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Global error bounds of the extended vertical linear complementarity problems for
Dashnic–Zusmanovich (DZ) matrices and Dashnic–Zusmanovich-B (DZ-B) matrices
are presented, respectively. The obtained error bounds are sharper than those of
Zhang et al. (Comput. Optim. Appl. 42(3):335–352, 2009) in some cases. Some
numerical examples are given to illustrate the obtained results.

MSC: 15A18; 15A69; 65G50; 90C33

Keywords: Dashnic–Zusmanovich matrices; Dashnic–Zusmanovich-B matrices; Error
bound; Extended vertical linear complementarity problem

1 Introduction
The extended vertical linear complementarity problem (EVLCP) is to find a vector x ∈ Rn

such that

r(x) := min(M0x + q0, M1x + q1, . . . , Mkx + qk),

or to prove that there is no such vector x, where the min operator works componentwise
for both vectors and matrices. It is denoted by EVLCP(M, q), where

q = (q0, q1, . . . , qk), ql ∈ Rn, l = 0, 1, . . . , k,

is a block vector and

M = (M0, M1, . . . , Mk), Ml ∈ Rn×n, l = 0, 1, . . . , k,

is a block matrix. When k = 1, M0 = I , q0 = 0, the EVLCP(M, q) comes back to linear com-
plementarity problems (LCP), and when M0 = I , q0 = 0, the EVLCP(M, q) reduces to ver-
tical linear complementarity problems (VLCP) [2]. The extended vertical linear comple-
mentarity problems are widely used in optimization theory, control theory, neural network
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model, convergence analysis, sensitive analysis, verification of the solutions, and so on, see
[1, 3–7].

Many scholars are interested in the research on the error of the solution for the
EVLCP(M, q) including the LCP case. Various results on the solution and its error bounds
for the EVLCP(M, q) have appeared recently, see [8–13]. For example, Gowda and Szna-
jder [14] extended the sufficient and necessary condition for the existence and uniqueness
of the solution from the LCP to the EVLCP. Afterwards, Sznajder and Gowda [15] pro-
vided some equivalent forms for the condition above. Xiu and Zhang [16] extended the er-
ror bound for the LCP given by [6] to the EVLCP. Zhang et al. [1] extended the error bound
of the LCP given by Chen and Xiang [8] to the general EVLCP by the row rearrangement
technique and provided some computable error bounds for two types of special block
matrices. However, these error bounds generally can not be calculated accurately because
they involve computing the inverse of matrices. In order to overcome this shortcoming, in
this paper, we continue to explore the extended vertical linear complementarity problems,
and we propose new error bounds for the other types of special block matrices, named DZ
matrices [17, 18] and DZ-B matrices [19], only relying on the elements of such matrices.
The obtained results extend the corresponding results in [1]. The validity of new error
bounds is theoretically guaranteed, and numerical examples show the validity of the new
results.

The remainder of this paper is organized as follows. In Sect. 2, we recall some related
definitions, theorems, lemmas, and notations, which will be used in the proof of this pa-
per. In Sect. 3, we prove that each block in any row rearrangement of the block matrix
M = (M0, M1, . . . , Mk) is a DZ matrix if each matrix Ml (l = 0, 1, . . . , k) is a DZ matrix,
propose a computable error bound of the EVLCP(M, q) with each matrix in M being a
DZ matrix, and present numerical examples to show the effectiveness of the new error
bound. In Sect. 4, we prove that each block in any row rearrangement of the block matrix
M = (M0, M1, . . . , Mk) is a DZ-B matrix if each matrix Ml (l = 0, 1, . . . , k) is a DZ-B matrix,
provide a calculable error bound of the EVLCP(M, q) with each matrix in M being a DZ-B
matrix, and use numerical examples to indicate the validity of the new error bound. Some
conclusions are summarized in Sect. 5.

2 Preliminaries
In this section, we recall some theorems, definitions, lemmas, and notations. Given a ma-
trix A = (aij) ∈ Rn×n, i, j ∈ N = {1, 2, . . . , n}, denote

ri(A) =
n∑

j=1,j �=i

|aij|, ∀i ∈ N .

The first one is the existence and uniqueness condition of the solution for the EVLCP(M, q)
given by Gowda and Sznajder [14].

Theorem 1 ([14]) For any block vector q, the EVLCP(M, q) has a unique solution if and
only if the block matrix M = (M0, M1, . . . , Mk) has the W-property, i.e.,

min(M0x, M1x, . . . , Mkx) ≤ 0 ≤ max(M0x, M1x, . . . , Mkx) ⇒ x = 0, (1)

where the min and max operators work componentwise for both vectors and matrices.
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Using the row rearrangement technique, Zhang et al. [1] presented a sufficient and nec-
essary condition for the block matrix M with the row W-property and proposed a global
error bound for the EVLCP(M, q).

Definition 1 ([1]) The block matrix M′ = (M′
0, M′

1, . . . , M′
k) is called a row rearrangement

of M = (M0, M1, . . . , Mk) if, for any i ∈ N ,

(
M

′
j
)

i. = (Mji )i. ∈
{

(M0)i., (M1)i., . . . , (Mk)i.
}

=
{(

M
′
0
)

i.,
(
M

′
1
)

i., . . . ,
(
M

′
k
)

i.

}
, (2)

where Ai. means the ith row of a given matrix A. This is also true for the block vectors q
and q′ . Denote by R(M) and R(q) the set of all row rearrangements of M and q, respectively.

Lemma 1 ([1]) The block matrix M = (M0, M1, . . . , Mk) has the row W-property if and only
if (I – D)M′

j + DM′
l is nonsingular for any two blocks M′

j and M′
l of M′ ∈ R(M) and for any

D = diag(di) with di ∈ [0, 1] (i ∈ N ).

Theorem 2 ([1]) Let x∗ be the solution of the EVLCP(M, q). If the block matrix M =
(M0, M1, . . . , Mk) has the row W-property, then for any x ∈ Rn,

∥∥x – x∗∥∥ ≤ α(M) · ∥∥r(x)
∥∥, (3)

where

α(M) := max
M′ ∈R(M)

max
j<l∈{0,1,...,k}

max
d∈[0,1]n

∥∥[
(I – D)M

′
j + DM

′
l
]–1∥∥,

D = diag(di) is defined as Lemma 1, and M′
j , M′

l are any two blocks in M′ ∈ R(M).

Obviously, the upper bound in (3) for ‖x – x∗‖ cannot be calculated easily because it is
difficult to compute ‖[(I – D)M′

j + DM′
l]

–1‖ precisely in general. Hence, some computable
upper bounds for α(M) are provided under various matrix norms by using the structural
properties of matrices Mj, j ∈ {1, 2, . . . , k}. When all Mj are strictly diagonally dominant
(SDD) matrices, Zhang et al. [1] gave a calculable upper bound for α(M) under the infinity
norm (denoted by α∞(M)) as follows. Here a matrix A = (aij) ∈ Cn×n is called an SDD
matrix if |aii| >

∑n
j �=i |aij| for each i ∈ N .

