢ If supT is finite and left-scattered, then T* =
T\ {sup T}, otherwise, TX = T.

A function f: T — R is a right-dense continuous (rd-continuous) if f is continuous at
right-dense points and its left-hand limits are finite at left-dense points in T.

Let f : T — R be a real-valued function on T. Then for ¢ € T, we define f*(¢) to be the
number (if it exists) with the property that given any ¢ > 0 there is a neighborhood « of ¢

such that, for all s € u, we have

f(0(©)) ~f&] -2 -51| <elo(¢) -s].

In this case, we say that f is delta differentiable on TX provided f(¢) exists for all ¢ € TX. If
f,g: T — R are delta differentiable at { € T, then

(0)* =g 478" ~fg* +1°¢",  where " () = (f 00)(¢) =/ (0 ). ©)
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For a,b € T and a delta differentiable function f, the Cauchy integral of f* is defined by
fabfA(;)A;’ =f(b) - f(a). The integration by parts formula on T is given by

b b
f WA ()AL = (WD)(b) - (W) (a) — f WA (0)07 ()AL @)

Lemma 1 (Leibniz rule [9]) Iff, f* are continuous and u,v: T —> T are delta differen-
tiable functions and f*(¢,s) mean the delta derivative of f (¢, s) with respect to ¢, then

() A
( : f ,S)AS>

u(¢

v(¢)
- / P8P (010, 40) e (o0, u0).
u(¢

Lemma 2 (Chain rule [10]) Assume g:R — R is continuous, g: T — R is delta differen-
tiable on TX, and f : R — R is continuously differentiable. Then there exists a point c in the
real interval [{,0(C)] with

(f o)) =/"(g(0))g (). 9)

Lemma 3 (Holder’s inequality [10]) Let a,b € T. For rd-continuous functions f,g :
[a, blT — R, we have

b b L ] 1
/ v<c>g(;>|A¢s< / lf(c)I“As“) ( f 1) Ac) , (10)

wherea >1 and § = a/(o - 1).

Lemma 4 ([11]) IfCy,Cs,...,C, are reals and C,,1 = Cy, then

n—k+2 n
Z CCri1-+ Cr1 < Z(CV)K, wheren >« — 1. (11)
r=1 r=1

Lemma 5 ([11]) IfCy,Cs,...,C, are reals and C,yq = Cy, for € > 1, then

(Z cr) <A YCH, (12)
r=1 r=1

3 Main results

Throughout this section, any time scale T is unbounded above with 4,b € T. We will
make the assumption that the functions W, u;, z; in the statements of the theorems are
rd-continuous, nonnegative and increasing, and f;(¢) > 0 is an integrable function.

Theorem 6 Forany 1l <i<mn,n>«k —1andn,k €N, ifthere exist constants 1; >0, §; >0
such that
[ ()] W™ (2)

1 1
D @)~ w o Ty 1
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ui(O)W™(¢) 1
Tem- @ S5 Ty
then
W g api Y Ao )
Z || eriortoac =X () [T @soa
where

o o wa

M x
WA%<OO, form> 22>2,
1

Ri(¢)=1 and [~
wa u; ()22 fl(x)Ax, form<%,1§a§2,

7C) P
27 () [ ()] @D A ()] 1% ()i 1
: - o = , form>g,a>2,
g(é.) — (2 ) Zi({)( 20)) ( ( )
1 o2-m ©) afu(f N

1
20 )(u%))a i Jorm<gplsas2,

and Bi = maxy<i<y(ri, i), ui(oo) = oco.

Proof First, let us define for m > %, a>2,and0<a<b<oo,

A
Vi (
Ri,(¢) = o / ulz % (xﬂ( YAx, 1<i<n,

(@ ()"

with Ri(¢) = Ri(¢). Using (11) with « = 2 for C; = Ri% (¢), we get

ZRW(C)R i+l)a (C) = ZR (C)

Multiplying (16) by #”(¢) and integrating from a to b, we have

Z / W ORLORE, 0 (c)A;<Z / W (R (AL,

Now,
b

J=[ W(ORLQ)AL

a

[, 7© u ()28 (x) “
/ (§)<( “(:))m/ 2@ ()A)M

P w Q) (o 7O wi(w)zd () ¢
‘/a (M?(())“’”(VW(O/“ 2 f‘(")M) A

Integrating (18) by parts using formula (7) with

o(t) 4. A o
oi ()= 4C) w@):(vw;) / %ﬁmm),

(g ()