Theorem 3 ([1]) If M0, M1, . . . , Mk are SDD, and for each i ∈ N , (Mj)ii(Ml)ii > 0 for any
j < l ∈ {0, 1, . . . , k}, then M = (M0, M1, . . . , Mk) has the row W-property and

α∞(M) ≤ 1
mini∈N {(min(M̃0e, M̃1e, . . . , M̃ke))i}

,

where M̃i is the comparison matrix of Mi, i.e., (M̃i)ττ = |(Mi)ττ |, (M̃i)τ j = –|(Mi)τ j| for τ �= j,
(Mi)τ j is the element in the τ th row and the jth column of Mi, and (M̃i)τ j is the element in
the τ th row and the jth column of M̃i.

Theorem 4 ([1]) If M0, M1, . . . , Mk are matrices with positive diagonal entries, and the
spectral radius ρ(max(�–1

0 |B0|,�–1
1 |B1|, . . . ,�–1

k |Bk|)) < 1, then M = (M0, M1, . . . , Mk) has
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the row W-property and

α∞(M) ≤
∥∥∥
[

I – max
i=0,1,...,k

(
�–1

i |Bi|
)]–1

max
i=0,1,...,k

(
�–1

i
)∥∥∥∞

,

where �i is the diagonal part of Mi, Bi = �i – Mi for i = 0, 1, . . . , k.

3 A global error bound for the EVLCP of Dashnic–Zusmanovich matrices
Dashnic–Zusmanovich matrix, as a subclass of the class of nonsingular P-matrix, was in-
troduced by Dashnic and Zusmanovich [17] to upper bound for the infinity norm of its
inverse matrix, whose definition and related conclusion are listed as follows.

Definition 2 ([17]) A matrix A = (aij) ∈ Cn×n is called a Dashnic–Zusmanovich (DZ) ma-
trix if there exists an index i ∈ N such that for any j ∈ N , j �= i,

|aii|
(|ajj| – rj(A) + |aji|

)
> ri(A)|aji|.

Theorem 5 ([18]) Let A = (aij) ∈ Cn×n be a DZ matrix. Then

∥∥A–1∥∥∞ ≤ max
{

max
j∈N ,j �=i

α1(A), max
j∈N ,j �=i

α2(A)
}

,

where

α1(A) =
|aji| + |aii|

(|ajj| – rj(A) + |aji|)|aii| – |aji|ri(A)
,

α2(A) =
|ajj| – rj(A) + |aji| + ri(A)

(|ajj| – rj(A) + |aji|)|aii| – |aji|ri(A)
.

Next, we will propose an upper bound for α∞(M) with each Ml (l = 0, 1, . . . , k) being a
DZ matrix. Before that, some useful propositions are provided below.

Proposition 1 Let A = (aij) ∈ Cn×n and B = (bij) ∈ Cn×n be all DZ matrices with positive
diagonal elements. If there exists an index i ∈ N such that, for any j ∈ N , j �= i, aijbij ≥ 0 (or
ajibji ≥ 0), and

|aii|
(|ajj| – rj(A) + |aji|

)
> ri(A)|aji|, |bii|

(|bjj| – rj(B) + |bji|
)

> ri(B)|bji|,
|aii|

(|bjj| – rj(B) + |bji|
)

> ri(A)|bji|, |bii|
(|ajj| – rj(A) + |aji|

)
> ri(B)|aji|,

then (I – D)A + DB is also a DZ matrix for any D = diag(dt) with dt ∈ [0, 1] (t ∈ N ).

Proof Both A and B are DZ matrices, and there exists i ∈ N such that, for any j ∈ N , j �= i,

|aii|
(|ajj| – rj(A) + |aji|

)
> ri(A)|aji|, |bii|

(|bjj| – rj(B) + |bji|
)

> ri(B)|bji|.

Note that di ∈ [0, 1], then 1 – di ≥ 0 and di ≥ 0, and they are not equal to 0 at the same
time. Let (I – D)A + DB = C = (cij), then

|cii| = (1 – di)|aii| + di|bii|, |cij| = (1 – di)|aij| + di|bij|,
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ri(C) =
n∑

j �=i

(
(1 – di)|aij| + di|bij|

)
= (1 – di)ri(A) + diri(B).

Hence, we get

|cjj| – rj(C) + |cji|
= (1 – dj)|ajj| + dj|bjj| –

(
(1 – dj)rj(A) + djrj(B)

)
+ (1 – dj)|aji| + dj|bji|

= (1 – dj)
[|ajj| – rj(A)|aji|

]
+ dj

[|bjj| – rj(B) + |bji|
]
,

and

|cii|
(|cjj| – rj(C) + |cji|

)

=
[
(1 – di)|aii| + di|bii|

] × [
(1 – dj)

(|ajj| – rj(A)|aji|
)

+ dj
(|bjj| – rj(B) + |bji|

)]

= (1 – di)(1 – dj)
(|ajj| – rj(A)|aji|

)|aii| + (1 – di)dj
(|bjj| – rj(B) + |bji|

)|aii|
+ di(1 – dj)

(|ajj| – rj(A)|aji|
)|bii| + didj

(|bjj| – rj(B) + |bji|
)|bii|

> (1 – di)(1 – dj)ri(A)|aji| + (1 – di)djri(A)|bji|
+ di(1 – dj)ri(B)|aji| + didjri(B)|bji|

=
[
(1 – di)ri(A) + diri(B)

][
(1 – dj)|aji| + dj|bji|

]

= ri(C)|cji|,

that is,

|cii|
(|cjj| – rj(C) + |cji|

)
> ri(C)|cji|.

From Definition 2, the conclusion follows. �

Based on Proposition 1, Lemma 1, and the fact that a DZ matrix is nonsingular, the block
matrix composed of DZ matrices has the row W-property.

Proposition 2 If M0, M1, . . . , Mk are DZ matrices and each Mli (li = 0, 1, . . . , k) satisfies the
hypotheses of Proposition 1, then each M′

l in M′ ∈ R(M) is a DZ matrix, and consequently,
M = (M0, M1, . . . , Mk) has the row W-property.

Proof By Definition 1, for the ith row (M′
l)i of M′

l , i ∈ N , there exists li ∈ {0, 1, . . . , k} such
that (M′

l)i = (Mli )i, i.e., (Mli )ii = (M′
l)ii, ri(Mli ) = ri(M

′
l). Since Mli is a DZ matrix, then

∣∣(Mli )ii

∣∣(∣∣(Mli )jj

∣∣ – rj(Mli ) +
∣∣(Mli )ji

∣∣) > ri(Mli )
∣∣(Mli )ji

∣∣, j �= i, j ∈ N ,

that is,

∣∣(M
′
l
)

ii

∣∣(∣∣(M
′
l
)

jj

∣∣ – rj
(
M

′
l
)

+
∣∣(M

′
l
)

ji

∣∣) > ri
(
M

′
l
)∣∣(M

′
l
)

ji

∣∣, j �= i, j ∈ N .

By Definition 2, M′
l is a DZ matrix.
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Let M′
j , M′

l be any two blocks in M′ ∈ R(M), then M′
j , M′

l are all DZ matrices. Based on
Proposition 1, (I – D)M′

j + DM′
l is a DZ matrix for any D = diag(di), di ∈ [0, 1] (i ∈ N ). Thus

(I – D)M′
j + DM′

l is nonsingular. By Lemma 1, the block matrix M = (M0, M1, . . . , Mk) has
the row W-property. �

Theorem 6 Let M = (M0, M1, . . . , Mk), and let each Mp (p = 0, 1, 2, . . . , k) be a DZ matrix
with positive diagonal elements and satisfy the hypotheses of Proposition 1. Then

α(M)∞ ≤ 2 max

{
max{ϕp

max}
min{βp

min}
,
max{ωp

max}
min{βp

min}
}

,

where

ϕp
max = max

τ �=i∈N

{
ϕ

p
τ i
}

, ϕ
p
τ i =

∣∣(Mp)
τ i

∣∣ +
∣∣(Mp)ii

∣∣, β
p
min = min

τ �=i∈N

{
β

p
iτ
}

,

ωp
max = max

τ �=i∈N

{
ω

p
iτ
}

, ω
p
iτ =

∣∣(Mp)
ττ

∣∣ – rτ (Mp) +
∣∣(Mp)

τ i

∣∣ + ri(Mp),

β
p
iτ =

∣∣(Mp)ii

∣∣(∣∣(Mp)
ττ

∣∣ – rτ (Mp) +
∣∣(Mp)

τ i

∣∣) – ri(Mp)
∣∣(Mp)

τ i

∣∣.

Proof For any two blocks M′
j , M′

l in M′ ∈ R(M) and any D = diag(di) with di ∈ [0, 1] (i ∈ N ),
let MD = (mij) = (I – D)M′

j + DM′
l . By Propositions 1 and 2, it holds that M′

j , M′
l , and MD

are all DZ matrices with positive diagonal elements. By Theorem 5, we have that

∥∥M–1
D

∥∥∞ ≤ max
{

max
τ∈N ,τ �=i

α1(MD), max
τ∈N ,τ �=i

α2(MD)
}

holds for each matrix D = diag(di) with di ∈ [0, 1] (i ∈ N ), where

α1(MD) =
|mτ i| + |mii|

(|mττ | – rτ (MD) + |mτ i|)|mii| – |mτ i|ri(MD)
,

α2(A) =
|mττ | – rτ (MD) + |mτ i| + ri(MD)

(|mττ | – rτ (MD) + |mτ i|)|mii| – |mτ i|ri(MD)
.

Hence, it holds that

|mτ i| + |mii| = (1 – dτ )
∣∣(M

′
j
)
τ i

∣∣ + dτ

∣∣(M
′
l
)
τ i

∣∣ + (1 – di)
∣∣(M

′
j
)

ii

∣∣ + di
∣∣(M

′
l
)

ii

∣∣

<
[∣∣(M

′
j
)
τ i

∣∣ +
∣∣(M

′
j
)

ii

∣∣] +
[∣∣(M

′
l
)
τ i

∣∣ +
∣∣(M

′
l
)

ii

∣∣]

=
(
ϕ

j
τ i
)′

+
(
ϕl

τ i
)′

= 2 max
t=j,l

(
ϕt

max

)′
,

where

(
ϕt

max

)′
= max

τ �=i∈N

{(
ϕl

τ i
)′}

,
(
ϕl

τ i
)′

=
∣∣(M

′
t
)
τ i

∣∣ +
∣∣(M

′
t
)

ii

∣∣, t = j, l.

Further, we get

(|mττ | – rτ (MD) + |mτ i|
)|mii| – |mτ i|ri(MD)

=
[
(1 – dτ )

(∣∣(M
′
j
)
ττ

∣∣ – rτ

(
M

′
j
)

+
∣∣(M

′
j
)
τ i

∣∣) + dτ

(∣∣(M
′
l
)
ττ

∣∣ – rτ

(
M

′
l
)

+
∣∣(M

′
l
)
τ i

∣∣)]
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× [
(1 – di)

∣∣(M
′
j
)

ii

∣∣ + di
∣∣(M

′
l
)

ii

∣∣]

–
[
(1 – dτ )

∣∣(M
′
j
)
τ i

∣∣ + dτ

∣∣(M
′
l
)
τ i

∣∣][(1 – di)ri
(
M

′
j
)

+ diri
(
M

′
l
)]

= (1 – dτ )(1 – di)
∣∣(M

′
j
)

ii

∣∣(∣∣(M
′
j
)
ττ

∣∣ – rτ

(
M

′
j
)

+
∣∣(M

′
j
)
τ i

∣∣)

+ (1 – dτ )di
∣∣(M

′
l
)

ii

∣∣(∣∣(M
′
j
)
ττ

∣∣ – rτ

(
M

′
j
)

+
∣∣(M

′
j
)
τ i

∣∣)

+ dτ (1 – di)
∣∣(M

′
j
)

ii

∣∣(∣∣(M
′
l
)
ττ

∣∣ – rτ

(
M

′
l
)

+
∣∣(M

′
l
)
τ i

∣∣)

+ dτ di
∣∣(M

′
l
)

ii

∣∣(∣∣(M
′
l
)
ττ

∣∣ – rτ

(
M

′
l
)

+
∣∣(M

′
l
)
τ i

∣∣)

– (1 – dτ )(1 – di)ri
(
M

′
j
)∣∣(M

′
j
)
τ i

∣∣ – (1 – dτ )diri
(
M

′
l
)∣∣(M

′
j
)
τ i

∣∣

– dτ (1 – di)ri
(
M

′
j
)∣∣(M

′
l
)
τ i

∣∣ – dτ diri
(
M

′
l
)∣∣(M

′
l
)
τ i

∣∣

> (1 – dτ )(1 – di)
∣∣(M

′
j
)

ii

∣∣(∣∣(M
′
j
)
ττ

∣∣ – rτ

(
M

′
j
)

+
∣∣(M

′
j
)
τ i

∣∣)

+ (1 – dτ )diri
(
M

′
l
)∣∣(M

′
j
)
τ i

∣∣ + dτ (1 – di)ri
(
M

′
j
)∣∣(M

′
l
)
τ i

∣∣

+ dτ di
∣∣(M

′
l
)

ii

∣∣(∣∣(M
′
l
)
ττ

∣∣ – rτ

(
M

′
l
)

+
∣∣(M

′
l
)
τ i

∣∣)