(14)

(15)

(16)

(17)

(18)
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we obtain

b
J=[e@w )] + f (0(0) (¥(0)* A

b A
< f (—0(0)) (¥ (2))* AC,

(19)

ud (x
where ®(¢) = —f;o WA% and (¥(¢))* > 0. From (9), since u#(¢) > 0 and ¢ €

[¢,0(2)], we have

[”%_am(f)]A = (L —am)u*"()ul(¢)

u(¢)
= (L-am) s
A0
= (L =em) e oy

Therefore, integrating (20) from ¢ to co with respect to x, we have

(0) £ ——uln(p).

ml1

Combining (21) and (19), we get

] =

b
/ W () (W) A

am-1J,

Now, by applying (6) to ¥(¢) = ﬁ/(g‘)f/"‘(() and using (9), we obtain

A

(¥(©)* =27 @] + O[]
O[T + e T T2 ()

<HAO[F )] +eit(¢) ‘(C)Z (g)ﬁ@)[w(o]
where
) ¢
7(c) - f ”(z) )( ) A%

Substituting (23) into (22), we get

<

b a(¢) A
<t [urmewo ([ 108D mar) ac

(20)

(21)

(22)

(23)
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b
o 2—am 1
2 [emono S 50

I(x) A(x) ol
x(/ o ﬂ()A) A

1 / G OI"FAC) by 1

Tam-1J), wTQub)

b, 2—am o m(a—1) i f
O RO
Zi(f)(u?(g))l_a

+
am-1J,

Hence,

b [ ()] (2)
[ o (1- e ) A o4
o / PO O D OROME) o .
(Ol () ’

=<
am-1J,

From (13) and (24), we have

b
[ R
@i [ OO DL
< Ry, Q)AL
il )

aki [P a1 327 (0) [ (£))™ Dz (0)fi (¢ ) ()
= 7($)RE,(C) AC.
am - 1/ [ I Zl(C)(uiA(C))l’ (W"(C))l

Applying Holder’s inequality with & and «/(a — 1), we have

b
[ rorieac
ki \* [P u @ OV 1 )i ©)
A
= (am—l) /a 2(0) WA (0)) I(Wo(é-))a I ¢ (25)

2 ()@ ()2 (e ()=

“\am -1

<< ohi ) /°° g ) g ()™ [ ()1 () (¢) Az,

By letting a — 0, b — oo and from (25), (17), we have

4 aBi \* [ .,
Z/ (K)RW(C (i+1) (€)A§§i=zl(m> /0 W7 (0)gi(¢)AL. (26)

Second, let us define for m < %, l1<a<2,andO0<a<b<oo,

« A
\/7/ MWW e n 1<i<n,

"(¢) zilx) 7

Rip(¢) =
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Page 8 of 23

with Ris(¢) = Ri(¢). Following the same steps as in the proof of (26), we obtain

Z / i (R} ({)Rul(é)AcsZ( o ) /0 W (0)gi(0)

. 1-am
i=1

(27)
Inequalities (26) and (27) are equivalent to (15)

d

In Theorem 6, if we take T = N, then we have o (s) = s + 1 and obtain the next corollary.

Corollary 7 Let {u(s)}2,, {(W(s)}22,, and {z(s)}2

be increasing and nonnegative sequences
Foranyl<i<m,n>k-1,nk €N, and

Lo + DI A(s) > 1 >0, form> L
(am = D)[ui ()]s + 1) Aui(s) — A~ 2’
ui(s) Aiw(s) 1 1
—>0,
*(am—1)W(s + 1) Aui(s) = 5 >0, form<3 2’
we have
Z(Z (s+1)R RZI())S <|1 am|> Z Ww(s + 1)gi(s)
s=
where
R(6) s s MO OEG),  form > L > 2
ils) =
Y/ Aui(s) ui
\/7 Zr =s+1

ZAZ‘ ﬁ(r) form < 1,1 <a<2

‘3‘2 ) (5) [ (1)@ [ Az (5)]° £ (5)3 (5)
) (Bu (6)* T+ D)

() = i

&(s) SO (5) Az (9] () (s)

ZOBu )T+ D))

1
, form> 700> 2,

form<%,1§a§2,

with Ay(s) = y(s + 1) — y(s), Bi = maxy<i<u(Xi, 8i), and ui(oo) =

Remark 8 If we put T =R and « = 2, in Theorem 6, then (15) reduces to (4)

The next corollary follows from Theorem 6 by taking ui(¢) = zi(¢) = ¢, fi(¢) = fir1(¢)
m=1,and o = 2.