– (1 – dτ )(1 – di)ri
(
M

′
j
)∣∣(M

′
j
)
τ i

∣∣ – (1 – dτ )diri
(
M

′
l
)∣∣(M

′
j
)
τ i

∣∣

– dτ (1 – di)ri
(
M

′
j
)∣∣(M

′
l
)
τ i

∣∣ – dτ diri
(
M

′
l
)∣∣(M

′
l
)
τ i

∣∣

= (1 – dτ )(1 – di)
∣∣(M

′
j
)

ii

∣∣(∣∣(M
′
j
)
ττ

∣∣ – rτ

(
M

′
j
)

+
∣∣(M

′
j
)
τ i

∣∣)

+ dτ di
∣∣(M

′
l
)

ii

∣∣(∣∣(M
′
l
)
ττ

∣∣ – rτ

(
M

′
l
)

+
∣∣(M

′
l
)
τ i

∣∣)

– (1 – dτ )(1 – di)ri
(
M

′
j
)∣∣(M

′
j
)
τ i

∣∣ – dτ diri
(
M

′
l
)∣∣(M

′
l
)
τ i

∣∣

= (1 – dτ )(1 – di)
[∣∣(M

′
j
)

ii

∣∣(∣∣(M
′
j
)
ττ

∣∣ – rτ

(
M

′
j
)

+
∣∣(M

′
j
)
τ i

∣∣) – ri
(
M

′
j
)∣∣(M

′
j
)
τ i

∣∣]

+ dτ di
[∣∣(M

′
l
)

ii

∣∣(∣∣(M
′
l
)
ττ

∣∣ – rτ

(
M

′
l
)

+
∣∣(M

′
l
)
τ i

∣∣) – ri
(
M

′
l
)∣∣(M

′
l
)
τ i

∣∣]

= (1 – dτ )(1 – di)
(
β

j
iτ
)′

+ dτ di
(
β l

iτ
)′

≥ (1 – dτ )(1 – di)
(
β

j
min

)′
+ dτ di

(
β l

min

)′
,

where

(
β

j
min

)′
= min

τ �=i∈N

(
β t

iτ
)′

,

(
β t

iτ
)′

=
∣∣(M

′
t
)

ii

∣∣(∣∣(M
′
t
)
ττ

∣∣ – rτ

(
M

′
t
)

+
∣∣(M

′
t
)
τ i

∣∣) – ri
(
M

′
t
)∣∣(M

′
t
)
τ i

∣∣, t = j, l.

Therefore, we have

α1(MD) =
|mτ i| + |mii|

(|mττ | – rτ (MD) + |mτ i|)|mii| – |mτ i|ri(MD)

≥ 2 maxt=j,l (ϕt
max)

′

(1 – dτ )(1 – di)(β
j
min)

′
+ dτ di(β l

min)
′

≥ 2 maxt=j,l (ϕt
max)

′

min{(β j
min)

′
, (β l

min)
′ }
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and

|mττ | – rτ (MD) + |mτ i| + ri(MD)

=
[
(1 – dτ )

∣∣(M
′
j
)
ττ

∣∣ + dτ

∣∣(M
′
l
)
ττ

∣∣] –
[
(1 – dτ )rτ

(
M

′
j
)

+ dτ rτ

(
M

′
l
)]

+
[
(1 – dτ )

∣∣(M
′
j
)
τ i

∣∣ + dτ

∣∣(M
′
l
)
τ i

∣∣] +
[
(1 – di)ri

(
M

′
j
)

+ diri
(
M

′
l
)]

= (1 – dτ )
[∣∣(M

′
j
)
ττ

∣∣ – rτ

(
M

′
j
)

+
∣∣(M

′
j
)
τ i

∣∣]

+ dτ

[∣∣(M
′
l
)
ττ

∣∣ – rτ

(
M

′
l
)

+
∣∣(M

′
l
)
τ i

∣∣] +
[
(1 – di)ri

(
M

′
j
)

+ diri
(
M

′
l
)]

<
[∣∣(M

′
j
)
ττ

∣∣ – rτ

(
M

′
j
)

+
∣∣(M

′
j
)
τ i

∣∣ + ri
(
M

′
j
)]

+
[∣∣(M

′
l
)
ττ

∣∣ – rτ

(
M

′
l
)

+
∣∣(M

′
l
)
τ i

∣∣ + ri
(
M

′
l
)]

=
(
ω

j
iτ
)′

+
(
ωl

iτ
)′

≤ 2 max
t=j,l

(
ωt

max

)′
,

where

(
ωt

max

)′
= max

τ �=i∈N

(
ωt

iτ
)′

,

(
ωt

iτ
)′

=
∣∣(M

′
t
)
ττ

∣∣ – rτ

(
M

′
t
)

+
∣∣(M

′
t
)
τ i

∣∣ + ri
(
M

′
t
)
, t = j, l.

So, it holds that

α2(A) =
|mττ | – rτ (MD) + |mτ i| + ri(MD)

(|mττ | – rτ (MD) + |mτ i|)|mii| – |mτ i|ri(MD)

≤ 2 maxt=j,l (ωt
max)

′

(1 – dτ )(1 – di)(β
j
min)

′
+ dτ di(β l

min)
′

≤ 2 maxt=j,l (ωt
max)

′

min{(β j
min)

′
, (β l

min)
′ }

and

∥∥MD
–1∥∥∞ ≤ 2 max

{
maxt=j,l (ϕt

max)
′

min{(β j
min)

′
, (β l

min)
′ }

,
maxt=j,l (ωt

max)
′

min{(β j
min)

′
, (β l

min)
′ }

}
.

By Definition 1, we can regard M′
j , M′

l as two blocks in a row rearrangement of M =
(M0, M1, . . . , Mk), and thus for t = j or t = l and for i ∈ N , there exists ti ∈ {0, 1, . . . , k} such
that

(
ϕt

τ i
)′

= ϕ
ti
τ i,

(
ωt

iτ
)′

= ω
ti
iτ ,

(
β t

iτ
)′

= β
ti
iτ ,

this implies that

max
t=j,l

(
ϕt

max

)′
= max

t=j,l

{
max
τ �=i∈N

{(
ϕt

τ i
)′}}

= max
t=j,l

{
max
τ �=i∈N

{(
ϕ

ti
τ i
)}}
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= max
τ �=i∈N

{
max
t=j,l

{(
ϕ

ti
τ i
)}} ≤ max

τ �=i∈N

{
max

p=0,1,...,k

{(
ϕ

p
τ i
)}}

= max
p=0,1,...,k

{
max
τ �=i∈N

{(
ϕ

p
τ i
)}}

= max
p=0,1,...,k

{
ϕp

max

}
.

Similarly, we get

max
t=j,l

(
ωt

max

)′
= max

t=j,l

{
max
τ �=i∈N

{(
ωt

iτ
)′}}

= max
t=j,l

{
max
τ �=i∈N

{(
ω

ti
iτ
)}}

= max
τ �=i∈N

{
max
t=j,l

{(
ω

ti
iτ
)}} ≤ max

τ �=i∈N

{
max

p=0,1,...,k

{(
ω

p
iτ
)}}

= max
p=0,1,...,k

{
max
τ �=i∈N

{(
ω

p
iτ
)}}

= max
p=0,1,...,k

{
ωp

max

}

and

min
τ �=i∈N

{(
β

j
min

)′
,
(
β l

min

)′}
= min

t=j,l

{
min
τ �=i∈N

{
β t

min

}}
= min

t=j,l

{
min
τ �=i∈N

{
β

ti
iτ
}}

= min
τ �=i∈N

{
min
t=j,l

{
β

ti
iτ
}} ≥ min

τ �=i∈N

{
min

p=0,1,...,k

{
β

p
iτ
}}

= min
p=0,1,...,k

{
min
τ �=i∈N

{
β

p
iτ
}}

= min
p=0,1,...,k

{
β

p
min

}
.

Hence, for any two blocks M′
j , M′

l in M′ ∈ R(M),

∥∥MD
–1∥∥∞ ≤ 2 max

{
max{ϕp

max}
min{βp

min}
,
max{ωp

max}
min{βp

min}
}

, p = 0, 1, . . . , k.

By the arbitrariness of M′
j and M′

l , the conclusion follows. �

We illustrate our results with the following two examples.

Example 1 Let M = (M0, M1, M2), where

M0 =

⎡

⎢⎢⎢⎣

2 0 0.2 0.2
0.3 3 1.2 1
0.5 0.1 3 2
0.3 0.1 1 2

⎤

⎥⎥⎥⎦ , M1 =

⎡

⎢⎢⎢⎣

2 0 0.8 0.1
0.5 2 0.3 0.2
1 0.5 3 0.5

0.2 0.5 1 3

⎤

⎥⎥⎥⎦ ,

M2 =

⎡

⎢⎢⎢⎣

2 0 0.2 0.8
1.7 3 0.85 0.39

0.12 0.5 3 0.1
0.2 0.3 0.1 3

⎤

⎥⎥⎥⎦

are DZ matrices and SDD matrices. Thus M = (M0, M1, M2) has the row W-property. By
Theorem 6, it holds that

α∞(M) ≤ 10.2509.

By Theorem 3 (Theorem 4.4 of [1]), we have

α∞(M) ≤ 16.6667.
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Since

ρ
(
max

(
�–1

0 |B0|,�–1
1 |B1|,�–1

2 |B2|
))

= 0.9778 < 1,

then by Theorem 4 (Theorem 4.3 of [1]), we get

α∞(M) ≤ 25.2523.

Example 2 Let M = (M0, M1, M2), where

M0 =

⎡

⎢⎢⎢⎣

2 0 0.2 0.2
0.3 3 1.2 1
0.5 0.1 3 2
1 0.1 1 2

⎤

⎥⎥⎥⎦ , M1 =

⎡

⎢⎢⎢⎣

2 0 0.8 0.1
0.5 2 0.3 0.2
1 0.5 3 0.5

0.2 0.5 1 3

⎤

⎥⎥⎥⎦ ,

M2 =

⎡

⎢⎢⎢⎣

2 0 0.2 0.8
1.7 3 0.85 0.39

0.12 0.5 3 0.1
0.2 0.3 0.1 3

⎤

⎥⎥⎥⎦

are DZ matrices, but M0 is not an SDD matrix, and

ρ
(
max

(
�–1

0 |B0|,�–1
1 |B1|,�–1

2 |B2|
))

= 1.0728 > 1.

Thus Theorems 3 and 4 cannot work for this case. However, by Theorem 6, it holds that

α∞(M) ≤ 16.3429.

Examples 1 and 2 show that the bound in Theorem 6 is sharper than that in Theorems
3 and 4 in some cases.

4 A global error bound for the EVLCP of Dashnic–Zusmanovich-B matrices
In 2020, Zhou et al. [19] introduced error bounds of the linear complementarity problems
of Dashnic–Zusmanovich-B matrices, whose definition is listed below.

Definition 3 ([19]) A matrix M = (mij) ∈ Rn×n is called a Dashnic–Zusmanovich-B (DZ-B)
matrix if B+ is a DZ matrix, where M = B+ + C,

B+ = (bij) =

⎛

⎜⎜⎝

m11 – r+
1 · · · m1n – r+

1
...

. . .
...

mn1 – r+
n · · · mnn – r+

n

⎞

⎟⎟⎠ , C =

⎛

⎜⎜⎝

r+
1 · · · r+

1
...

. . .
...

r+
n · · · r+

n

⎞

⎟⎟⎠ , (4)

and r+
i = max{0, mij|i �= j}.

Next, we will present an upper bound for α∞(M) with each Ml ∈ Rn×n (l = 0, 1, . . . , k)
being a DZ-B matrix. Before that, some useful results are presented as follows.
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Proposition 3 Let A = (aij) ∈ Rn×n and B = (bij) ∈ Rn×n be all DZ-B matrices of the form

A = B+
A + CA, B = B+

B + CB,

where B+
A, B+

B, CA, CB are as (4), and B+
A, B+

B are all DZ matrices and satisfy the hypotheses of
Proposition 1. Then (I – D)A+DB is also a DZ-B matrix for any D = diag(di) with di ∈ [0, 1]
(i ∈ N ).

Proof Since both A and B are DZ-B matrices, then A and B can be split separately into

(I – D)A + DB = (I – D)
(
B+

A + CA
)

+ D
(
B+

B + CB
)

=
[
(I – D)B+

A + DB+
B
]

+
[
(I – D)CA + DCB

]
.

By Proposition 1, we have that (I – D)B+
A + DB+

B is a DZ matrix, and (I – D)B+
A + DB+

B and
(I – D)CA + DCB satisfy formula (4). So, by Definition 3, (I – D)A + DB is a DZ-B ma-
trix. �

Based on Proposition 3, Lemma 1, and the fact that a DZ-B matrix is nonsingular, we
can prove the following result.

Proposition 4 If M0, M1, . . . , Mk are all DZ-B matrices and each Mli (li = 0, 1, . . . k) sat-
isfies the hypotheses of Proposition 3, then each M′

l in M′ ∈ R(M) is a DZ-B matrix, and
consequently, M = (M0, M1, . . . , Mk) has the row W-property.

Proof By Definition 1, for the ith row (M′
l)i of M′

l (i ∈ N ), there exists li ∈ {0, 1, . . . , k} such
that (M′

l)i = (Mli )i and Mli is a DZ-B matrix. So, it holds that

Mli = B+
li + Cli , (Mli )i =

(
B+

li

)
i + (Cli )i,

that is,

(
M

′
l
)

i =
(
B+

l
)′

i + (Cl)
′
i, M

′
l =

(
B+

l
)′

+ (Cl)
′ .

By Proposition 2, (B+
l )′ is a DZ matrix, and (B+

l )′ and (Cl)
′ satisfy formula (4). So, M′

l is a
DZ-B matrix.