Corollary9 Foranyl <i<m,n>«k —1and« €N, ifthere exist 1; > 0 such that

OW) 1
o) T

then

o g 1 o(¢) 2 n o N
21/0 ! (g)[@fo fi(’c)A"] AL sgw /0 W ()gi ()AL,

(28)
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where

PR @)W (g)
$O="nop
Remark 10 Letting T = R in Corollary 9, we have that o (¢) = ¢ and

¢wi(e) 1

S0 TR

Then

n ) . 1 14 2 n ) .
> w(;)[_ | ﬁ(x)dx] de =y @n) [ o de,
= Jo ¢ Jo = 0
which agrees with [4, Corollary 1].

Theorem 11 Foranyl <i<mn,n>k-1,andn,k €N, ifa; > 1,8 = ai/(kai— 1) and there
exist A > 0, &; > 0 such that

. [ ()i ) >Lo0, form> 29)
(ot — l)um m— 1(§)M?(€)ﬁ,a(§) A Ko
w(£)A (¢) 1 !
1 - DO @) e >0, form < o (30)
then
n—K+2 -1
Z/ ”’(;)(l_[ R“’(é))A;“
(31)

Ko B r OOAG
<Z(|mm 1|) /0 W (0)gi(0)AL,

where
{/u Ao o(f) Ui x)z
wor Jo 2 (x (@) Ax
Rl({) = ﬂnd f() WA% <00, form > L
’(O‘l/uA(g‘
e f P ﬁ(x)Ax, form < t,
Koy (2—ra g m) o Koy m(ka; — yee aj Ak
i (O)[uf ()] i A(0)) fK WY (g) 1
@ ~ , form>—,
(¢) = 2 O @) 1<w0(c)>wl f ray
&i { = o~ a; (2-m) {)(ZA Kalfkm‘ (0 .
* Ka\ y Koy —1 Ko ) form < —,
@@ @)@ (@) Kog

and B; = max;<i<,(Ai, 8i), ui(00) = 00

Proof Let us define for m > % and O<a<b < oo,

m(é‘ =

KC(l A
\/E/ 1(x)z (x) ( )Ax, 1 f 1 f n, (32)
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with Rip(¢) = Ri(¢). Using (11) with C; = R‘fﬁ; (£), we get

n—K+2

i Xit1 0‘1+ 1 K
Z R ‘ é‘)R(lljl 1+I: 1)a ZR ‘

Multiplying (33) by #w?(¢) and integrating from a to b, we have

n—k+2

Z/A“ (1 >§<Z/W(§

Now,

b
3= f W (OR™ (¢)Ac

o Ym© m(x)zA(x)
_/ ”([“(4) f‘()A) o
U2 () ( , >
/[ua@)mm e <¢f @ rwax)  ac.

Integrating (35) by parts using formula (7) with

WA(0)
A o kai/ 2o
) - s V- ( /i (c/

we obtain

7= [e@)w()] + / o) (W)  ac

[\v(;)f a(i(xim } / ~0(0) (w())
[\p(b)/ (,(x)mm ]+/b (o) (¥(©)"

< / " Cow) () a

ﬂ()A>

(33)

(34)

(35)

(36)

A
where ®(¢) = —f;o W@%A% and (¥(¢))® > 0. From (9), since uiA(C) >0and c €

[¢,0()], we have

[, (0)] = (1= ko), (Qu (¢)

u(¢)
e
u(g)
[ug (¢)]<eim”

=(1-kaim)——

<(1-kaim)

37)
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Therefore, integrating (37) from ¢ to oo with respect to x, we have

u (). (38)

koym—1 "

-®() <

Combining (38) and (36), we have

1
<
T kam—1

b
/ (W) A (39)
Now, by applying (6) to ¥(¢) = ﬁ/({)f/’“"i (¢) and using (9), we obtain

(W()* = A @[T @] + mo) [T ()]
= AAO[T7O] + cam(£) T (0 T2(0) (40)

ui(§)z (¢) 1

= WAOFT @O + o)== RO @]

. ()2
7(c) - / %fmxm

Substituting (40) into (39) and using (32), we get

1 b l-kaim A A © x)z e
s [ Ow (c)(/a O )Ax) AL

Ko T YHOW()ZA ()
e [
a(¢) Koy —1
y ( / (:)Z i )Ax) A
kaimp,A
1 b lug (0)] w (g)R';;i(;“)Ag“

“em =1 e S ud )

car fb OO HOHO)
cam 1 O )

LS

Hence,

U O )
()R 1- A
/a WO (C)( (caim = V)ul " Oud (0w (¢) ‘

2-Kkaim o m\Kkoi— H W
e ‘/'bui O DEEROME) proier ) 5

~ wem =1/, A

(41)
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From (41) and (29), we have

b
/ W (OR (0)AC

cariki /bu?‘”“""@)[u“(;)]mm\ 2 QWO oot o,

T kam-1J, zl(§)(MA(§)) wl
b o a1
e f (W7 (R (£)

uf‘”‘m(;“)[ui’(g“)]’”(““‘ z)ﬁ(c)w(c)
Z(0) Wl (g) (WU@))

KOli)\.i

Applying Holder’s inequality with ke and «6; = kai/(ka; — 1), we have

/;W( R (£) AL

Koy
< KOli)»i '
kaim—1

O s ) il i A el
a Z{:ai(g)( i( ))Kctl (WU( ))Ko{‘ 1

i\t
- ( ke ) | ©s@ac.
Kkoym—1 a

From (42) and (34), we have

ZZ f ( 1 (;)) A

ke Bi e b/\o‘
<Z(KW D) [ s 3

(42)

At

Let us define for m < 1/ka; and 0 < a < b < 00,

oyud / ui(x)z2 (x)

() aw) WA lsisn

Rip(¢) =

with Ris(¢) = Ri(¢). Following the same steps as in the proof of (43), we obtain
n—K+2 i+k—1 )
> / <;)< I1 R/(z)) A
j=i

n Kaiﬂi Koy b Y
52<1 mm) [ @eonac (a4)

i=1
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1-kaim

-y “—’3) T OO
o /

By letting ¢ — 0 and b — oo in (43) and (44), we get (31). O
In Theorem 11, if we take T = N, then we have the following corollary.

Corollary 12 Let {u(s)},, {w(s)}2,, and {z(s)}2, be increasing and nonnegative se-
quences. Then forany 1 <i<mn>k-1,ai>1,k €N, § =ai/(ka; — 1) and

[i(s + 1)]“*" Ai(s)
 (kom — D[ui(s)][<@imLiv(s + 1) Au; (s) - A

ui(s) Aw(s) 1 1
 (caym — 1)W(s + 1) Aui(s) = M >0, form> X

1
>0, f0rm>2

we have
n—-k+2 [/ oo i+x—1 ’
> (Z Wis + 1)[ I R;’f(s)])
i=1 \s=1 j=i

i kaifi Koy 90
< oo 0 1 ]
< =1<|1—mim|) ;wm )

<Y Auy (s) () 1
Yot zi rz)l “fi(r), form> o,

[uj(s+1)]"

Ri(s) =
mb A” (s) r)Azi (r) 1
Zr =s+1 Zi('”z)l rﬁ(r)’ form < m!
;i(ai(Z—/(DtiVW( s (s+1)]<%i imlea; -1 [AZ (s) ]ka‘fKot‘ i (s) for s 1
L) (Aug (9) T (s 1)) way !
gi(s) = i(2-m) Ko
(S)[AZ| ()] ify

l(o(l(s)

()(Aui ()i~ I(W(Hl))’“*1

KO(‘

1
, form<m,

and B = max,<i<u(Ai, 8i), ui(00) = 00
Remark 13 If we put T = R in Theorem 11, then (31) reduces to (5).

The next corollary follows from Theorem 11 by taking u;(¢) = zi(¢) = ¢, £i(¢) — ¢" 'k,
hi = hi1, a; = aip and € = 2.

Corollary 14 Forany 1 <i<mn,n>«k —1, k €N, if h; are rd-continuous functions and
there exist A; > 0 such that
o 2w (g) 1

— > 0’
Qo — Dm0 (0) = 3y

then

~ [* ., 1 @ 2y
;/0 W(E)I:O_m(é.)/(; x hl(x)Ax:| NG

- 20k \ [
< (“—) / W (0)g(2)AL,
1 0

- 200m — 1
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where

GZaim(Zal (é-)é-Za.m - )hzal(z)WZa (é-) 1
i(¢) = or m > .
& [ P form> o
Remark 15 Letting T = R in Corollary 14, we have that 6(¢) = ¢ and

() 1
T Qam— D)

n 00 1 e 20

> / W(;)[— / xm‘lhi(x)dx] d¢

, ¢ Jo

<Xn: 200A¢ 2 Oow( )hzai( Vd
- 20m — 1 0 i g)a,

i=1

which agrees with [4, Corollary 2].