Let M′
j , M′

l be any two blocks in M′ ∈ R(M), then M′
j and M′

l are all DZ-B matrices. By
Proposition 3, (I – D)M′

j + DM′
l is a DZ-B matrix for any D = diag(di), di ∈ [0, 1] (i ∈ N ).

Thus (I – D)M′
j + DM′

l is nonsingular. By Lemma 1, the block matrix M = (M0, M1, . . . , Mk)
has the row W-property. �

Theorem 7 Let M = (M0, M1, . . . , Mk), and let each Mp be a DZ-B matrix of the form Mp =
B+

p + Cp as (4), and let B+
p = ((bp)iτ ) satisfy the hypotheses of Proposition 3 for p = 0, 1, . . . , k.

Then

α(M)∞ ≤ 2(n – 1) max

{
max{χp

max}
min{λp

min}
,
max{γ p

max}
min{λp

min}
}

,
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where

χp
max = max

τ �=i∈N

{
χ

p
τ i
}

, χ
p
τ i =

∣∣(bp)
τ i

∣∣ +
∣∣(bp)

ii

∣∣,

γ p
max = max

τ �=i∈N

{
γ

p
iτ
}

, γ
p
iτ =

∣∣(bp)
ττ

∣∣ – rτ

(
B+

p
)

+
∣∣(bp)

τ i

∣∣ + ri
(
B+

p
)
,

λ
p
min = min

τ �=i∈N

{
λ

p
iτ
}

, λ
p
iτ =

∣∣(bp)
ii

∣∣(∣∣(bp)
ττ

∣∣ – rτ

(
B+

p
)

+
∣∣(bp)

τ i

∣∣) – ri
(
B+

p
)∣∣(bp)

τ i

∣∣.

Proof For any two blocks M′
j , M′

l in M′ ∈ R(M) and any D = diag(di) with di ∈ [0, 1] (i ∈ N ),
denote MD = (miτ ) = (I – D)M′

j + DM′
l . By Propositions 3 and 4, it holds that M′

j , M′
l , and

MD are all DZ-B matrices, then we can split M′
j = (B+

j )′ + (Cj)
′ and M′

l = (B+
l )′ + (Cl)

′ as (4).
Let (B+

t )′ = ((b′
t)iτ ) for t = j, l. Since

MD = (I – D)M
′
j + DM

′
l

= (I – D)
[(

B+
j
)′

+ (Cj)
′]

+ D
[(

B+
l
)′

+ (Cl)
′]

=
[
(I – D)

(
B+

j
)′

+ D
(
B+

l
)′][

(I – D)(Cj)
′
+ D(Cl)

′]
,

then MD = B+
D + CD, where

B+
D = (biτ ) = (I – D)

(
B+

j
)′

+ D
(
B+

l
)′

, CD = (I – D)(Cj)
′
+ D(Cl)

′
.

So, both (B+
j )

′
and (B+

l )
′

are DZ matrices with positive diagonal elements, and B+
D is also a

DZ matrix with positive diagonal entries by Proposition 1. Therefore, B+
D is a nonsingular

matrix, and

M–1
D =

(
B+

D + CD
)–1 =

(
B+

D
(
I +

(
B+

D
)–1CD

))–1 =
(
I +

(
B+

D
)–1CD

)–1(B+
D
)–1,

that is,

∥∥M–1
D

∥∥∞ ≤ ∥∥(
I +

(
B+

D
)–1CD

)–1∥∥∞ · ∥∥(
B+

D
)–1∥∥∞ ≤ (n – 1)

∥∥(
B+

D
)–1∥∥∞,

where the last equality holds because ‖(I + (B+
D)–1CD)–1‖∞ ≤ (n – 1), see Theorem 2.2 in

[9].
In fact, since (B+

j )′ , (B+
l )′ , and B+

D are all DZ Z-matrices with positive diagonal elements,
by Theorem 5, we have that

∥∥(
B+

D
)–1∥∥∞ ≤ max

{
max

τ∈N ,τ �=i
α1

(
B+

D
)
, max
τ∈N ,τ �=i

α2
(
B+

D
)}

holds for each matrix D = diag(di) with di ∈ [0, 1] (i ∈ N ), where

α1
(
B+

D
)

=
|bτ i| + |bii|

(|bττ | – rτ (B+
D) + |bτ i|)|bii| – |bτ i|ri(B+

D)
,

α2
(
B+

D
)

=
|bττ | – rτ (B+

D) + |bτ i| + ri(B+
D)

(|bττ | – rτ (B+
D) + |bτ i|)|bii| – |bτ i|ri(B+

D)
.
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Hence, we get

|bτ i| + |bii| = (1 – dτ )
∣∣(b

′
j
)
τ i

∣∣ + dτ

∣∣(b
′
l
)
τ i

∣∣ + (1 – di)
∣∣(b

′
j
)

ii

∣∣ + di
∣∣(b

′
l
)

ii

∣∣

<
[∣∣(b

′
j
)
τ i

∣∣ +
∣∣(b

′
j
)

ii

∣∣] +
[∣∣(b

′
l
)
τ i

∣∣ +
∣∣(b

′
l
)

ii

∣∣]

=
(
χ

j
τ i
)′

+
(
χ l

τ i
)′

= 2 max
t=j,l

(
χ t

max

)′
,

where

(
χ t

max

)′
= max

τ �=i∈N

{(
χ l

τ i
)′}

,
(
χ l

τ i
)′

=
∣∣(b

′
t
)
τ i

∣∣ +
∣∣(b

′
t
)

ii

∣∣, t = j, l.

Therefore, we have

(|bττ | – rτ

(
B+

D
)

+ |bτ i|
)|bii| – |bτ i|ri

(
B+

D
)

=
[
(1 – dτ )

(∣∣(b
′
j
)
ττ

∣∣ – rτ

(
B+

j
)′

+
∣∣(b

′
j
)
τ i

∣∣) + dτ

(∣∣(b
′
l
)
ττ

∣∣ – rτ

(
B+

l
)′

+
∣∣(b

′
l
)
τ i

∣∣)]

× [
(1 – di)

∣∣(b
′
j
)

ii

∣∣ + di
∣∣(b

′
l
)

ii

∣∣]

–
[
(1 – dτ )

∣∣(b
′
j
)
τ i

∣∣ + dτ

∣∣(b
′
l
)
τ i

∣∣][(1 – di)ri
(
B+

j
)′

+ diri
(
B+

l
)′]

= (1 – dτ )(1 – di)
∣∣(b

′
j
)

ii

∣∣(∣∣(b
′
j
)
ττ

∣∣ – rτ

(
B+

j
)′

+
∣∣(b

′
j
)
τ i

∣∣)

+ (1 – dτ )di
∣∣(b

′
l
)

ii

∣∣(∣∣(b
′
j
)
ττ

∣∣ – rτ

(
B+

j
)′

+
∣∣(b

′
j
)
τ i

∣∣)