Theorem 16 Foranyl<i<mn,n>k-1, KeNand% TC T, if i > 1, 8; = i/ (Bet; — 1),
and
o Baim A 1 1
1+ b (gz]m T ©) - >—>0, form> , (45)
(1= Basm)u; " (Qu ()W (g) A B
then

Z f PO O O ()] Ac
(46)

n

< 30[i}\4i s x'\a( ) ( )A
_§<73a1m—1> fow D& ()AL,

where
3“%‘/»!”4“ f l(n)z (n)
(mAn
% u?(x)
and A WA%<OO,
(Baj=1)m A
gi(;>=[ 3[” O 728 p
) P u (0)z(L)

@I ()22 ) L\ T
Sa m-1 f‘(i)] ’
TOz(5) P ut (@)

u;(00)

Q.
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Proof Let us define for m > ﬁ, 1<i<mn,
1

W f ()22

zl(n

I

Using (11) with « =3, for C; = I'{"*(¢), we get

Zr‘“(g LE Oy < Y ).

i=1
Multiplying (48) by #” (¢) and integrating from 0 to s, we get

n-1
i=1
Now,

X

J= [ @ @Qre)Ac

0
W 7©) y, (n)zA(n) 3
_/o [ THGIE / (nAn ] ¢
A sai/79 2 © wi(m)zf (n) -
‘/ 7 (c)Bam[ € / “am )A"] A

Integrating (50) by parts using formula (7) with

Afry — ui (¢) o _[3ui — u(%)z (%)
*O= propan V0= VW“)/Q Tt

we obtain

- [e@w @] + /O @) (W)
T (= wm T[T, R
_[ w(;)/{ —u o] Mimm];/o (-@@)) (¥ ()" A¢

~ ® ul(n) * A
= [—W(%)/x WAﬂ:I +_/(; (—¢(§))(q’(§)) A¢
< / (~0(0)) (w(2)" AL,

0

* ~ o 0‘1 i+l 0‘1+2 . ¥ ~ o 3oy
3 /0 YOI O Oris©)ac <3 fo WO ()AL,

30{;
]

(47)

(48)

(49)

(50)

(51)
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where ®(¢) = f; WAn and (¥(¢))® > 0. From (9), using #{({) > 0 and ¢ €

[¢,0(2)], we have

[ 1- Sa,m(;)] _ (1_3aim)u.‘3aim(c)u?(;“)

Ui (¢)
= (1-3a
( )uf“ e
up (¢)
5(1—3a1m)W.

Therefore, integrating (52) from ¢ to co with respect to n, we have

1—3aim(

-0(5) = £).

3o

Combining (53) and (51), we have

J =

/ W) (W) AL

3aim—1 Jy
Now, by applying (6) to W (¢) = ﬁ/({)f’“i (¢) and using (9), we obtain

(W) =[] +mo)[T4(0)]
= A O[T7 O + Bai(0) TE D () 2 (2)

V7O +3av” ()[T7 ()] A 2).

A

<WA(¢)

—

From (55) and (54), as well as using (47), we have

J =

* 1-3ajm ~AA
o | R

7O i)zt (n) s
X(/ou zi(n) T A n) A

2

3 i * —-3aim Ao
o fu!g' O ()

+
3“1”’[— 1 0

X[ui(é)Z?(C)fi(ﬁ) ui(3)z} G )}

zi(¢) 2z:(%)

a(¢) 4. A Bai-1
x(/ Mﬁ(n)M) At

@ zi(n)

1 / [ ()12 (8) p

a1l o)
3a /x (g (¢)]B-Dmie (¢) [3ei-1
+ 1 1
Soam =1 Jo 3l ) ub (¢)])

X[ui(c)zﬁ(cm ui(5)z0 (A(5) }M'
z(0) 2z(%)

(©)Ag

(©)

(52)

(53)

(54)