+ dτ (1 – di)
∣∣(b

′
j
)

ii

∣∣(∣∣(b
′
l
)
ττ

∣∣ – rτ

(
B+

l
)′

+
∣∣(b

′
l
)
τ i

∣∣)

+ dτ di
∣∣(b

′
l
)

ii

∣∣(∣∣(b
′
l
)
ττ

∣∣ – rτ

(
B+

l
)′

+
∣∣(b

′
l
)
τ i

∣∣)

– (1 – dτ )(1 – di)ri
(
B+

j
)′ ∣∣(b

′
j
)
τ i

∣∣ – (1 – dτ )diri
(
B+

l
)′ ∣∣(b

′
j
)
τ i

∣∣

– dτ (1 – di)ri
(
B+

j
)′ ∣∣(b

′
l
)
τ i

∣∣ – dτ diri
(
B+

l
)′ ∣∣(b

′
l
)
τ i

∣∣

> (1 – dτ )(1 – di)
∣∣(b

′
j
)

ii

∣∣(∣∣(b
′
j
)
ττ

∣∣ – rτ

(
B+

j
)′

+
∣∣(b

′
j
)
τ i

∣∣)

+ (1 – dτ )diri
(
B+

l
)′ ∣∣(b

′
j
)
τ i

∣∣ + dτ (1 – di)ri
(
B+

j
)′ ∣∣(b

′
l
)
τ i

∣∣

+ dτ di
∣∣(b

′
l
)

ii

∣∣(∣∣(b
′
l
)
ττ

∣∣ – rτ

(
B+

l
)′

+
∣∣(b

′
l
)
τ i

∣∣)

– (1 – dτ )(1 – di)ri
(
B+

j
)′ ∣∣(b

′
j
)
τ i

∣∣ – (1 – dτ )diri
(
B+

l
)′ ∣∣(b

′
j
)
τ i

∣∣

– dτ (1 – di)ri
(
B+

j
)′ ∣∣(b

′
l
)
τ i

∣∣ – dτ diri
(
B+

l
)′ ∣∣(b

′
l
)
τ i

∣∣

= (1 – dτ )(1 – di)
∣∣(b

′
j
)

ii

∣∣(∣∣(b
′
j
)
ττ

∣∣ – rτ

(
B+

j
)′

+
∣∣(b

′
j
)
τ i

∣∣)

+ dτ di
∣∣(b

′
l
)

ii

∣∣(∣∣(b
′
l
)
ττ

∣∣ – rτ

(
B+

l
)′

+
∣∣(b

′
l
)
τ i

∣∣)

– (1 – dτ )(1 – di)ri
(
B+

j
)′ ∣∣(b

′
j
)
τ i

∣∣ – dτ diri
(
B+

l
)′ ∣∣(b

′
l
)
τ i

∣∣

= (1 – dτ )(1 – di)
[∣∣(b

′
j
)

ii

∣∣(∣∣(b
′
j
)
ττ

∣∣ – rτ

(
B+

j
)′

+
∣∣(b

′
j
)
τ i

∣∣) – ri
(
B+

j
)′ ∣∣(b

′
j
)
τ i

∣∣]

+ dτ di
[∣∣(b

′
l
)

ii

∣∣(∣∣(b
′
l
)
ττ

∣∣ – rτ

(
B+

l
)′

+
∣∣(b

′
l
)
τ i

∣∣) – ri
(
B+

l
)′ ∣∣(b

′
l
)
τ i

∣∣]

= (1 – dτ )(1 – di)
(
λ

j
iτ
)′

+ dτ di
(
λl

iτ
)′
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≥ (1 – dτ )(1 – di)
(
λ

j
min

)′
+ dτ di

(
λl

min

)′
,

where

(
λ

j
min

)′
= min

τ �=i∈N

(
λt

iτ
)′

,

(
λt

iτ
)′

=
∣∣(b

′
t
)

ii

∣∣(∣∣(b
′
t
)
ττ

∣∣ – rτ

(
B+

t
)′

+
∣∣(b

′
t
)
τ i

∣∣) – ri
(
B+

j
)′ ∣∣(b

′
t
)
τ i

∣∣, t = j, l.

Further, we get

α1
(
B+

D
)

=
|bτ i| + |bii|

(|bττ | – rτ (B+
D) + |bτ i|)|bii| – |bτ i|ri(B+

D)

≥ 2 maxt=j,l (χ t
max)

′

(1 – dτ )(1 – di)(λ
j
min)

′
+ dτ di(λl

min)
′

≥ 2 maxt=j,l (χ t
max)

′

min{(λj
min)

′
, (λl

min)
′ }

and

|bττ | – rτ

(
B+

D
)

+ |bτ i| + ri
(
B+

D
)

=
[
(1 – dτ )

∣∣(b
′
j
)
ττ

∣∣ + dτ

∣∣(b
′
l
)
ττ

∣∣] –
[
(1 – dτ )rτ

(
B+

j
)′

+ dτ rτ

(
B+

l
)′]

+
[
(1 – dτ )

∣∣(b
′
j
)
τ i

∣∣ + dτ

∣∣(b
′
l
)
τ i

∣∣] +
[
(1 – di)ri

(
B+

j
)′

+ diri
(
B+

l
)′]

= (1 – dτ )
[∣∣(b

′
j
)
ττ

∣∣ – rτ

(
B+

j
)′

+
∣∣(b

′
j
)
τ i

∣∣]

+ dτ

[∣∣(b
′
l
)
ττ

∣∣ – rτ

(
B+

l
)′

+
∣∣(b

′
l
)
τ i

∣∣] +
[
(1 – di)ri

(
B+

j
)′

+ diri
(
B+

l
)′]

<
[∣∣(b

′
j
)
ττ

∣∣ – rτ

(
B+

j
)′

+
∣∣(b

′
j
)
τ i

∣∣ + ri
(
B+

j
)′]

+
[∣∣(b

′
l
)
ττ

∣∣ – rτ

(
B+

l
)′

+
∣∣(b

′
l
)
τ i

∣∣ + ri
(
B+

l
)′]

=
(
γ

j
iτ
)′

+
(
γ l

iτ
)′

≤ 2 max
t=j,l

(
γ t

max

)′
,

where

(
γ t

max

)′
= max

τ �=i∈N

(
γ t

iτ
)′

,

(
γ t

iτ
)′

=
∣∣(b

′
t
)
ττ

∣∣ – rτ

(
B+

t
)′

+
∣∣(b

′
t
)
τ i

∣∣ + ri
(
B+

t
)′

, t = j, l,

and

α2
(
B+

D
)

=
|bττ | – rτ (B+

D) + |bτ i| + ri(B+
D)

(|bττ | – rτ (B+
D) + |bτ i|)|bii| – |bτ i|ri(B+

D)

≤ 2 maxt=j,l (γ t
max)

′

(1 – dτ )(1 – di)(λ
j
min)

′
+ dτ di(λl

min)
′



Zhao and Sun Journal of Inequalities and Applications        (2022) 2022:117 Page 15 of 18

≤ 2 maxt=j,l (γ t
max)

′

min{(λj
min)

′
, (λl

min)
′ }

.