(55)
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Hence,

- » [ ()P W™ (5)
o ()3 (1— )A
/0 w7 (O)T(2) Baim — D" (ul ()i (¢) ‘

__ B /" [ ()1 D3 ()

T 3aim -1 J, usaim_l(f)[ué(g)]lfﬁ

w©2@), w6 ( )}
X[ e O

From (56) and (45), we have

rle) (56)

/0 WO (§) A
3aidi A o
<o [Caroree
[ (£)]B*~Dmz8(¢) [ (O1C D ()20 (5) |, (¢
X|: 3aim-2 38:/. A ) f;(é_)_ 3aym-1 (&) 38i/,,A f1<§>i|A§
U @) Uy (©)zi(¢) 2u; (;)21(5) \/ Ui ()
3aiAi x o o Jei-l 1
- ot [ e ) e ]
[ (£)]C* D728 (¢) [ (NG (5)28(5) |, (¢
X|: 3aym-2 385: /. A ) ﬁ(g)_ 3aym-1 (LY 38/, A ﬁ<§>:|A§
U €)% U; (©)zi(¢) 2u; (g)zl(f) \/ Ui ()

Applying Holder’s inequality with 3¢; and o;/(3e; — 1), we have

/0 W (OT* (0)Ag

Boki \* [*
< (B f V()
3aim—1 0

) [[u?(g)](gai—l)mzﬁ(g)fi(g) ) [u‘i’(C)](?""i‘l)’”ui(%)ziA(%)ﬁ(%):|3°‘iA{ (57)
W) Bt ©Om©) 26 ©Om(E) Bl €)

Bai)\.i 3ot x i
i <3aim— 1) fo W (£)gi ()AL

From (57) and (49), we get (46). O

In Theorem 16, if we take T = N, then we obtain the following corollary.

Corollary 17 For any {u(s)}$2,, {(W(s)}2,, and {z(s)}2, increasing and nonnegative se-

quences, 1 <i<wm,ifa;>1, 8 =a;/(Ba; — 1), and

1)]P%m AR 1 1
1+ s (s;ri]l ~ ws) >—>0, form>—,
(1= 3aym)u; " ()W(s + 1) Auls) — M 3o
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then

n-1 /q-1
( (s + D[TT (T ()T f“:ﬂs)])

" [ 3Bairi )3‘“ - .
< D s + 1)gils),
(Sa m—1 =

%/ Aui(s) Z ui(r) Azi(r) s+1 s

m(S+1) ﬁ() »_EN:

re= 0 2 "2

[i(s + 1)] B2 -0 Az (s)
i(s) = 3ag m—2 38: ils
w; o (s) P Aui(s)zi(s)

Ll + 1D () Azi(3) f<_>T“i
27 1(s) 2(3) 2/ Aui(s) ’

and u;(00) = o0o.
Remark 18 Clearly, for T = R, Theorem 16 reduces to [4, Theorem 3].

Theorem 19 Foranyl <i<m,ifa>1,k>1,8 =a/(ka —1), and there exist A; >0, m >0
such that

W) 1

Wt kamd Q) (58)

then

b n K nos_ K8 Kk nb

[ W(;)(Zrm@)) ac= (T [Caornc, 9)

a i=1 i=1 a
where

A

Ti) = [ (O)]" ul(¢) / e )(x) ————fi(x)Ax, ¢ €[0,00)r,

and

QP QIO
= e O

Proof Letus defineforl <i<mandO<a<b<oo,

Tia(2) = [ (©)]" “lub( f U(:(:) Ax, (60)
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Using (12), for C; =T'i(¢) and k — ko, we get

(Z rm(;)) <n 1Y), (61)
i=1 i=1

Multiplying (61) by #w” (¢) and integrating from a to b, we get

b n K noap
/ Mc)(Zrm(c)) AL <n Y f WMOTE ()AL (62)
a i=1

i=1 4
Now,
b
j- / WOTE(E)AL

b ¢ A Ko

- / ﬁ»(()[[uf(é)]m fud(z) / ugz(;;z)(x)ﬂ(x)Ax} At 63)
b ¢ A Ko

= / [us'(o]““’”u?(c)[x“/m f i (x)(x)fi(x)Ax] NG

u (%)z;

Integrating (63) by parts using formula (7) with

{ A Ko
VO[O0, 0= Voo [ O gwas]
we obtain

b
T=[o@w@)] + / (07 () (~w(2))" Ac
b Kam b b A
=[—\If(c> / ) u?(xmx} " / (07 () (~w(0))* A (64)
¢ a a

b
- / (07 () (~w(2)) A¢,

where ®(¢) = — [[uf (30)]“"u () Az and (¥(£))* > 0. From (9), using u2(¢) > 0 and
c€[g,0(¢)], we have

[l ()] = (1 + cam)u" ()ul (£)

< (L+kam)[uf (O] " ul ().
This implies that

1

1+kam

b b
/ [ ()] Ax < / [0 ()" () A = ~(0).
¢ ¢
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Therefore
b A
() < / [1m ()] Ax
l+ka I's !

-1 l+kam b l+kam
S Trraml O w0

) (65)
— T [M}-H(am(é‘) 1+Kam(b)]

1 1

< u: +Kkam .
“l+kam ' ©)

Substituting (65) into (64), we have

1+Kam C))AA§ (66)

1+/<am

Now, by applying (6) to W (¢) = ﬁ/({)f/"o‘(;) and using (9), we obtain

(W) = w7 (@) + w (©)[T*(©)]
PAO)T() +ad () V() TA(0) )

ZlA(é.) :| KOt 1
a0aey OO

> WA ) Y(¢) +K0117V”(C)[

From (67) and (66), as well as using (60), we have

_1 b o l+kam ~ A(x) ko
§1+Kozm/ [ (0)] WA(“(/a R x) A¢

1+Kam ~ cr i (;) -
)(uf(g)zi(z)f‘“))

1 +Kkam
e A(x) Ka—1
) (/ uf (x) zl(x)f‘( ) x) A
- ul (W) e
" 1+kam / ul(¢) Fia (€)A¢

[ OF*"37(€) o 22(2)
1+Kam/ [2(¢) ]1—a i (C)< T (O)alc ft(f))

Hence,

b ul ()W (¢)
[ e (1 e )M

O 6) 2O
“"“’”/ or s (O[ui’(ozi(c)ﬁ“)}M

(68)
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From (68) and (58), we have

b
/ MO ()AL
—KOA [ ()17 (£)Z2(¢)
= 1+f<ocm/a (ori @) [uA(;)]l-w“ﬁJ(;)zl(;)ﬂ(mg'

Applying Holder’s inequality with ke and «/(ka — 1), we have

fu oOro)ag

ko L OF T OF 1,
= (1+K0{m> f A(é-) wa—l jpea1(£) 24 (¢) ()AL (69)
KaAi
() / o) )AL,
From (69) and (62), we get (59). O

In Theorem 19, if we take T = N, then we obtain the following corollary.

Corollary 20 For any {u(s)},, {W(s)}2,, and {z(s)}2, increasing and nonnegative se-
quences, ifl <i<ma>1l,k>1,8=al/(ka—1), and

ui(s + 1) Aw(s) - 1 0
1+ camws)Amls) — m

then
r—1 R n fea —KaA; \/_ Ko -1
;w(s +1) (; Fm(s)> < a ( Tt cam ) ZW(s)gl
where
T m — Azl( )
Ti(s) = [ui(s + 1)] 2. pRPEE YA i(@)
and

Ll + DI s + DIUAZ G g
als) = pa e O

Remark 21 Clearly, for T = R, Theorem 16 reduces to [4, Theorem 4].
The next corollary follows from Theorem 19 by taking u;(¢) = zi(¢) = ¢, £i(¢) — ¢k,

Corollary 22 Forany 1 <i<mnand a > 1, if h; are rd-continuous functions and

o) 1

(kam + )w(t) — A >0,
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then
b R n . I x2—m e
/a () Zlo ©) /0 Shwax| ac
(70)
ou( 1 K(X)\, “ b 0 . A
Z<1+wm> [ #osac,
where
[o.(é-)]l(otm[WU(;)]K&;KQ{—K&W[
(0) = : e (2).
G e ©)

Remark 23 Letting T = R in Corollary 22, we have that o (¢) = ¢ and

() 1
(am+ Dg) ~ x>

Then

Ko

/w@) Z; / L x| de
ak— . —KaAq “ b'\ Ko
Y (Trram) [ @

a

which agrees with [4, Corollary 3].

4 Conclusion

In this work, we explored some new generalized inequalities involving many functions of
Hardy type on time scales by using delta calculus. Further, we also applied our inequalities
to discrete and continuous calculus to obtain some new Hardy inequalities as special cases.
In a future work, we will continue to generalize more dynamic inequalities by conformable
delta fractional calculus on time scales.
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