So, it holds that

∥∥MD
–1∥∥∞ ≤ 2(n – 1) max

{
maxt=j,l (χ t

max)
′

min{(λj
min)

′
, (λl

min)
′ }

,
maxt=j,l (γ t

max)
′

min{(λj
min)

′
, (λl

min)
′ }

}
.

By Definition 1, we can regard M′
j , M′

l as two blocks in a row rearrangement of M =
(M0, M1, . . . , Mk), and thus for t = j or t = l and for i ∈ N , there exists ti ∈ {0, 1, . . . , k} such
that

(
χ t

τ i
)′

= ϕ
ti
τ i,

(
γ t

iτ
)′

= γ
ti
iτ ,

(
λt

iτ
)′

= λ
ti
iτ ,

this implies that

max
t=j,l

(
χ t

max

)′
= max

t=j,l

{
max
τ �=i∈N

{(
χ t

τ i
)′}}

= max
t=j,l

{
max
τ �=i∈N

{(
χ

ti
τ i
)}}

= max
τ �=i∈N

{
max
t=j,l

{(
χ

ti
τ i
)}} ≥ max

τ �=i∈N

{
max

p=0,1,...,k

{(
χ

p
τ i
)}}

= max
p=0,1,...,k

{
max
τ �=i∈N

{(
χ

p
τ i
)}}

= max
p=0,1,...,k

{
χp

max

}
.

Similarly, we get

max
t=j,l

(
γ t

max

)′
= max

t=j,l

{
max
τ �=i∈N

{(
γ t

iτ
)′}}

= max
t=j,l

{
max
τ �=i∈N

{(
γ

ti
iτ
)}}

= max
τ �=i∈N

{
max
t=j,l

{(
γ

ti
iτ
)}} ≤ max

τ �=i∈N

{
max

p=0,1,...,k

{(
γ

p
iτ
)}}

= max
p=0,1,...,k

{
max
τ �=i∈N

{(
γ

p
iτ
)}}

= max
p=0,1,...,k

{
γ p

max

}

and

min
τ �=i∈N

{(
λ

j
min

)′
,
(
λl

min

)′}
= min

t=j,l

{
min
τ �=i∈N

{
λt

min

}}
= min

t=j,l

{
min
τ �=i∈N

{
λ

ti
iτ
}}

= min
τ �=i∈N

{
min
t=j,l

{
λ

ti
iτ
}} ≥ min

τ �=i∈N

{
min

p=0,1,...,k

{
λ

p
iτ
}}

= min
p=0,1,...,k

{
min
τ �=i∈N

{
λ

p
iτ
}}

= min
p=0,1,...,k

{
λ

p
min

}
.

Thus, for any two blocks M′
j ,M

′
l in M′ ∈ R(M), we have

α(M)∞ ≤ 2(n – 1) max

{
max{χp

max}
min{λp

min}
,
max{γ p

max}
min{λp

min}
}

, p = 0, 1, . . . , k.

By the arbitrariness of M′
j and M′

l , the conclusion follows. �

We illustrate our results with the following two examples.
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Example 3 Let M = (M0, M1, M2), and let each Mp be DZ-B matrices and SDD matrices
of the form Mp = B+

p + Cp (p = 0, 1, 2) as (4), where

M0 =

⎡

⎢⎣
3.5 1.5 0.5
1 4 –0.5

–0.86 1.64 4.64

⎤

⎥⎦ , M1 =

⎡

⎢⎣
3.2 0.2 –2
0.1 2.1 0.9

–1.84 0.16 3.16

⎤

⎥⎦ ,

M2 =

⎡

⎢⎣
2.78 0.78 –0.22
1.74 3.5 1.7

–0.12 0.5 3.5

⎤

⎥⎦ , B+
0 =

⎡

⎢⎣
2 0 –1
0 3 –1.5

–2.5 0 3

⎤

⎥⎦ ,

B+
1 =

⎡

⎢⎣
3 0 –2.2
0 2 –1

–2 0 3

⎤

⎥⎦ , B+
2 =

⎡

⎢⎣
2 0 –1
0 1.76 –0.04

–0.62 0 3

⎤

⎥⎦ .

Thus M = (M0, M1, M2) has the row W-property. By Theorem 7, it holds that

α∞(M) ≤ 14.6667.

By Theorem 3 (Theorem 4.4 of [1]), we have

α∞(M) ≤ 16.6667.

Since

ρ
(
max

(
�–1

0 |B0|,�–1
1 |B1|,�–1

2 |B2|
))

= 0.9909 < 1,

then by Theorem 4 (Theorem 4.3 of [1]), we get

α∞(M) ≤ 42.8184.

Example 4 Let M = (M0, M1, M2), and let Mp be DZ-B matrices of the form Mp = B+
p + Cp

(p = 0, 1, 2) as (4), where

M0 =

⎡

⎢⎣
3.5 1.5 0.5
1 4 –0.5

–0.86 1.64 4.64

⎤

⎥⎦ , M1 =

⎡

⎢⎣
3.2 0.2 –2
0.1 2.1 0.9

–1.84 0.16 3.16

⎤

⎥⎦ ,

M2 =

⎡

⎢⎣
2.78 0.78 –0.22

2 3.5 1.7
–0.12 0.5 3.5

⎤

⎥⎦ , B+
0 =

⎡

⎢⎣
2 0 –1
0 3 –1.5

–2.5 0 3

⎤

⎥⎦ ,

B+
1 =

⎡

⎢⎣
3 0 –2.2
0 2 –1

–2 0 3

⎤

⎥⎦ , B+
2 =

⎡

⎢⎣
2 0 –1
0 1.5 –0.3

–0.62 0 3

⎤

⎥⎦ .

Thus M = (M0, M1, M2) has the row W-property. It is easy to check that M2 is not SDD
and

ρ
(
max

(
�–1

0 |B0|,�–1
1 |B1|,�–1

2 |B2|
))

= 1.0347 > 1.
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Hence, we cannot use these bounds in Theorems 3 and 4 to estimate α∞(M). But, by The-
orem 7, we get

α∞(M) ≤ 14.6667.

Examples 3 and 4 show that the bound in Theorem 7 is sharper than that in Theorems 3
and 4 in some cases.

5 Conclusions
In this paper, we present global error bounds for the extended vertical linear complemen-
tarity problems of DZ matrices and DZ-B matrices. These bounds are expressed in terms
of elements of the matrices, so they can be checked easily. Numerical examples show the
feasibility of new results. Finding computable global error bounds for the extended vertical
linear complementarity problems of other matrices (S-SOB matrices, S-SOB-B matrices,
weakly chained diagonally dominant B-matrices, SB-matrices, etc.) under some additional
conditions is an interesting problem. It is worth studying in the future.
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